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1. INTRODUCTION

The main goal of this paper is to describe a method, applicable to a large class
of noninvertible transformations, for proving ergodicity and existence of an invariant
measure. We introduce an auxiliary transformation that behaves neatly under some
conditions met in applications. This device first appeared in papers by R. Fischer
[2] and Schweiger [10], but the approach given in this paper is much more general.
For example, we include transformations of the type considered by H. Jager [4] for
the very special case of decimal expansions. The model employed is as follows: A
pair (M, S), where M is a set and S: M — M is a map, is called a fibered system if
there exist a finite or countable set I and a partition {B(i)| i € I} of M such that
the restriction of S to any B(i) is injective. Let N denote the set of natural num-
bers, and let X be the set of all functions f: N — I; then the transformation
T: X —» X, (Tf)(n) = f(n + 1) is called the shift. The map ®: M — X defined by
&(m)(n) =i if S"-! m € B(i) gives rise to the commutative diagram

M——-—->(I) X

sl lT

M——->(I) X

If & is injective (that is, one-to-one), we call & valid (after W. Parry [5]).

In Section 2, we give the construction of the auxiliary fibered system (M*, s*).
We show that the validity of & implies the validity of the corresponding &*. Section
3 contains a proof that if S* is ergodic, so is S.

In Section 4, we show that for each invariant measure for S* one can write down
an explicit formula for an invariant set function for S that turns out to be a finite or
o -finite measure in a great number of cases. In Section 5, we discuss the connection
between this construction and induced transformations. In particular, we compare
the different approaches to Boole’s transformation (R. L. Adler and B. Weiss [1],
Schweiger [10]).

2. THE CONSTRUCTION

A cylinder of rank n is a set

B(i,, -, i) = B(i;) N S"1B(i,) N = N S™IB(3,).
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A cylinder is called proper if S"B(i;, -+, i) = M. Now let us start with a set
of cylinders. We define
B, = {Bl,, -, i)| Bliy, =+, ig) ¢ # for 1<s<n-1, Bliy, -, i) € &},
o0
B.= U g, »p=U B,.
Ee€Z n=1
For later use, we also define
@, = {B@y, -, iy)| Bliy, -, i) ¢ & for 1 <s<n},
[+ 0]
p,= UEg, w=0Nnp,.
E€D n=1

We now define V: P — M by Vx =S"x if x € B,,. Notethat W =M \ P. The pair

oo .
(v*, 8%), where M* =M \U ;-9 V-IW and $* is the restriction of V to M*, is a
fibered system with index set

=0}
i=-U {Gy, =, i) € I?| By, =, i) € B} .
n=1
We denote a cylinder with respect to S* by B*(j;, :*-, j,,). Clearly, the interesting

case will be M = M* “almost”.

THEOREM 1. If ®: M — X is valid, then the corvesponding map ®*: M* — X*
is valid.

Proof. Observe that & is valid if and only if the intersection
0
n B(i]_y MY in)
n=1

of each sequence of nested cylinders contains at most one point. Each digit j of the
system (M*, §*) is a block (i;, -+, i;) € I° for some s.

We list two general examples: Fix a digit r € I and take
A(r) = {B(il, ey i ig# rt.

The special case of decimal expansions (that is, the map x — 10x mod 1) is consid-
ered in a paper by Jager [4]. Another useful type is obtained if we take & to be the
class of proper cylinders (Fischer [2]) or a suitable subclass of it (Schweiger [10]).

3. ERGODICITY

Now let us assume that M has the structure of a measure space (M, ¥, A),
where # is a o-algebra and A is a finite or o-finite measure. We always assume
that E € & implies SE € & and S-! E € &. Taking intersections, we arrive at a
measure space (M*, #* 1), where we write A instead of A¥.
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We shall use the formulas

o) oo
vie=U @ nsmp), vE-= U s"(B, N E)

n=1 n=1

(in the latter, E C P is assumed). These formulas imply immediately the following
result.

THEOREM 2. Let « be a class of cylinders such that X(W) = 0. If ME) =0
implies AM(S"1 E) = 0 and A(SE) = 0, then M = M* mod 0 and A(E) = 0 also implies
AM(S*)-L E) = 0 and A(S*E) = 0. Furthermore, if S* is ergodic, so is S.

In the rest of the paper, we make the assumptions of Theorem 2.

Note that lim, _, . A{D,) = 0 is a sufficient condition (also necessary, if A is
finite) to ensure (W) = 0. If .« is a class of proper cylinders, the conditions of
Theorem 2 ensure that all cylinders of the system (M*, S*) are proper.

We say that a class of cylinders .« has weak playback if B(iy, -, i) € A&
and B(ky, *:+, k) € « imply B(iy, -+, i, Ky, =", k) € A&, Let (s} denote
the o-algebra generated by all cylinders of rank at most s, and let

o0
# =N, #3) denote their limit.

THEOREM 3 (see Fischer [2, Lemma 1}). Let .« be a class of cylinders with
weak playback and such that lim, _,« MD,) = 0. Thern B* = AB.

Proof. We show that every cylinder E of the system (M, S) is a disjoint union
of cylinders from . The equality D, = B,+1 U Dy+1 shows

[~}
p, = U B, modo.
k=1
Let E=B(, -, i;). If E € @, then
[~ o]
E=U B, nE modo.
k=1
If E ¢ 9., then there is a maximal r € [1, t] such that B(i;, *-, i) € . The
weak-playback property implies that F = B(i,yq, =+, it) € @ _,. (otherwise
B(i.,;, =", ig) € & for some s <t, and then B(i;, ***, i, i.4y, ***, ig) € &, con-
tradicting the choice of r). The weak-playback property shows that
[>e]
E = BG4, =, 1) N s‘r(y1 B, ., N F) mod 0

is a disjoint-union representation by cylinders taken from .

Most results on continued-fraction-like algorithms deal with proper cylinders
(for theorems and references, see A. Rényi [6], Schweiger [8], S. M. Rudolfer [7]).
For various cases, it can be shown that lim, _, ., A(D,) = 0 (see Schweiger [9] for
Jacobi’s algorithm, Fischer [3] for references on matrix algorithms, and M. S.
Waterman [11] for sufficient conditions). Theorem 3 tells us that we can use condi-
tional expectations and martingale theorems with respect to #* instead of .
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4. INVARIANT MEASURE

THEOREM 4. Lel 4 be a class of cylinders with weak playback and such that
o0
moreovey En:l MDy,) < eo. If S* admits a finite invariant measuve v such that
v(A) < ex(A) with a constant c > 0, then S admits a finite invarviant measure
L ~v.

(e o]

Proof. We put Dy = Un:1 B, =M mod 0. We claim that

0

pA) = 22 v(S"AND,)
n=0

is a finite invariant measure with respect to S. We note that D, = D+ U Bh+] and
v(Sm-1AND,) =v(@™1AND,)+v@E™1ANB,,,). Now

[>e] =] L%}
p(sta) = 22 vs™lAnD) = Z v(s™lAnD,, )+ 2 vSTIANB,,)
n=0 n=0 n=0
o (2o} [ ¢}
= 2 »(SAND)+ 2 »(SANB,) = 2 »(STAND,) + v(sH1A),
n=1 n=1 n=1

but v((S*)-1 A) = v(A), by assumption. Since S is nonsingular, v(A) = 0 is equiva-
lent with £(A) = 0. The estimate

L(A) < 22 p(D,) + v(A)

n=1
shows that u is finite.
We say that a class of cylinders « has sirvong playback if B(i;, -+, i,) # @
and B(k,, -+, k) € & imply B(i,, =, i,,k;, =+, k) € .

THEOREM 5. Lel « be a class of cylinders wilth strong playback and such
that lim_ _, , A(D,) = 0. If S* admils a finite invariant measuve v, then S admits
a o-finile (ovinfinite) invariant measuve p ~ v.

Proof. The formula
p(A) = 22 v(SPAND,)
n=0

is again an invariant set function p ~ v. Since U:zl B,, = M mod 0, we shall
prove that j1(A) < « for every cylinder A € #,,. Observe that for each B € ¥,
the strong-playback property implies S-1 A (1 B € .« and therefore

ST™MA N D, <Dy \ Dhtm . This shows that

°0 m-1

p(a) < 22v(Dy \ Dpirn) < 27 (D) < .

n=0 n=0
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Again, if  consists of proper cylinders only, then all cylinders of the fibered
system (M¥*, S*) are proper. It is known that in this case the existence of invariant
measures is more likely. We remark that, taking densities, one obtains the Parry-
Fischer formula for the special cases considered there (see Fischer [2]).

5. INDUCED TRANSFORMATIONS

o]

Suppose A C M has the property Un:1 S™A =M mod 0. For almost every
X € M, there is a minimal n(x) € N such that sn(®)x € A. The map H: A — A,
Ha = Sn{@)a is called the induced transformation. If we take intersections and the
restriction of the measure, the measure space (M, &%, A\) inherits a measure-space
structure (A, %', A), where we write A instead of A'. It is known (Adler and Weiss
[1]) that S is ergodic if and only if H is ergodic. If u < ) is a measure preserved
by S and p(A) < «, then H preserves (the restriction of) p.

We define Ay = {x € A] n(x) = k}. Now we consider a class « of cylinders
such that lim, _,, A(D,) = 0,  has strong playback, and in addition

Bn+1 =D, N S™™B; for all n € N. This condition is a kind of decoding condition.
The class (r) mentioned in Section 2 has this property.

THEOREM 6. Lel & satisfy the conditions mentioned beforve. Furvthermore,
let S* admit a finite measuve and let v admit the ©-finite (ov finite) measure u,
the two measures being velated by

©0

p(E) = 22 v(STEND,).

n=0
If we form the induced transfovrmation of S with vespect to A = By, then the diagram

A—E >4

| b

is commutative. Sp: A — M preserves measure, that is, the inversion formula
L(S-1Fn A = v(F)

holds for measurable F C M.

Proof. Our conditions imply p(A) < < (see the proof of Theorem 5). We claim
that

- a-1
A =S !B . NA.

Let x € S"1B N A=8"1(D,_; Nnsk'1B;)N B;. Clearly, Skx € A. Choose j so

that 1 <j <k;then Six e SI-1Dy_,. Let B(i;, *, ix.;) € @x_;; then
SI-LB(Gi;, ++, ix-1) < B@j, -, ik-1). If B(ij, =+, ik-1) N By # @, then B(ij) € &
and therefore B(i;, -, ij) € %3, which contradicts B(;, -, ix-1) € Dx_] -

Therefore Six ¢ A.
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Now
[e.e] (>0} [e 0]
Ua=Ue!Bna=s1Usna=a,
k=1 k=1 k=1

o0
which shows that A =B, C Un:I S™™A. By one of our assumptions, B,;; € ST"A,
and therefore

o0 [>e]
- U B, c U s™a modo.
= n=1

If X € A, then for some k we have the relation x € Ax. Hence
SpHx = Sktlx = g*5,x

(since Sx € By). A calculation shows that

[~e]

27 v(sI-lFrnsian D;)
j=0

p(S1F N A

= 27 v(8TiF NB;) = v((SHLF) = v(F).
=1

e

Remark. Let us suppose I = {a, b} and B(b) is proper. If we take
A = o) = {Bliy, -, iy)] i, # a},

then A = B(b) and Sp: A — M is an isomorphism.

In [1], Adler and Weiss proved that S: R — R, Sx = x - 1/x is ergodic with re-
spect to Lebesgue measure A (which is actually an invariant measure). They showed
that the induced transformation H on A =[-1, 1] is ergodic. In [10], the fibered
system (M, T), M =[0, 1], Tx = (1/7) arctan{(tan 27x)/2) with the partition
B(0) = [0, 1/2], B(1) = [1/2, 1] was considered.

It was shown that the map T* constructed with respect to the class
o = {B(lli Tty is-—l’ is)l (is—ly is) = (0) 1) or (1, 0)}

is ergodic with respect to Lebesgue measure A on [0, 1] and admits a finite invari-
ant measure v. This proved that T itself is ergodic with respect to A and admits a
o -finite invariant measure . Since the map ¥: [0, 1] = R, yx =tan(x7 - 7/2) es-

tablishes an isomorphism between the systems ([0, 1], T, u) and (R, S A), this was
another proof of the ergodicity of Boole’s transformation. But if we introduce a new
partition in [0, 1], namely

B(a) = B(0, 0) U B(1, 1), B(b) = B(0, 1) U B(1, 0),
then « = «(a) and ¥YB(b) = [-1, 1]. This shows that the systems ([0, 1], T*, v)

and (A, H, A) are isomorphic. The inversion formula of Theorem 6 can be used to
calculate v explicitly for this example (and examples (1) and (2) in Schweiger [10]).
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