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1. INTRODUCTION

Let H(U) be the linear space of all analytic functions in the unit disk

U = {z: |z] <1}, with the topology of locally uniform convergence. Let H'(U) be
the topological dual space of H(U), and H,(U) the set of all univalent functions in
H(U).

In this article we shall be interested in sets of univalent functions that lie in the
intersection of two hyperplanes in H(U); that is, in families

F=F(U, L, L5, P, Q = {f € Hy(U): ,(f) =P, £,(f) =Q}

for fixed £,, £, € H'(U) and P, Q € €. For example, one easily verifies that the
special families

1

S = {f e H,(U): £(0) =0, f'(0) =1},

T = {f e H(U): f(p) =p, fl@) =q}, p,a €U, p#q,

are of this form.

In an earlier article [4], we characterized the families & that are nontrivial
and compact. In particular, #(U, £, £;, P, Q) is nonempty and compact if and only

if
(a) £,(Q # £,(P)
and
(b) £,(1) £4(g) # £,(1) £,(g) for all g € Hy(U).

The families S and T are well known to be compact (the reader may also verify (a)
and (b)). More generally, if ¢; is any functional in H'(U) that does not annihilate
constants (£,(1) # 0), we define the families

(1.1) 9= {f e HYU): 0,(f) =P, f'(g) =1} PeC,qeU,

N

(1.2) J={f€Hu(U):£1(f)=P,ﬂpHgl=l} PeC pqel(p+q).

Then ¥ and 4 satisfy (a) and (b) and, consequently, are nonempty and compact.
Actually, ¥ is a limiting case of J, corresponding to p =q. If £;(f) = £(0) and
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P=q=0, then ¥ reduces to S. On the other hand, if £,(f) = f(p) and P = p, then F
reduces to T. However, there is a wide variety of families of the form ¥ and 7;

N N
for example, one may choose £;(f) = 27, ¢, f(z,), where z,, € U and 2J,_; ¢, # O.
We shall use the classes & and & as examples in Section 2, before specializing to
the class S in Section 3.

Suppose F = F(U, £1, £, P, Q) is compact, f € #, L € H'(U) is nonconstant
on #, and RL(f) = maxg RL. That is, f maximizes the real part of a nontrivial
linear functional over &#. We shall call such functions support points of F. It is
the purpose of this article to give some general properties of support points of com-
pact families %,

If (U, ¢, 22, P, Q) is compact, then it follows from (a) that we may define in
terms of £; and £, the new functionals

_ 1
= @ G®) [25(1) £; - £,(1) £5]

~ 1
= @ - m @ - Pl

Note that
(1.3) 25(1) =0, €o(1) =1, and 24(f) = -1, L,(f) =0 for f e 7.

Suppose now % is compact, f € #, L € H'(U) is nonconstant on ¥, and
% L(f) = max g RL. That is, { is a support point of #. It is then a consequence of
Schiffer’s fundamental lemma [9] and an elementary argument [4, 5, 10] that € - £(U)
consists of a single analytic arc extending to « and satisfying the differential equa-
tion

L{1/(f - w)) (dw)? > 0,

where L, is the functional L;=1L + L(f) 2 - L(l)zo .

Since the functionals in H'(U) may be represented by compactly supported
measures (cf. [10]), expressions such as L{1/(f - w))_and £o(1/(f - w)) may be ex-
tended to analytic functions of w in a neighborhood of € - £(U). Furthermore, (1.3)
implies that €4(1/(f - w)) has a zero of order 2 at © and L{1/(f - w)) has a zero
of order at least 3 at «, but does not vanish identically [4, 10]. Since C - f(U) lies
on the trajectory of an analytic differential, it follows as in [1, 7, 8] that f is analy-
tic on 29U, except for a pole of order 2 at a point £ € 90U that corresponds to w = =,
Moreover, f' has a simple zero at a point 7 € 98U that corresponds to the finite tip
of the slit C - f(U). In the following section we shall give some relations between
¢, 1, and other characteristics of {.

2. PROPERTIES OF SUPPORT POINTS FOR ¥

In [4, 5] we proved that each support point f of a compact family
#(U, 41, 25, P, Q has the property that the analytic curve C - f(U) makes an angle
of at most 7/4 with the trajectories of the vector field

(2.1) grad l: RN S Vi(1/f - w)) dw:| .
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Analytically, this means that C - £f(U) satisfies [10, p. 96]
(2.2) R {L(1/(f - w)) (dw)?} > 0.

Example 1. For the class &, the functional £4(h) = -h'(q), and the trajectories
of the vector field (2.1) are the rays from f(q). That is, each support point f of &
has the property that the analytic arc € - f(U) makes an angle of at most 7/4 with
the rays emanating from the point f(q).

Example 2. For the class ¥, the functional

(2.3) to(h) = - h—(‘%—%@

and the trajectories of the vector field (2.1) are the hyperbolae with foci f(p) and
f(g). That is, each support point f of J has the property that the analytic arc

C - £(U) makes an angle of at most #/4 with the family of hyperbolae with foci f(p)
and f(q).

We shall now use (2.2) to obtain additional information.

THEOREM 1. Let f be a suppovt point of a compact family F(U, £,, £,, P, Q).
Suppose that € € 9U and n € 93U correspond, vespectively, to the infinite and finite
endpoints of the avc C - f(U). Then

2 1 2 2
_ n| z-¢ [z£'(2)] g_[t—t] th'(t))
Fiz) QO(C[Z‘H [f(Z)-f(t)]+§ t-n t-z
2
nt-¢ ] t2£'(t)
+Z£°(C [t- n1 1-zt
is analytic in U and RF > 0. In particular,

2 [28'(2)]? t-¢ P a- |z ))}
n
(2.5) 93{2: ﬂo(l: [f )-f +[t-n:l (t—z)(l-Zt) Z 0

forall z € U.

(2.4)

Remarks. In (2.4) and (2.5), the functional £y applies to the function of t. Very
much is known about analytic functions with nonnegative real parts. Therefore,
Theorem 1 leads to many necessary conditions that a support point must satisfy.

Proof. The functional £; may be represented by a measure supported on a
compact set K C U. We may therefore restrict the variable t to K, and it is evident
that F is an analytic function of z in U - K. Since the apparent singularity when
z =t is removable, the function F is actually analytic in U. In verifying that F is
even analytic on 9U, the only term in question is

2
n|z-¢ : 1
3 [z — :l [=1'(2) ] 2o (f(z) — f(t)) '

Since {' has a zero at z = 7, the singularity at z = 7 is removable. At z = ¢, the
function [z - £]%[zf'(z)]*> has a pole of order 4. However, by writing

1 _ 1 . i) 1 ()2
f(z) - £()  £(z)  §(z)2  g(z)3 i - fEt))
f(z
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and using the relations (1.3), we see that

1 £(t)%
fo ( f(z) - f(t)) Z)z + £(z)3 ﬂ0( ) _:tit_)_)
f(z)

has a zero of order 4 at z = {. Consequently, the singularity at z = { is also re-
movable, and F is analytic in U,

2
For z € oU the function g—[-ﬁ—z—%] is nonnegative. Together with (2.2), this

2
RF(z) = ?[H] m{ﬁo(m)ﬁzf'(z)]z}

is nonnegative on 9U. By the maximum principle, we have ®F(z) > 0 in U also.

The relation (2.5) is just the statement that % F(z) > 0, together with the obser-
vation that %t(zg) = R (2L).

implies that

Examples. In view of (2.3) and (2.5), a support point of the class 'J must
satisfy

- ¢ zf(z)]2
9{{ (l: ] [£(z) - f(p)][f(z) - £(q)]
1-1z]|2] /p-t)? p*1'(p) q“f'(q)
"p-q [(p-n) (p—z)(l-ip)'(q n) (q-z)(l-zq)] <0

for all z € U. Since F in (2.4) has nonnegative real part, the inequality

IFe) - F@)| < |25 1P + FQ)

contains further information of value. We leave its explicit determination to the
reader.

Similarly, for the class ¢, (2.5) leads to the relation

{ ([ g] [f(zz)f'-(zf)(q)]z

(2.6) e lzlz)a_l: q_g)z a2 f'(q) )} <0 (z € U)
aq q-7 (q—z)(l—ZQ) o

for a support point. In this case the inequality
(2.7) (1-]a|?)|F@]| < 28FQ

contains valuable additional information. Again we leave to the reader the explicit
determination both of (2.6) and of (2.7) as z — q. However, we shall observe a
special case in Theorem 2.
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3. THE CLASS S

Since the class S is a special case of the class ¥, Example 1 implies that each
support point f of S has the property that € - f(U) is a single analytic arc whose
tangent at each point makes an angle of at most 7/4 with the radial direction (see
also [1, 7]). We now note some additional properties that follow from Theorem 1.

THEOREM 2. Let f be a support point of S. Suppose that € ¢ aU_cmd n € aU
covvespond, vespectively, to the infinite and finite endpoints of the arc C - £(U).
Then

o - 1225 (29T

is analytic in U and RF > 0 in U. In particular,

(3.2) mt,ﬁ- <0.
Furthermove,

|Z| 2 z - ¢ 2|:zf‘(z) 2 1-(eq)? 1+ |z|
&9 |z| 1+ (€7)2 ( - ) i(z) L (e7)2 1- |z]

[=o]
for 0< |z| < 1; and if 1(z) =2 + 22 anz®, then

(3.4) la, - T+7] < - %47,

(3.5) l4a; - a5 - 4a,(€ - 7) + €2 - 487 + 32| < -2%¢q.
Movreover,

(3.6) la,| > 1.

Proof. For the class S, the functional £¢(h) = -h'(0). Therefore, the function
(3.1) is precisely the function (2.4) of Theorem 1. It follows that F is analytic in U
and RF > 0. If RF =0 at a point of U, then the maximum principle and an integra-
tion lead to the explicit representation

f(z) = zexp[(¢7 - 1) log(1 - €2z)] where &7 = +i .

Note that the singularity at z = { is not a pole. Consequently, ®F > 0 in U.
The inequalities (3.2) to (3.5) are just the well-known estimates R F(0) > 0,
1- |z

F(z) - i SF(0)| _ 1+ |z |
1+|z|

R F(0) 1- |z’

0< |z| <1,

|F'(0)] <2 ®¥(0), and |F"(0)| < 4 %F(0) for an analytic function with positive real
part. The strict inequalities reflect the fact that F is bounded.

Finally, the lower bound (3.6) can be obtained from (3.4) as follows:
laz| > start > R(at+¢n) +lay - E+7| = (a ¢ +¢) + |-azt - e + 1| > 1.
Remarks. Even the elementary inequality (3.2) has an interesting geometric in-

terpretation. It says that the points {, 7 € 9U corresponding to the endpoints of
C - £f(U) are separated by an angle of more than 90 degrees.
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A number of results about functions in the class S depend on the value of the

second coefficient. Since |a2| < 2 for every function in S, it follows from (3.6) that
each support point of S has the remarkable property that

1 <Jap| < 2.

Moreover, the inequality (3.4) restricts a, further to an open disk A of radius
-R¢n with center ¢ - 77, as shown in the figure.

The following theorem gives some additional analytic and geometric information
about support points of the class S. For |w| =1 let Ry, = {rw: 0<r < 1} be the
radius from 0 to w.

THEOREM 3. Let f be a support point of S, and suppose that £, n € o0U corre-
spond, respectively, to the infinite and finite endpoints of the arc € - £(U). Then

1 2 _ 2
w0 oo = ([0 ] v 2og) e
and
2
° CREESES

ave analytic in ﬁ, and

(3.9) NG > 0 and RNH > 0 in U.

o0
In particulayr, if 1(z) = z + 2in=2 anz®™, then

(3.10) Razt > 1, Razy < -1,
(3.11) |(4a3 - a%)¢ - da, + 28| < 4%(ay?) - 4,
(3.12) |(4a; - 5a%)n - 4a, - 27| < -4%(azn) - 4.

Movreover,
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(3.13) |4a, - a5| > 2
and
(3.14) laz| > 3/8.

In addition, the avcs f(R ) and f(R ) have the propevty that their tangents at
each point make an angle less than ©/4 wzth the radial divection.

Furthermore, the funcltions

et Tww % ere)dt T s F t+n Yat
gC(Z)’SO([f(t) +t—§)t—’ hn(z)‘So ([tf‘(t) +1:—17)1;’

(3.15)
T ww dt T 1w 7? dt

ave univalent and map U onto domains that ave convex and unbounded in the u-
divection (i.e., the intersection with each hovizontal line either is emply ov is a vay
in the positive divection).

Proof. The proof is very similar to the proofs of Theorems 1 and 2. In this
case the functions
2 2
z'(2) " @-02 [ 1) | (z-n)?
f(z) €z zf'(z) Nz

are analytic in ﬁ, except for simple poles at the origin, with residues { and 75, re-
spectively. Therefore

z
¢ zf'(z) Uk n

are analytic in U. If z € aU, then (z - £)%/(¢z) <0, (z - n)%/(nz) <0, and

- ' 2 - )2
na) - ELal 2@ 17 gug) - o1l gl L)

[ef@) P @z-02 ¢
Glz) = [: £(z) €z "z

2
and H(z) = [ (z) (z - 7)? -£+—Z-

. 2
For the class S the relation (2.2) says that ml:_z—i(_(zz)—) < 0. It follows that #G > 0

and ®H > 0 on 0U, hence in U also, by the maximum principle.

If G =0 at a point of U, then G = io, where ¢ is a real constant, and an in-
tegration leads to the representation

2 _ 42
£(z) =zexp(5 \/C t :w@t 1]%)

However, this function does not have the required pole since lim, _,; (1 - r)%£(r¢)
does not exist unless ¢ = 0, in which case f is bounded. Consequently, G > 0 in
U. After a similar analysis for H, we have (3.9).

The estimates (3.10) follow by substituting z = 0 into (3.9). They are also con-
sequences of (3.4). In addition, the well-known estimates
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|G'(0)] <28G(0) and |H'(0)] < 29 H(0)

yield (3.11) and (3.12). As before, strict inequality holds since G and H are
bounded. The estimate (3.11) implies that
(3.16) R [(4a; - a)E?] > 2,

from which (3.13) follows.

To verify (3.14), we shall first estimate %(azﬁ)z . From (3.4) we can write
a, =1 +ei® + r(cos G)ei‘f’,
where 0 <r <1, eit = -¢57, cos 6 >0, and 0 < ¢ < 27. Therefore,
m(aZC)Z = (2 - %) cos? 0 + 2rcos 6 cos ¢ (rcos 6 cos ¢ + 1)
+2cos 6 (1 +rcos (6 +¢)).
Since the first and last terms are positive and 2x(x + 1) > -1/ 2, we have

(3.17) %(art)? > -%.

Now (3.16) and (3.17) imply
% (a, £%) > g,

from which (3.14) follows.
H 0<r <1, then

2
0 < % G(r¢) l: 2 _1+4+r I: ¢t (r§ :I I: —(r¢) :l
(1-12 f(rt) r2(1 - 1) f 1(rl)

and, similarly,

R H(rn) f(rn)
f-0)? " )

0<
Therefore, larg Q-f—/f :” <w/4 for z =r¢ and z =rn (and appropriate branches

of the argument). Consequently, tangents to the arcs f(R¢) and f(Ry)) make angles
less than 7/4 with the radial direction.

Using the definitions (3.15), we observe that

gt h
0<9!G=9£E§ and 0<91H-91n
g ¥n
where ¢¢(z) = z/(§ - z) and ¢, =2z/(n - z) are univalent mappings of U onto convex

domains (half- planes) Consequently, ge and hy are close-to-convex, hence uni-
valent [6]. Furthermore, for z € U
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0 < RG+2R(1 - Ez) = 91(;5—,' and 0 < RH+2%(1-72) = % &

g ¢n
Consequently, g and h are also close-to-convex, hence univalent. To see that gt

hn , 8 h map U onto domains that are convex and unbounded in the u-direction, one
may use an argument similar to that in [2, Section 6].

4. CONCLUDING REMARKS

The results of this article are really a consequence of the geometric 7/4-
property described analytically in (2.2). For the boundary values of an analytic
function to have this property, it is not necessary that the function be univalent.
Therefore, similar results also apply to many nonunivalent functions. We have con-
fined our attention to support points of the univalent families (U, £;, £, P, Q)
because of their obvious interest.

Functions with nonnegative real part corresponding to G and H in Theorem 3
can be constructed more generally in the framework of the families
(U, £1, £, P, Q. We have further restricted our attention to the class S since
the applications are more appealing. In particular, it is interesting that the 7/4-
property of the boundary arc € - £(U) extends inside to the arcs f(Rg) and f(Ry).
In addition, the 7/4-property of € - f(U) implies that it is a monotone arc. As a
consequence of earlier work [3, 10], the functions log[f(z)/z] and f(z)/z are uni-
valent and have geometric properties. This should be compared with the univalence
and other properties of the functions (3.15).

For a support point f(z) = z + Z)::z a, z" of the class S, we have shown that the
coefficients satisfy |a,| > 1, |4a; - a%[ > 2, and |as| > 3/8. It would be interest-
ing to determine additional properties of the coefficients. In particular, what addi-
tional information can be gleaned from the fact that the functions (3.1), (3.7), and
(3.8) have positive real part?
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