UNIVALENCE AND BOUNDED MEAN OSCILLATION

Albert Baernstein II

1. INTRODUCTION

We shall denote by D the unit disk |z| <1 and by T the boundary of D. A
function g € LI(T) is said to be of bounded mean oscillation, g € BMO, if there
exists a constant C = C(g) such that

|—Il-|- SI |g(eif) - ggldo < C

for every interval (circular arc) I C T. Here, |I| denotes the (one-dimensional)
Lebesgue measure of I -and gp is the average value of g over I,

1] “1

The class BMO was introduced by John and Nirenberg [10]. They showed that a
BMO function g, which is a priori assumed only to be in L!, in fact satisfies the

much stronger integrability condition e® 18! ¢ LY(T) for some positive a.

BMO functions have attracted considerable attention in recent years since the
discovery by Fefferman ([5], [6]) that they play a very important role in certain as-
pects of harmonic analysis. Among other things, Fefferman proved [6, Theorem 3]
that a real valued function u € L!(T) is in BMO if and only if u has the form

(1) u =u, +d, where uj, uz e L¥(T).

Here, U, denotes the conjugate function of up. In particular, BMO properly contains
L°(T), while the John-Nirenberg result mentioned above shows that LP(T) D BMO
for all p < .

We remark that the authors cited so far actually studied BMO functions defined
on R™, but all of their results are still valid, and slightly easier to prove, for func-
tions defined on T.

Suppose now that f is an analytic univalent function in D. It is well known (see,
e.g., [4]) that f € HP (the usual Hardy class) for 0 <p < 1/2. Thus the radial
limits f(elf) of f exist for almost all ¢, and it is easy to show that

log |f(eif)| e LP(T)

for all p < «, although log |f(eif)| need not be in L*(T). Since BMO is situated
between LP and L%, it is natural to ask whether log |f(eif)| ¢ BMO. This question
was apparently first considered by Cima and Petersen [2], who showed that the
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answer is affirmative for certain subclasses of univalent functions. In this paper, I
shall prove the following more precise result, which implies that the answer is al-
ways affirmative.

THEOREM 1. Suppose that f is analytic and univalent in D. Then, for each

p € (0, 1/2), theve exist functions uy, upy € L™(T) such that ||u;| o <7/2p and, for
almost all real 6,

log |£(eif)] = u,(elf) + Tylei?).

In view of Fefferman’s result (1), Theorem 1 certainly implies that
log lf(eie)l € BMO. Moreover, (1) shows that the linear space BMO is closed
under conjugation. Thus u € BMO <> u + il ¢ BMO, and we obtain immediately
from Theorem 1

THEOREM 2. Suppose that 1 is analytic and univalent in D. Then

(a) log f(eif) € BMO if f has no zervo in D;
f(el?) . _

(b) log=5—— € BMO iff hasazeroat z=ae D.
el? - a

Part (b) is a consequence of the fact that

1-az
logI: p— f(z):l
is analytic and single-valued in D, and the real part of its boundary function is

log |1(e'?)].

Two especially interesting subclasses of the set of univalent functions are the
classes S and S, of functions f satisfying respectively

() £(0) = 0, £'(0) = 1;
(So) £f(0) = 1, f has no zero in D.

The results of [1] provide one with very good control over the modulus |f| for fe S
or f € Sy. For example, if f € S, then Theorems 1 and 2 of [1] assert that

@ {°

T . 27 .

®(+1og |f(rel?)|)do < S &(+1log |k(rei?)|) d6
0 0
for every convex increasing function ®, where k(z) = z/(1 - z)2 is the Koebe func-
tion. It is easy to check directly that log |k(elf)| € BMO. However, this together
with (2) does not imply log |f(ei)| € BMO. The class BMO is more subtle than the
LP classes, and the results of the present paper yield interesting information about
the argument arg(f(eif)/eif) for f € S, which does not seem directly accessible by
the methods of [1]. There is a possibility that the present results, combined with
those of [1], could be put to some use in the study of coefficient problems for func-
tions in S.
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2. PROOF OF THEOREM 1

The proof of Theorem 1 is based on deep results of Hunt, Muckenhoupt, and
Wheeden [9], whose main concern was to characterize those weight functions u on T
for which the conjugate function operator is bounded on LP(T, ud9) Let u be a
nonnegative function on T such that both u € L1(T) and 1/u € LI(T). Denote by
P(u, z) the Poisson integral of u,

27 .
P(u, ) = 21_W S u(ei®) %
0

-1
[_ur_ze__i’i 4, zeD.

1-ze i¢

Theorem 2 of [9] then asserts that the following two conditions are equivalent.

(3) u = exp(u; +%,), with u;,u, € L~ and u, |l < 7/2.

(4) There exists a constant C = C(u) such that P(u, z) P(1/u, z) < C, for all z € D.
We shall establish Theorem 1 by showing that, for each p € (0, 1/2),

(5) P(|t|P, z) P(|f| P, 2z) < C, =zeD,

for every univalent function f. The constant C will depend on p, but our proof shows
that it may be chosen to be independent of {.

Suppose first that f has no zero in D We may assume that £(0) = 1, so that

f e Sy. Take p € (0, 1/2) and set h(¢) = P(|£[P, £). Fix z € D and define
Qe = =2, FE) = 1(QE)).
1+ zg

Then h(Q(¢)) = P(|F|P, £). This may be established by noting that both functions are
harmonic in D with nontangential boundary values |f(Q(elf))|P a.e. on T, and by
then showing, using well known facts which may be found in [4], that h o Q is the
Poisson integral of its boundary function. Alternatively, the identity can be checked
by direct computation, after changing variables in one of the defining integrals. In
particular, we have

© ([, 2) = hiz) = WQO) = P(F[, 0) -—5 [F(ei®)[Pao .

Since F is univalent and zero-free, Theorem 6 of [1] implies that

1 (e 10y [P p
(7) Z_"So |F(eif)[Pas < c, |F(0)|7,
T i6 |2p
where C. = — 1+e” 1746, Since F(0) = f(z), (6) and (7) yield
p 277 o 1 - el@

(8) P(]£|P, z) < C, |f(2)[P.
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But f € Sy if and only if 1/f € Sg. Hence, (8) holds with 1/f in place of f, and we
deduce

P(|1]P, ) P(|t] P, z) < CZ

for all z € D. Thus, (5) holds if f € Sg.

Assume next that f is univalent in D and that f(0) = 0. We may assume for the
proof of (5) that £'(0) = 1, so that f € S. Take p € (0, 1/2), z € D, and define again
Q) = (¢ +2)/(1 +zt). As before (¢f. (6)) we have

2
(9) p(£|P, z r%&jh@@QWMa

To estimate the integral on the right, define, for z # 0,

g = L@A-[2]D) o - 1£QE) - ()
(z) B T BT H(z) '

Then g € S, and (2) gives

1 (27 i6}|P T
E’i_f lg(ele)] de S Bp, where Bp = -2—1]'- 'S‘ 'k(el )] deg.
0 0

Since f o Q = f(z) (8g + 1), we deduce

1

2
L (™ Qo) |Pdo < [t@)[P (6P By +1).

0
Combined with (9), this yields
(10) P(|f]P, z) < |i=)[P(|8|PB, +1).

The distortion theorem for f'/f {7, p. 4] shows that |8] <4|z|-! . Hence, if
|z| > 1/2, then it follows from (10) that

(11) P(|f[P, z) < |[#(z)|P(8PB, + 1), |z] > 1/2.
On the other hand, if |z| < 1/2, then

2
(12) P(|£|P, z) < —217; S Wlf(eie)lpi—f—}—z—'de < 3B,.
0

Our aim is to show that P(]f|P, z) P(|f]| P, z) < C, independently of z. Since

|f(ei®)| > 1/4, by the Koebe one-quarter theorem, we have P(|f| P, z) < 4P for all
z. Thus, in view of (11) and (12), the desired result will follow from an estimate of
the form

(13) P(|f| P, z) < Altz)| P, |z| > 1/2.
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To prove (13), we shall make use of an extension of (2) proved recently by Kir-
wan and Schober [11]. For 0 < m < 1, let S(m) be the set of all functions F mero-
morphic and univalent in D with F(0) =0, F'(0) =1, F(m) = ». Let

B mz
kp(2) = (m -2)(1 - mz) °

Kirwan and Schober proved [11, Theorem 2] that, for F € S(m),
1 (2T 5(eif) [P 1A i6y|P
—_— 1 —_ 1
L SO |F(eif) [Pao < o SO |k, (ei)|Pdo.

A simple computation, which we leave to the reader, shows that

lkn(el®)] < |kelf)],

and hence

1 27 10y (P
(14) o SO |F(elf)|Pde < B,.

Returning now to our function f € S, we have, with the same Q as in (9),

2 .
(15) p(J1]?, ) = & (" |x@te®)| Pao.
0

Define, with 8 as before,

_ 1| . _f(z)
F@‘JFfmm‘

Then F is univalent in D, F(0) =0, F'(0) = 1, and F(-z) = ©. Thus
el® F(e 1¢) € s(|z])
for a suitable real number «, and hence (14) holds for F. Now

1
foQ

1
='f‘(‘25'(1'BF),

and so, by (15),
51 (28T .
P(|5[ P, 2) = [£(z)| P SO |1 - BF(ei®)|Pd0 < |(z)| P(1+ |8|PB).

Since |B]| <8 for |z| > 1/2, we have proved (13), which completes the proof of (5)
when f has a zero at the origin.

Finally, suppose that f is univalent in D and that f(a) = 0 for some a € D. Let

Q(z) = (z +a)/(1 +2az). Then f o Q has a zero at z = 0 and so, by the case already
proved,



222 ALBERT BAERNSTEIN II
(16) P(]ioQ|P, 2)P([foQ|P,2) < C (0<p<1/2),
where C depends only on p. But, as we have seen,

P(|to QJP, z) = P(|f|P, Q=)),

and a similar equation holds with -p in place of p. It follows that (16) holds with f
in place of f o Q, and the proof of Theorem 1 is complete.

3. CONCLUDING REMARKS

The Hunt-Muckenhoupt-Wheeden result (3) < (4), upon which our proof of
Theorem 1 is based, is deduced via a rather complicated argument involving
Calder6n-Zygmund decompositions, the Marcinkiewicz interpolation theorem, and an
earlier nonconstructive existence theorem of Helson and Szegd [8]. Thus, our de-
duction that log |f(ei9)| € BMO is apparently quite roundabout, using as it does not
only (3) <= (4) but also Fefferman’s theorem. However, from the inequality
P( |f|p, z) P(|£] P, z) < C proved in the present paper, it is in fact easy to show
directly that log |f(eif)| € BMO. This may be accomplished by proving (c) => (a)
of Theorem 2, and also Lemma 5 of [9], both of which are elementary. A different
proof that log |f(eif)| € BMO has recently been found by Cima and Schober [3].

If, in Theorem 1, we form the Poisson integrals of u; and u; and complete
them to analytic functions, we are led to a factorization theorem for univalent func-
tions. For zero-free functions it may be stated as follows.

THEOREM 3. If f € S, then for each p € (0, 1/2) theve exist functions B and
¥ analytic in D such that
i(z) = B(z)[F(z)]'/P, =z e D,

where B € H®, 1/B € H®, and % F(z) > 0.

The functions B and F above depend on p, and require p < 1/2. It would be
very interesting if we could pass to the limit p = 1/2, and thereby factor f € S into
a bounded function times one which is subordinate to a conformal map onto
C - (-, 0).

It is a pleasure to acknowledge the stimulating conversations I have had on the
subject of this paper with J. A. Cima, W. E. Kirwan, and G. Schober.
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