COMPACTNESS OF A-NUCLEAR OPERATORS
Gail R. Walker

1. INTRODUCTION

It is evident from the work of Persson and Pietsch [6] that the class of nuclear
operators depends on £;, the space of absolutely convergent series. Replacing ¢,
by an arbitrary sequence space A, we obtain a new class of operators called A-
nuclear, and we can pose questions motivated by known results in the case x = £; .
The present work addresses the problem of under what restrictions the x-nuclear
operators are compact. Assuming that A is a Banach space, Section 3 gives neces-
sary and sufficient conditions on A for A-nuclear operators to be compact. Section
4 discusses a condition on the range of the operators that yields the same result.

2. PRELIMINARIES

We use A to denote a sequence space; that is, a vector space whose elements
are sequences of complex numbers, and we use AX for the Kothe dual of .

(o]
(X = {b: Ei:l ]aibil < for all a € A}.) A linear operator T between Banach
spaces X and Y is A-nuclear (respectively, nuclear) if

[>¢]

(1) Tx = ap <x, fn> yn, forall x € X,
=1

n=
0
where {an}n:1 € A (respectively, ), f, € X' and sup "fn " <o, y, € Y and
n

{(yn, g> }::1 e A% for all g € Y'. The series in (1) is required to converge in the
norm topology on Y and (1) is referred to as a A-nuclear representation for T. We

will make use of some basic properties of A-nuclear operators that have been dis-
cussed in sections (1.1) and (1.2) of [3].

All sequence spaces will be assumed to include ¢, the set of finitely nonzero
sequences, and to be solid, which means that a € A if b € A and |a;| < [b;| for all
i. Recall that a sequence space is a BK-space if it is a Banach space and each of
the coordinate maps a — a; is continuous. A sequence space A is an AK-space if it

is a topological vector space and x = lim P, x for each x € A, where
n

P,x=(xy, X3, ***, Xpn, 0, -=-). We say that X is perfect if A =2>X. The abbrevia-
tion Ap will be used for the set of products {a;b;}iz; formed by taking a € » and
b € w. We say that X is p-invariant if X = px. Finally, cg denotes the BK-AK-

space of sequences convergent to zero; ¢, is the BK-space of bounded sequences.

Both have sup norm. X
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3. 2 A BK-SPACE

It is known [7, p. 52] that every nuclear operator is the limit (in operator norm)
of a sequence of finite rank operators and hence must be compact. A similar argu-
ment is employed in the following proposition.

PROPOSITION. If X is a BK-AK-space, then every \-nuclear opevator is
compact.

Proof. If T is an operator with A-nuclear representation

<0

Tx = E a, <x, fn> VYoo

n=1

let T, be the finite rank operator defined by

n
T x = 27 a; <x, fi> y;-

i=1
Then
IT - Tal = sup Zoa {x5) {yi,g)
<t Jell<t Ti=nh
< sup |[f; - P, su i :i .
< sup (Y ImEY la] | “g"%l I{l <y g2 1} 1l

The result now follows from the fact that lim ” la] - P, la[ ”7\ = 0, while the collec-
n

tion {{ | (y;, g> | }zo:l: |lell <1} is pointwise bounded (Lemma 1.3 in [3]) and

therefore norm bounded in AX. '

In [3] Dubinsky and Ramanujan remove the reference to a norm on X and show
that every A-nuclear operator is compact if the Mackey topology 7(x, AX) is bar-
relled. Under the assumption that A is a BK-space, the next theorem shows that
this condition is also a necessary one. Further equivalent conditions are given.
Compactness is verified using a criterion due to Terzioglu [10] rather than the tech-
nique of finite rank operators.

THEOREM 1. If A is a BK-space contained in cg, then the following conditions
ave equivalent:

(i) A is eqg- invariant;
(ii) A is an AK-space;
(iii) T\, AX) is barvelled;
(iv) every A-nuclear operator is compact;
(v) ) is sepavable.

If, in addition, \ is pevfect, then the following conditions ave equivalent to those
above:

(vi) A contains no isomorphic copy of L.
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(vii) A contains no isomovrphic copy of cq;

(viii) EA contains no isomovrphic copy of ¢y, wheve ?ﬁh denotes the closure of ¢
in X.

Pyoof. (i) <> (ii). This is a result of Garling [4].

(ii) = (iii). Assuming (ii), the dual 1A' and the K&the dual A* are identified
under the correspondence f — {f(ei)};~; . Now (iii) is a well known fact concern-
ing Banach spaces [8, p. 67].

(iii) = (ii). If 7(\, AX) is barrelled, then the closed graph theorem [8, p. 116]
may be applied to the identity map (A, 7(x, AX)) — (&, ), showing that 7(x, A%)
refines the norm topology on x. But (A, 7(x, AX)) is an AK-space (Proposition 2 in
[1]), so (n, ) must also be an AK-space.

(ii) & (v). Garling [4] shows that (ii) implies A = ¢, . It follows that X is
separable.

(v) = (ii). We proceed exactly as for {iii) = (ii), using the closed graph theo-
rem as it appears in [5] (Theorems 2.4 and 2.6) and the fact that AX is 7(3%, x)
sequentially complete (Proposition 3 in [1]).

(i) = (iv). Assuming that X is cy-invariant, we consider any A-nuclear opera-
tor T: X — Y with A-nuclear representation

Tx = 27 a, <x, fn> Vn-

n=1

Using the main result in [10], we can conclude that T is compact if we exhibit a se-
quence {h,}h-; in X' satisfying lim |[h, || =0 and
n

ITx|| < sup |[{x hy)| forall xe X.
n

To that end, choose b € ¢ and ¢ € A so that a = bc. By Lemma (1.3) of [3], we
have

0

Cn (Yn’ g>

n=1

(2) sup
lell <1

oo,

Using s for the quantity in (2), let h, = b, sf,. Then lim " h, ” = 0. Furthermore,
n

lox| = s |20 ep K% 0pt0) (ns 8)
lell<t 1n=1

< sup [(x,bnfn>] sup 2 lcn<yn,g>| =sup|<x,hn>|,
n ”g”él n=1 n

as desired.
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(iv) = (i). This will be established by exhibiting a noncompact, A-nuclear
operator for any BK-space X which fails to be cg-invariant.

If X is not cg- 1nvar1ant choose a € (A - cgA) and consider the operator
a: ¢y — A given by a(x {a X: }1 .1 - Since cyA = {x € Al lim P, x = x} (Theorem 4
n

in [4]), we have

(3) . alx) = 2 a, <x, e? > e?,

n=1

where e denotes the sequence having one in the nth position and zero elsewhere.
Moreover, (3) is a A-nuclear representation for the operator a, since
a€ A, sup ”en” , =1, and for all f € X' we have {f(em} -1 € AX as an easy
n [
0
consequence of results in [4].

Now since a ¢ cy2, there exist an € > 0 and integer sequences {n1 }1 1
{m}ll,w1th1<m1<n1<m2< . and

121f ”Pnia - Pmia” > €.
Letting
04
xi= 27 e,
j:n’li‘l'l
we have a sequence {x!}7 , from c, with sup |xi|| = 1. But the sequence

{axl}1 1 in X is coordinatewise convergent to zero and bounded below, since
a(x}) =P a-P__ e It follows that {axli } _, has no (norm) convergent subse-
1

quence, and therefore the mapping a is not compact.
Assuming that A is perfect, we proceed.
(v) = (vi). This follows from the nonseparability of ¢_

(vi) = (vii). Bessaga and Pelczyfiski prove in [2] that any dual space of a
Banach space contains an isomorphic copy of 200 whenever it contains an iso-
morphic copy of cy. To apply this result, we note first that AX is a BK-space with
respect to the norm given by

Iyl = llxilip«n_ |0 ynl -

Then we see that A is the dual of the BK-AK-space EAX because
XX = (7 WY - (%
A== ()T = (950"
(vii) = (viii). This is immediate.

(viii) = (ii). Bessaga and Pelczyfiski prove in [2] that in any Banach space not
containing an isomorphic copy of ¢y, every weakly unconditionally Cauchy series
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must be unconditionally convergent. We apply this result to the BK-AK-space 5)\ .

0
If a is an arbitrary element of A, the series En:l a,e” is a weakly unconditionally

Cauchy series of ¢) elements. Thus the series converges (to a) in ¢, , showing
that A is an AK-space. This completes the proof.

4, THE RANGE SPACE

In [3] Dubinsky and Ramanujan prove that reflexivity of Y is a sufficient condi-
tion for compactness of every A-nuclear operator into Y. This result carries no
restriction on A. The following theorem modifies their technique to show that a
weaker condition suffices and is, in a sense, the best possible.

THEOREM 2. If A is a sequence space and Y is a Banach space nol containing
an isomovphic copy of cq, then every A-nucleay mapping into Y is compact. Con-
versely, if Y contains an isomorphic copy of ¢y, then theve is a Banach space X, a
sequence space A, and a noncompact, A-nucleav mapping T: X — Y.

Proof., Assume that T: X — Y has A-nuclear representation
[o o]
Tx = 2 ay (% ) Vo,
n=1

and that Y contains no isomorphic copy of ¢y . Following Theorem 1.3 of [3], we
define adjoint maps p: Y'—AX and v: A — Y" by the equations:

(4) n(@ = {{yn>8) et s
(5) v(a) (g) = 2 adn <Yn’ g> .
n=1

o0
Now the series En:l a,y, in Y is weakly unconditionally Cauchy for each a € A,

and therefore must be unconditionally convergent (Theorem 5 in [2]). Thus the
range of v is contained in Y, and g must be continuous with respect to the weak
topologies o(Y', Y) and o (3%, 1) [9, p. 128]. It now follows that u(V) isa o(aA%, 1)
compact set, where V denotes the unit ball in Y'. This implies that

o0
(6) lim sup 22 la, by | =0
N bep (V) k=ntl
(Lemma 1.2 in [3]). Using (4) and (5), we rewrite (6) as

o]

(7 lim sup 2 |ak<yk,g>| = 0.
n gl <1 kent

Letting T, denote the finite rank operator

n

T,x = 2 a; (% f;) v;,

n
i=]
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we have
(8) [T-7| = sup 20 a % 1 ) <Yk»g>
el <t Jell<t fx=nt1
<sw ] swp T a (yvisg) |-
i ] <1 k=n+1

Using (7) we see from (8) that lim ”T - T,[| =0, and therefore T is compact.
n

n'

For the converse statement, we first observe that the inclusion map I: £; — ¢,
has an {,-nuclear representation

[~]
Ix = 2J <x,en>en,

n=1

but is not a compact operator. Thus if Y is a Banach space and S: ¢g — Y is an
isomorphism, then SoI:. £; — Y is a noncompact, { -nuclear mapping into Y.
This completes the proof.
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