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1. INTRODUCTION

Let - be a complex, separable, infinite-dimensional Hilbert space, and let

Z () denote the algebra of all bounded linear operators on . Several years ago,
P. R. Halmos [9] introduced the remarkable class of quasitriangular operators on
&, which we shall denote by (QT). One consequence of the subsequent study of this
class (see the list of references) was the spectral characterization of non-quasitri-
angular operators [2, Theorem 5.4]. In particular, this theorem implies that every
non-quasitriangular operator on < has a nontrivial hyperinvariant subspace (along
with its adjoint), and thus attention now naturally focuses on the class

(BQT) = (QT) N (QT)*

of biquasitrviangulay operators on . For example, it was recently shown that
(BQT) is the norm closure of the class (A) of all algebraic operators on & [15],
and the norm-closure of the class of all nilpotent operators on 4 was also deter-
mined [3].

The purpose of this note is to present a striking matrix representation for bi-
quasitriangular operators (which was used implicitly in [1] and [15]), and to deduce
some consequences of the existence of this representation for the structure theory
of biquasitriangular operators. If T € £(.¢), we shall denote the spectrum of T by
o (T), and the [left, right] Calkin spectrum of T by [0¢(T), 0,:e(T)] 0o(T). ¥ T is
a Fredholm operator, we write j(T) for the Fredholm index of T. Moreover, if #
is a Hilbert space and T is a bounded operator mapping & into & such that
ker (T) = ker (T*) = {0}, we say that T is a quasiaffinity.

2. THE STAIRCASE MATRIX

In what follows, we shall say that an operator T in Z(°) has a staircase-
matvix vepresentation if there exists an orthogonal decomposition of s of the form

(1) H = 20 DX

where the subspaces ', (1 <n < =) are finite-dimensional, such that the matrix
of T with respect to this decomposition has the form
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L 'J
where all the entries except the A,, B,, C,, and D, are understood to be 0.

THEOREM 2.1. An operator T in Z(H) is biquasitriangular if and only if for
every € > 0, there exists a compact opevator Kg in L(H) such that |Kgl|| < e and
such that T - K¢ has a staircase-matrix vepresentation.

Proof. Suppose first that an operator T in Z(s) can be written as a sum
T =S + K, where K is compact and S has a staircase-matrix representation of the
form (2) with respect to a decomposition of & of the form (1). To show that T is
biquasitriangular, it suffices, in view of the fact that (BQT) is invariant under com-
pact perturbations [9], to show that S is biquasitriangular. Since the finite-dimen-
sional subspaces

Hy, HLD A, D o3, v, A D@ Hppy

are all invariant under S, it follows easily from the definition [9] that S € (QT).
That S* € (QT) is just as obvious, since each of the finite-dimensional subspaces

%IEDWZs ‘%1&)'“@%45 Tty W].@”.G:} '%OZn’

is invariant under S*. To prove the other half of the theorem, suppose now that
T € (BQT), and let £ be any positive number. Then, by virtue of the equivalent
definitions of quasitriangularity given in [9], it follows easily that there exist in-

creasing sequences {Pn}:=l and {Qn}::l of finite-rank projections converging
strongly to 1 =1_,, and satisfying the further conditions

P, +T*P o Cc Qo (n=1,2, ),
(3)
Q,H +TQ,or C Py H (n=1,2, ),

and
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Il
=t
M
N
~
~—
-

(4)
I(1-Q)T*Q,| < e/2”*2  (n=
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It follows from (3) that

(5) (1-P,))TP, =0=(1-Q,)T*Q, (n=1,2, )
and
(6) (1‘Pn+1)Qj =0 = (1'Qn)Pj (1<j<n).

Moreover, the inequalities (4) imply that if K¢ is defined by the equation
[~}
Keg = 22 [(1- P)TP; +QT(1 - Q],
j=1

then K¢ is a compact operator of norm less than €. We define T =T - K. Then,
by virtue of (5) and (6), we have the equations

(1-P)TP,-(1-P)| 27 (1-P)TP;+QT(1-Q; [P
j=1

(1-P)TyP,

i

— -

(1-P)TP,-(1-P,)| 2 (1-P)TP; (P,
(7) | j=1

(1-P)TP, -(1-P)| 2 (1-P)TP; |P
L j=1

il

1l

(1-P)TPy-(1-P)TP, =0 (n=1,2 ).

By an analogous argument we conclude that
(8) QnTO(l_Qn) =0 (H:I, 2: "')-

We define &) = P, ¢, and for every positive integer n we set
Hon = (Qn - Pp) o, Hon+1 = (Pn-E-I - Qn)yf .

It follows easily from (7) and (8) that the matrix of Tg = T - K¢ with respect to the
decomposition (1) has the form (2). Thus the theorem is proved.

COROLLARY 2.2. Let T be any biquasitviangular operator in (), and let €
be any positive numbev. Then there exists a compact operator Kg of norm less than
€ such that the opevator T - K¢ has a staivcase-malvix vepresentation of the form
(2), where

(a) for 1 <n < =, each eigenvalue of A, [respectively, C,| has algebraic
multiplicity one,

(b) for 1 <i, j<w andi+j, (A} N o(A; = @ and o(Cy) No(Cy) =,
() for 1 <14, j <=, o(A;) No(C;) = 2.

Proof. It suffices to prove that every operator T in £() that has a stair-
case-matrix representation can be perturbed by a block-diagonal compact operator
K of arbitrarily small norm in such a way that (a), (b), and (c) become valid for the
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staircase matrix (2) of T, + K. One begins by perturbing the (1, 1)-entry of the
staircase matrix for Ty; then one perturbs the (2, 2)-entry, and proceeds by induc-
tion.

3. SOME CONSEQUENCES

We shall now deduce some consequences of Theorem 2.1 and Corollary 2.2.
Recall that two operators A and B acting on Hilbert spaces o and o, respec-
tively, are called quasisimilar if there exist bounded operators X: # — o and
Y: o — o with trivial kernels and trivial cokernels such that XA = BX and
AY = YB.

THEOREM 3.1. Lel T € (o). Then the following statements ave equivalent:
(i) T € (BQT),

(ii) T = To + K, where K is compact and T is quasisimilar to a normal
opevator,

(iii) For every € > 0, theve exists a compact opevator Kg such that |Kg| <e
and such that T - Kg is quasisimilar to a diagonable normal operator.

Proof. That (iii) implies (ii) is obvious. Moreover, since every normal opera-
tor has the spectral splitting property (see [2] for a discussion of this concept) and
quasisimilarity preserves the spectral splitting property ([6, Proposition 10.1]), the
fact that (ii) implies (i) follows from the result that every operator with the spectral
splitting property is quasitriangular (2, Proposition 1.3]. To complete the proof, we
shall establish that (i) implies (iii). Thus, let T belong to (BQT), and let ¢ be a
positive number. By Theorem 2.1, there exists a compact operator K in & ()
such that ” Ke¢ || <¢ and such that T' =T - Kg has a staircase-matrix representa-
tion of the form (2) relative to a decomposition of & as an orthogonal direct sum of
finite-dimensional subspaces of the form (1). Moreover, by Corollary 2.2 we may
assume that the entries A, and C, of the matrix (2) for T' satisfy (a), (b), and (c)
in the statement of Corollary 2.2. We shall complete the proof of the theorem by
showing that T' is quasisimilar to a diagonal normal operator. For each positive
integer n, we define in 2(o¢) the finite-rank projections P, and @, by

Pn” = '7{1@@ '%Zn—l’

an gfl@"'@”zn-

From the form of the matrix (2) for T', we note that TP, ¢ C P, # and
T*Qu # C Q, & for all n. We define T, =T | P, &, and we observe that

(10) G(Tn)=|: U o(Ak):]UI: U o(Ck):I.

1<k<n 1<k<n-1

(Perhaps the easiest way to see this is to note that T, is unitarily equivalent to the
matrix
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A, O B, O0 0

A, D; 0 B,

c, 0 0
As; Dp
G

n-1

L Cn-l —

via a unitary permutation matrix.) Therefore T, has d, = rank P, distinct eigen-
values and a corresponding collection of d,, linearly independent eigenvectors (which
necessarily span P, o). Consequently, there exists a sequence {f;}5%; of unit
eigenvectors of T' such that f;, ---, fdn are eigenvectors of T, and span P, &

(n=1, 2, --). Therefore, if T'f; =f; (1 <j <), then

A, g, xdn}= o(A)) Ua(Cp) U UGa(A),

and consequently all the numbers A; are distinct. Consider now on (£2) the diagonal
normal operator N defined by

N1, €2, *) = A1 81,228, ), (81,8, ) € (L)

and also the operator X: (£,) — o defined by

0 Cn
X(€, Cp, or) = 20 =51,

n=1 n2

An easy calculation shows that X is bounded, and another one shows that XN = T' X.
Furthermore, it is clear that the range of X is dense in &#. We shall now show that
ker X = {0} To this end, suppose that to the contrary there exists a nonzero vector
z=({;, &, --*) in (£,) such that

Choose ng large enough so that {x # 0 for some k satisfying k < dno. Then, for
1< <,

(QnOT'Qno) (Qnofj) = QnOT'fj = >\j(Qnij) .

Thus either Qno fj =0, or else Qno fj is an eigenvector for QnO T' QnO correspond-
ing to the eigenvalue Aj. Since
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0(Qn T'Qy ) = o(A) U a(C)U - Ua(a, ) UalC,) C RETRLS Adno+1}’
by an argument like the one that established (10), we see that QnO j =0 for all
j>a, ngtl * Furthermore, CanO f, =&, £ # 0, and consequently the equation

- _ CJ
0 = Q, Xz = ?1 =% Qo f;

contradicts the fact that those & Qnof 1<i< anH) that are nonzero are eigen-

vectors for QnOT Qno corresponding to different eigenvalues. Thus ker X = {0}

and therefore X is a quasiaffinity satisfying the condition
(11) XN = T'X.
Next we note that if the decomposition (1) of &# is replaced by another decom-
position
(12) Ho= H) D HD

where o | = # 1@ o, and A, = Hni1 (n> 2), then the matrix for (T')* relative
to the decomposition (12) again has the form (2) for certain operators A,, B,, C,,
and D, . Furthermore, by virtue of the relation between the Kn and C, and the A

and C,, it is easy to see that the sets ¢(A ) and o(C,) satisfy conditions (a), (b),
and (c) of Corollary 2.2. Thus we can repeat the construction just given for T' with
(T')*, and it follows that there exist a normal operator N, on (£,) and a quasi-
affinity Y such that

(13) (TH*Y = YN,.
We can combine the equations (11) and (13) to obtain the equation
(14) (N)*(Y*X) = (Y*X)N.

Smce Y* X is a quasiaffinity, it follows that N and (N )* are unitarily equivalent
(see [14, p. 71]). If we write U*NU = (N )* and take ad]omts in (13), we obtain the
equation

(15) (UYM T = N(UY*).

But (11) and (15) imply that T' is quasisimilar to the diagonal normal operator N,
and thus the proof of the theorem is complete.

4. QUASISIMILARITIES OF BIQUASITRIANGULAR OPERATORS

In this section we show by giving some examples that the property of being bi-
quasitriangular is not preserved under quasisimilarity.

PROPOSITION 4.1. Theve exists a biquasitriangulay opevator that is quasi-
similar to a non-quasitviangular operator.

Proof. In [14, Chapter VI, Section 4.2], a contraction Ty was constructed that
is quasisimilar to a unitary operator V and has the further property that
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0(Ty) = 0.(Ty) = 0.(Ty) = {reC:|n]| <1},

Let T = Ty @S, where S is a unilateral shift operator of multiplicity one. Then the
spectrum of T and the left essential spectrum of T are again the closed unit disc,
and it follows from the spectral characterization of quasitriangular operators [2,
Theorem 5.4] that T is biquasitriangular. On the other hand, T is obviously quasi-
similar to V(® S, which fails to be quasitriangular since the Fredholm index of

V(@ S at the origin is -1.

The following proposition is known and extremely useful.
PROPOSITION 4.2. Suppose that for every positive integer n, A, and B, are
similar operators. Then E:z | DA, is quasisimilar to E:: 1 @B,.

Proof. Suppose that S, A =B, S, , where for every n, S, is an invertible
operator. Then

( E@ansn)(Z} @An) =( 27 @Bn)(E @ansn)

n=1 n=1 n=1 n=1
and
( 2 @An)(zer)ﬁnsa‘) =( 2 @ﬁnsgl) 2 @Bn),
n=1 n=1 n=1

where {a,} and {B8,} are sequences of positive numbers chosen to make the
quasiaffinities 20 ® a,S;,, and 2 @ Bp Sy’ bounded. The result follows.

PROPOSITION 4.3. There exists an opevator in () of the form N +K,
wheve N is novmal and K is compact, that is quasisimilar to a non-quasitviangular
operator.

Proof. For each positive integer n, let L, be the weighted shift operator on a
Hilbert space <#, of dimension 2n whose matrix relative to some orthonormal
basis for the space has the weight sequence

\/idg ‘/n'lllen-l...\/g 1
n’ n’ ? n b b ’ n 3 b n’ n'

0
Then the operator L = En:l ® L, (popularly called the Lancaster operator or the

Gabriel operator) acting on E:zl (® ¢, is known to be of the form N; +K;, where
N, is normal and K; is compact by virtue of the Brown-Douglas-Fillmore theorem
[5]. But each L, is obviously similar to a weighted shift G,, on ¢, whose weight

sequence is the constant sequence {1/n}. By Proposition 4.2, L is quasisimilar to

o0
the operator G = Enzl ® G,,, which is clearly compact. Thus we conclude that if S
denotes a unilateral shift operator in (o) of multiplicity one, then L (DS is
quasisimilar to G (¥ S. It is easy to verify that o (L) is the unit disc. Hence
L (dS is also the sum of a normal operator and a compact operator. by the Brown-
Douglas-Fillmore theorem [5], and G () S is non-quasitriangular because at points
A of the open unit disc where G - X is invertible, j[(G@S) - A] = -1. Thus the
proof is complete.
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5. OPERATORS COMMUTING WITH COMPACT OPERATORS

V. J. Lomonosov’s beautiful theorem (see [11], [13]) says that every nonscalar
operator in Z() that commutes with some nonzero compact operator has a non-
trivial hyperinvariant subspace. This gives rise to the question: Is it possible for a
compact quasiaffinity to commute with a non-quasitriangular operator? The first
piece of evidence in this direction shows that such commuting is not easy.

THEOREM 5.1. Let K and T be nonzero opevators in L(H) such that K is a
compact quasiaffinity. If T has the property that theve exists at least one scalar
Xo such that T - \g is a Fredholm operator of nonzevo (necessarily finite) index,
then K does not commute with T.

Proof. We may suppose, without loss of generality, that j(T - Ay) > 0. (For, if
j(T - xg) <0, we can apply the argument to T* and K*.) By the Fredholm theory,
there exists a neighborhood ./ of the point Ay such that for X € A4,
Al ) =Ker (T - \) is a nonzero finite-dimensional subspace of <. Suppose now
that, contrary to the theorem, TK = KT. Then (T - A)K = K(T - 1) for every scalar
A, and it follows that all of the subspaces #) (A € ) are invariant under K.
Since ) is finite-dimensional, K | A(} must have a nonzero eigenvalue p) and an
associated eigenspace €, C -#) . Since K is compact, the collection {u)}re . ¥
must be at most countable, and thus there exists an uncountable subset ¥ C A4 such
that Bxg = M, for all A;, A, in &. If for each X in & we choose a unit vector f)

in &), then the space \/;mg’ {f)L} must be infinite-dimensional (because each f)
is an eigenvector of T corresponding to the eigenvalue \). This contradicts the
compactness of K, and the proof is complete.

The preceding theorem and the spectral characterization of non-quasitriangular
operators [5, Theorem 5.4] yield the following corollary.

COROLLARY 5.2. If K is a compact quasiaffinity on &, and K commutes with
a non-biquasitriangulayr opevatov T, then for every scalar M such that T - X is a
semi-Fredholm operator, j{T - X) = 1,

We observe that this phenomenon can actually occur.

PROPOSITION 5.3. There exist a compact quasiaffinity K on # and a non-
quasitviangular opevator T on S such that KT = TK.

Proof. Let V be the classical Volterra operator; that is, let

(Vi) (x) = Sxf(t)dt (f € L,[o, 1]).
0

Then (see [8]) V is similar to V/2. In other words, there exists an invertible oper-
ator X on L,[0, 1] such that V/2 = XVX-1. We set
H = LZ[O’ 1]@ LZ[O’ 1]@ T

and define K and T by the matrices
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' 0 0 0
V/2 X 0
V/4 and ' X 0

0 O

respectively. Then it is clear that TK = KT, and T is not quasitriangular, since T
is a semi-Fredholm operator with j(T) = - ». Since K is obviously a compact quasi-
affinity, the proof is complete.

In the positive direction, we can report the following.

THEOREM 5.4. Every biquasitviangulay opevator on H is the sum of a com-

pact opevator of arbitrarily small novym and an opevator commuling with a compact
quasiaffinity whose eigenvectors span .

Proof. If T is biquasitriangular, then by virtue of Theorem 3.1, there exists a
compact operator K, of arbitrarily small norm such that T, =T - K, is quasi-
similar to a diagonal normal operator D. Moreover, the proof of Theorem 3.1
shows that the eigenvalues of D may all be taken to have (algebraic and geometric)
multiplicity one. This implies, of course, that the commutant {D}' of D is abelian
and consists entirely of diagonal operators. Let K, be a compact normal diagonal
operator of multiplicity one commuting with D, and let X and Y be quasiaffinities
satisfying the conditions T;X = XD and YT; = DY. Then YX commutes with D, and
since {D}' is abelian, we see that Ko YX =YXK,;. We now define K=XK,Y and
Z = K,YX. Calculation shows that K commutes with T and that KX = XZ. Since
Z is the product of the two commuting diagonal operators K, and YX, the eigenvec-
tors of Z span . Since Xf{ is an eigenvector for K whenever f is an eigenvector
for Z, the eigenvectors of K must span 4. Since K is obviously compact, the
proof is complete.

COROLLARY 5.5. An operator T in Z(H) is biquasitviangular if and only if
T can be wyitten as a sum T =K, + T, wheve K, is compact and T commuies
with a compact quasiaffinity whose eigenvectors span .

Proof. Half of the corollary follows from Theorem 5.4. To prove the other
half, suppose T =T +K;, where T; and K; are as in the statement of the corol-
lary. Examination of the proof of the preceding theorem shows that the compact
quasiaffinity K that commutes with T; and whose eigenvectors span & has the
property that the eigenvectors of K* also span . It follows easily that T and T}
have the spectral splitting property, and thus they are quasitriangular along with T
and T* [2]. Thus the proof is complete.
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