NILPOTENT ELEMENTS OF
COMMUTATIVE SEMIGROUP RINGS

Tom Parker and Robert Gilmer

INTRODUCTION

All rings considered in this paper are assumed to be commutative, all semi-
groups are assumed to be abelian, the semigroup operation is written as addition,
and the existence of a zero element with respect to this operation is assumed. On
the other hand, the assumption that the rings under consideration have an identity
plays no essential role, and therefore it will not be made.

We are concerned with the problem of determining the set of nilpotent elements
of the semigroup ring of a semigroup S over a ring R. We follow the notation of
D. G. Northcott [9, p. 128] and write R[X; S] for the semigroup ring of S over R;

the elements of R[X; S| are “polynomials” r1XSl + et rnXsn in X with coeffi-
cients in R and exponents in S. If N is the nilradical of R, then it is clear that
N[X; S] is contained in the nilradical of R[X; S]; this containment may be proper,
and it depends upon the presence of certain torsion in the semigroup S.

After disposing of certain preliminaries concerning semigroups and semigroup
rings in Section 1, we determine in Section 2 the nilradical of R[X; S] for the case
where R is a ring of nonzero characteristic n. Let p be a prime integer; elements
s and t of S are said to be p-equivalent if pks = pkt for some positive integer k,
and S is p-forsion-free if distinct elements of S are not p-equivalent. In Theorem
2.5 we prove that the set of nilpotent elements of R[X; S] is N[X; S] +1, where I is
the ideal generated by the set

{rXa - rXbl r € R, for some prime divisor p; of n the element a is p;-equivalent to b,
and a power of p; annihilates r};

thus N[X; S] is the nilradical of R[X; S] if and only if S is p;-torsion-free for each
prime divisor p; of n.

In Section 3 we take up the case of a ring of characteristic 0. The existence of
nilpotent elements of R[X; S] - N[X; S] is closely related to, but not equivalent to,
the presence of asymptotically equivalent elements of S, where the definition is as
follows. Elements a and b of S are asymptotically equivalent if there exists a
positive integer ny such that na = nb for each n > ng. If R is an integral domain,
then R[X; S] has nonzero nilradical if and only if S contains nonidentical asymptoti-
cally equivalent elements. (Theorems 3.6 and 3.9.) In general, the nilradical of
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R[X; S] will properly contain N[X; S] if there exist distinct asymptotically equiva-
lent elements s and t of S (assuming that R is not a nil ring), but the converse
fails. In Theorem 3.14 and Propositions 3.15 and 3.16, we give a complete descrip-
tion of the nilradical of R[X; S], for an arbitrary ring R and semigroup S.

1. PRELIMINARIES

If (S, +) is a semigroup, then a congruence on S is an equivalence relation ~
on S that is compatible with the semigroup operation on S —that is, s ~ t implies
that s +u ~ t +u for each u. If ~ is a congruence on S and if, for x € S, C[x] de-
notes the equivalence class determined by x, then the set of classes C[x] forms a
semigroup under the operation C[x]+ Cly] = C[x + y]; this semigroup is denoted by
S/~. The mapping x — C[x] is a semigroup homomorphism of S onto S/~. Con-
versely, each homomorphism ¢ of S onto a semigroup T determines a congruence
~ on S defined by the rule that s ~ t if and only if ¢(s) = ¢(t). Moreover, T is iso-
morphic to the semigroup S/~ under the mapping C[s] <> ¢(s). For a general
reference on these matters, see [10].

If ~ is a congruence on S, then we obtain a canonical homomorphism of the
semigroup ring R[X; S] onto R[X; S/~]; equivalently, if ¢ is a homomorphism of S

onto a semigroup Sg, then the mapping Erf r; X% E? r; X(b(si) of R[X; S] onto
R[X; S| is the canonical homomorphism to which we refer. There is a dual to this
result; namely, if g is a homomorphism of the ring R onto a ring Rg, then the

n S n S:
mapping El r;Xt— El p(r;)X ! is 2 homomorphism of R [X; S] onto Rg [X; S].
In Sections 2 and 3, the kernels of these homomorphisms will be of interest. We
record the result in Proposition 1.1.

(1.1) PROPOSITION. Let p be a homomorphism of R onto the ving Ro, with
kernel A, and let ¢ be a homomorphism of S onto the semigroup Sy . Let the
homomovphisms

p*:R[X; 8] = Ro[X; 8], ¢*R[X;8] = R[X;80], 7:R[X;S]— RolX; So]
be defined by the relations

n n n 0
1 1

i=1 1

T(E riXSi) = 2J u(ri)X¢(si).
1 1

Then
(1) the kernel of u* is A[X; S],
(2) the kernel of ¢* is the ideal 1 of R[X; S] generated by

{rx® - rXb| r € R and $(a) = ¢(b) },
and
(3) the kernel of 7 is A[X; S]+ 1L
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Proof. (1) is clear (and well known) and (3) follows from (1) and (2). In (2), it is
clear that each rX2 - rXb, and hence I, is contained in the kernel of ¢*. To prove

m .
the converse, we take a nonzero element f = Ei:l fiXSl in the kernel of ¢* and use

induction on m. It is easy to see that m =1 is impossible; the case m = 2 is ob-
vious (r; =-r, and ¢(s;) = ¢(s,)). Inthe case m > 2, there are distinct exponents

s; and s; of 1 such that ¢(s;) = ¢(sj). The element £ - (f;X ' - £;X J) is in I, by the
induction hypothesis, and hence { is also in 1.

Two congruences on S will prove to be of importance in determining the nil-
radical of R[X; S]; here we introduce one of these, the p-congruence; we discuss the
other, asymptotic equivalence, in Section 3.

(1.2) Definition. If p is a positive prime, then we define a relation 3 on S by
the rule that s 3 t if there exists a positive integer k such that pk s = pkt. If
s ; t, then s and t are p-equivalent; if the relation 3 on S is the trivial (identity)
relation, then S is p-{orsion-free.

The assertions of the next result are easily verified.

(1.3) PROPOSITION. The relation 5 is a congruence on S, and the semigroup
S/g is p-torsion-free. If S is p-torsion-free and if pXs = pKt for some s, t € S

and some positive integer Kk, then s =1t.

2. THE CASE OF A RING OF NONZERO CHARACTERISTIC

In determining the set of nilpotent elements of the semigroup ring R[X; S], we

consider first the case where the characteristic of R is nonzero. If pil pgz p,f t
is the prime factorization of the characteristic of R, then R is the direct sum of the

ideals R;, R, -+, R¢, where R; = {x € RI pfix =0}. Moreover,
R[X; 8] = Ry [X; SI@ R [X; 8] @ - @ Ry [X; 8],

and the nilradical of R[X; S] is the direct sum of the nilradicals of the rings
R;[X; S]. Hence there is a sense in which we can reduce the problem to the consid-
eration of rings of prime power characteristic.

(2.1) THEOREM. Let the notation be as in the preceding paragraph, and let N
be the nilvadical of R. The following conditions arve equivalent.

(1) N[X; S] is the nilvadical of R[X; S].

(2) The semigroup S is p;-torsion-free for each i such that R; is not a nil
ring.

The proof of (2.1) uses a lemma and its corollary, each of which is a special
case of (2.1) itself.

(2.2) LEMMA. Assume that R is a ving of pvime charactevistic p and with nil-
vadical N # R. Then N[X; 8] is the nilvadical of R[X; S] if and only if S is p-
torsion-free.
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. . . m S{ . . ..
Proof. If S is p-torsion-free and if f = 2J;_; r; X ' is nilpotent, then there

p'c pt 55

t m
exists a positive integer t such that fP = 0. Therefore 0= 21 11 X , and

since the exponents pt Spy "t pts,, are distinct, r1D =0 for each i, and

f € N[X; S], so that N[X; S] is the mlradlcal of R[X S]. Conversely, if S is not p-
torsion-free, if s and t are distinct elements of S such that ps = pt, and if r is an
element of R - N, then rX® - rX! is a nilpotent element of R[X; S] that is not in
N[X; S]. This completes the proof of Lemma (2.2).

(2.3) COROLLARY. If D is an integral domain of prime characteristic p, then
the semigroup ving DI[X; S] has nilvadical (0) if and only if S is p-torsion-free.

Proof of Theorem 2.1. By virtue of the direct-sum decomposition
R=R; @ -+ ® R and the induced direct decomposition of R[X; S], it suffices to
prove (2.1) in the case where R has prime-power characteristic pk and N # R.

To prove that (2) implies (1), let f be a nilpotent element of R[X; S], and let P
be a proper prime ideal of R. The integral domain R/P has characteristic p, and
hence (R/P)[X; S] has nilradical (0), by Corollary 2.3. If ¢ is the canonical homo-
morphism of R[X; S] onto (R/P)[X; S], it follows that ¢(f) = 0; hence f € P[X; S],
so that

te [1p,[x;s] = (ﬂp)xs]=N[X;s],

o

where {Pa} is the set of proper prime ideals of R.

We prove, conversely, that (1) fails if S is not p-torsion-free. Thus assume
that s and t are distinct elements of S such that ps = pt, and choose an element r
in R - N. Then (rXSs - rXHP belongs to the ideal pR[X; S] of R[X; S]. Since

R[X; S] has characteristic pX, it follows that (rXS - rXt)PK = 0. Therefore
rXS - rX*t is a nilpotent element of R[X; S] that is not in N[X; S].

Theorem 2.1 enables us to determine the nilradical of R[X; S] in the case of a
ring of nonzero characteristic. This characterization is contained in Theorem 2.5,
which is an immediate consequence of the next result.

(2.4) THEOREM. Let R be a ving of prime-powey chavactevistic p*. The nil-
radical of R[X; S] is the ideal N[X; S]+1, wheve N is the nilradical ofR and 1 is
the ideal of R[X; S] genevated by {rXaL - rXbI re€R and a~ b}

Proof. By passage to the ring R[X; S]/N[X; S] ~ (R/N) [X; S], we can assume
that N = (0). Consider the homomorphism of semigroup rings

¢$: R[X; 8] — R[X; 8/5].

The kernel I of ¢ is precisely the set of nilpotent elements of R[X; S]. For if f is
nilpotent, then, since S/; is p-torsion-free, Theorem 2.1 implies that ¢(f) = 0

hence f € I. Conversely, the proof of Theorem 2.1, together with Proposition 1.1,
shows that each element of I is nilpotent. Hence N[X; S]+1I is the nilradical of
R[X; S|, as asserted.

(2.5) THEOREM. Assume that the ving R has nonzevo chavacteristic n, and let
the ideals Ry, ---, Ry be defined as in the fivst pavagraph of this section. The nil-
radical of the semigroup ving R[X; 8] is
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t
N[X; s]+ 2 Ri{rXa -rXP| re R, and a . b},
. 1

i=1

wheve N is the nilradical of R.

3. NILPOTENT ELEMENTS IN SEMIGROUP RINGS OF CHARACTERISTIC 0

We turn to the problem of determining the set of nilpotent elements of R[X; S]
in the case where R is a ring of characteristic 0. Our first result uses the concept
of a Hilbevt ving, defined to be a ring with identity in which each proper prime ideal
is an intersection of maximal ideals [4], [6, Section 1.3], [3, Section 31] (the termi-
nology of [8] and [1, Section 3.4] is Jacobson ring).

(3.1) Definition. A ring T with identity is an FMR-#ing if for each maximal
ideal M of T, the residue-class field T/M is finite.

(3.2) PROPOSITION. Let T be an FMR-ving. The following conditions ave
equivalent.

(1) T is a Hilbert ving.
(2) Each finitely genevated ring extension of T is an FMR-ving.

Proof. Assume that T is a Hilbert ring, and let X be an indeterminate over T.
The polynomial ring T [X] is a Hilbert ring [4], [8], and we prove that T[X] is also
an FMR-ring. Thus, if M is a maximal ideal of T[X], then My =M N T is a maxi-
mal ideal of T [4]. Since M contains My[X], we can reduce the problem to the case
where T is a finite field, and in that case it is clear that T [X] is an FMR-ring. If
T [a] is any simple ring extension of T, then T[a] is a homomorphic image of
T [X], and hence T[a] is a Hilbert FMR-ring. By induction, it follows that each
finitely generated ring extension of T is a Hilbert FMR-ring. At any rate, (1) im-
plies (2).

Conversely, if T is not a Hilbert ring, then there exists a maximal ideal M of
T [X] suchthat M N T = P is a nonmaximal prime ideal of T. Thus T/P is a do-
main, not a field, and hence is not finite. Since T/P is isomorphic to a subring of
T[X]/M, it follows that T [X] is not an FMR-ring. This completes the proof of
Proposition 3.2.

(3.3) THEOREM. Let R be a ring of chavacteristic 0, and assume that S is
torsion-free. Then N[X; S| is the nilradical of R[X; S], where N is the nilradical
of R.

Proof. Let R* be the ring obtained by canonically adjoining an identity element
to R [3, p. 5]. Since R has characteristic 0, the ideal N is also the nilradical of
R*. Thus it suffices to prove that the nilradical of R*[X; S] is N[X; S]. Let

n S:
23,1 r;X ' be a nilpotent element of R*[X; S]. Proposition 3.2 implies that the
ring Ry = Z[r;, -+-, r,], where Z is the subring of R* generated by the identity
element of R*, is a Hilbert FMR-ring. It follows that the nilradical Ny of Ry is

ﬂ M, , where {My\} is the set of maximal ideals of R;. Moreover, f € RO[X; s],
and Corollary 2.3 implies that f € My [X; S] for each A, since the characteristic of

Ry /M, is nonzero. Consequently, f € ﬂk M, [X; S] = Ny[X; S] € N[X; S], as we
wished to prove.
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If S is not torsion-free, then R[X; S] may have nonzero nilpotent elements,
even if R is an integral domain of characteristic 0. This is due to the possible
existence of distinct elements a and b of S such that na = nb for almost all posi-
tive integers n. Our next results are directed toward a determination of the effect
on the nilradical of R[X; S] of the existence of such elements a and b. If the rela-
tion ~ is defined on S by the rule that a ~ b if and only if there exists a positive
integer ngy such that na = nb for each n > ng, then ~ is a congruence on S; we call
elements a and b of S such that a ~ b asymptotically equivalent. If distinct ele-
ments of S are not asymptotically equivalent, then we say that S is free of asymp-
totic torsion. We proceed to show that S/~ is free of asymptotic torsion.

(3.4) LEMMA. Let a and b be posilive integevs with greatest common divisor
1. If n>(a - 1)(b - 1), then theve exist nonnegative integers X and y such that
n =xa+yb.

Proof. Without loss of generality, assume that 0 <a <b. Write ib =q;a +ry,
where 0 <r;<aand 0<i<a-1. Since b is a unit modulo a, the set {ri}?;ol is
a complete set of residues modulo a. If n> (a - 1)(b - 1), write n =ta + r, where
0<r<a, and hence r € {ri}?:'o1 . It r =r;, then t > q;; for t <q; implies that
ta + rj < qja+r;=jb, which contradicts the facts that jb - n is divisible by a and
ib - (a - 1) - 13 <a-1. Write t = q; +c, where ¢ is nonnegative. Then
n=ca+tgqjatr;=ca+jb.

We remark that alternate forms of Lemma 3.4 appear in [7, Theorem 1.4.1],
[10, Theorem 82], and [5].

(3.5) PROPOSITION. If ~ is the velation of asympiotic equivalence on the
semigroup S, then the semigrvoup S/~ is free of asymptotic tovsion. ‘

Proof. Assume that C[a] and C[b] are asymptotically equivalent elements of
S/~, and let ngy be such that nC[a] = nC[b] for each n > ny— that is, na ~ nb for
each n > ng. We must show that if na ~ nb for each n > ng, then a ~ b. If
n,; > ng, then nya ~ nyb. Therefore there exists k; suchthat k;n;a=k;n;b.
Choose n, > ng such that n, is relatively prime to k;n,. Then there exists a
positive integer k,, relatively prime to kyn;, such that kynya =kpnpb. It follows
that n;k; and n;k; are relatively prime, that n;kja =n; k) b, and that
npkra =nzkyb. By Lemma 3.4, there exists an integer cy such that each ¢ > ¢y
can be written as t(n;k;) + m(n, k), where t and m are nonnegative. Therefore

ca = [t(n;k;) + m(nyk,)]a = t(n; k;a) + m(nyk,a)

t(n,k;b) + mn, k,b) = [t(n; k;) + m(nyky)|b = cb.

It follows that a ~ b and C[a] = C [b].
(3.6) THEOREM. Let R be a ving. The ideal of R[X; S| generated by the set

{rx?® - rXbl r € R and a is asymptotically equivalent to b}

consists of nilpotent elements,

Proof. It suffices to show that rX? - rXP is nilpotent if a is asymptotically
equivalent to b. There exists ng such that na =nb for each n>ng. If m =2np+1
and if u and v are nonnegative integers such that u + v = m, then either u > n, or
v > ng, and hence ua = ub or va = vb. In either case, ua +vb = (u +v)a = ma.
Canonically adjoin an identity e to R. Then
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(rX® - s (-1)t ( )(rxa)m i (rxP)i

i=0

= g (-1)! (nil)rmX(m'i)aHb = eXma< ;} (-1t (nll) rm)

i=0 1=0
= eX™(r - )™ = 0.

(3.7 LEMMA. Assume that D is an integral domain of chavactervistic 0 and
that {PA}AGA is a family of prime ideals of D such that N A Py =(0). Let

{pl} -1 be a finite set of prime integers, and let {PA }h €A, be the subset of
{PA }AGA such that the charvactevistic of D/P)\0 is dzstmctfafom each p,. Then

nhoeAO Pyo = (0.

Proof. Let a € n;\oer PAO‘ Then p,p,---p,a =0, since p;D C P, if the

characteristic of D/P, is p;. Therefore a = 0, for otherwise the characteristic of
D would divide p,p, " p,.

For a result closely related to Lemma 3.7, see [2, Lemma 4].

(3.8) LEMMA. Let D be a Hilbert FMR-domain of characteristic 0. If S is
free of asymplotic torsion, then 0 is the only nilpotent element of D[X; S].

Proof. We first observe that if s and t are distinct elements of S, then s 5 t
for at most one prime integer p. For if s ; t and s 3 t, where p and g are distinct

primes, then there exist positive integers u and v such that p%s = ptt and
qVs =qVt. Since p" and qV are relatively prime, Lemma 3.4 guarantees that s and
t are asymptotically equivalent, a contradiction.

n S:
Assume that f = Ei:l f; X ! is nilpotent. There are at most finitely many

primes p such that s; ~ S; for some distinct exponents s; and 85 of f. Let this set
P
of primes be {pi}:l . Since D is a Hilbert ring, ﬂMA M, = (0), where

{M, })ep is the family of maximal ideals of D. By Lemma 3.7,
n {Mhol the characteristic of D/M)LO is not in the set {pi}gl} = (0).

Suppose that the characteristic q > 0 of D/MAO is not in the set {pi}l;:l , and let
f* denote the image of f under the canonical homomorphism of D[X; S| onto
k
(D/M)LO) [X; S]. Since f is nilpotent, f* is nilpotent —say (f¥*)4 =0. But
k

q n
(f* (E £* X ) =2 (f"‘)‘lkxqk Si

i=1 i=1
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and qXs; # qXsj for i # j since q is not in the set {p;}iZ;. It follows that
f € My [X;S]. Therefore fe N M, [x; 8]} = (ﬂ MAO) [X; S]=(0), and this
completes the proof of (3.8).

(3.9) THEOREM. Assume that D is an integval domain of charactevistic 0. If
S is free of asymptotic torsion, then 0 is the only nilpotent element of D[X; S].

Proof. Let K be the quotient field of D. It suffices to prove that K[X; S] has

n .
no nonzero nilpotent elements. Suppose that { = Eizl f; Xsl is nilpotent. Let

Dy=72 [fl y £2, 00, fn], where Z is the integral domain generated by the identity
element of K. Then Dg is a Hilbert FMR-domain of characteristic 0 and f is a
nilpotent element of D[X; S]. By Lemma 3.8, f=0.

(3.10) COROLLARY. If S is cancellative and if D is a domain of charactevis-
tic 0, then D[X; S] has no nonzero nilpotent elements.

Proof. If S is cancellative, then S is free of asymptotic torsion.

(3.11) COROLLARY. Assume that D is a domain of charactevistic 0. The nil-
vadical of D[X; S] is genevated by the set

{ax? - del d € D and a is asympiotically equivalent to b} .

Proof. In view of Theorem 3.6, we need only show that each nilpotent element f
of D[X; S] is in the ideal ({dX2 - dXP}). Let ~ be the relation of asymptotic equi-
valence on S, let ¢ be the canonical homomorphism of S onto S/~, and let ¢* be the
induced homomorphism of D[X; S] onto D[X; S/~ ]:

¢*(E diXsi) =2 a,x%si)

i=1 i=1

By Proposition 3.5, distinct elements of S/~ are not asymptotically equivalent, and
hence by Theorem 3.9, D[X; S/~] has nilradical (0). Therefore f is in the kernel
of ¢*, and Proposition 1.1 shows that {an - del de D and a ~ b} generates the
kernel of ¢*.

We have determined the nilradical of D[X; S] for the case where D is a domain
of characteristic 0. Our next results are directed toward the case where R is an
arbitrary ring of characteristic 0.

..
(3.12) LEMMA. Let f= 2u;0, £;X - be an element of R[X; S| such that no two

of the distinct exponents of £ are p-equivalent for the fixed prime p. Assume that
f € P[X; S]+1, wheve P is a prime ideal of R with R/P of chavactevistic p, and
wheve 1 is the ideal of R[X; S] genevated by the set

{rXa-rXb]reRand ax b}.

Then f € P[X; S].
Proof. Let ¢* be the canonical homomorphism of R[X; S] onto R[X; S/E]’
where ~ is the p-congruence on S. Then ¢*(f) € P[X; S/~], since the kernel of ¢*

is generated by the set {rXa - rXb[ r € R and a 3 b}. Moreover,
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o*(f) = E{‘Sl f; X¢(si), and since the exponents ¢(s;), ---, ¢(s,) are distinct by
assumption, each f; is in P. Therefore f is in P[X; S].

m

(3.13) LEMMA. Let f= 2451 ;X ' € R[X; S), and let P be a prime ideal of R
such that R/P has characteristic p > 0. If the positive integev k is such thai

k
i 3 Sj implies that pk S; = pk Sj, then the velation fP € P[X; S]+1 implies that

k
P € P[X; 8], wheve 1 is defined as in Lemma 3.12.
Proof. Let u be the canonical homomorphism of R[X; S] onto (R/P)[X; S]; the
k k
element p(fP )= [u(f)]P belongs to the ideal

p@ = {r*x2 - r*Xbl r*e R/P and a 5 b}

of (R/P)[X; S], and in (R/P)[X; S], it satisfies the hypothesis of Lemma 3.12 (where
k

the ideal P of that result is replaced by the zero ideal of R/P). Therefore up(f? ) =0

and fP° e P[X; S], as asserted.

(3.14) THEOREM. Let R be a commutative ving, and let {PA }AeA be the
Jamily of prime ideals of R. Then the nilvadical of R[X; S]is

N {P) [X; S] HPA}’

AEA

where p,, is the chavactevistic of R/P, , and where Ip)\ is the ideal of R[X; S] gen-
evated by the set {rX> - rXP| r € R and a 5 b}; if py = 0, then I, s the ideal of
R [X; S]) generated by the set {rx® - rXb] re R and a~Db}.

Proof. Let N be the nilradical of R. Since N[X; S]+1, is contained in
Py [X; s]+ I, for each X, we can pass to the ring (R/N) [X; S/~]. Thus, without

loss of generality we can assume that the nilradical of R is zero and that asymptot-
ically equivalent elements of S are identical.

Assume that f is a nilpotent element of R[X; S]. The ring
R[X; 81/(Pr[X; 8] +1p,) ~ (R/B[X; 8/ ]

has nilradical (0); if p, > 0, this follows from Corollary 2.3, and if p) = 0, from
Theorem 3.9. Therefore f ¢ ﬂ re A {Ph [X; s] +IPA}’

Conversely, assume that the element f = 2:1 riXSi belongs to
ﬂMA {p, [X; S] + Iph}. If s and t are distinct exponents in the canonical form of
f, then s and t are equivalent for at most one prime integer p; for if s '1; t and
s a t, where p and q are distinct primes, then by Lemma 3.4, s and t are asymp-

totically equivalent and hence s =t. It follows that there is a finite set {p;}i.; of
primes such that if s; and S are g-equivalent for some i # j, then q is in
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{pi}?zl . Choose a positive integer k large enough so that if s; % 8§ where i # j,

then pks; = pk sj. We prove that f* =0, where t = (p)p,--"py)¥. If R/P, has char-
acteristic q ¢ {p;fi;, then f € P, [X; S], by Lemma 3.12. If R/P, has character-

k t
istic q € {p;}i.,, then f£= (%)}, where q =p; and t; = (p1 - p;_1 Pi+1 - Pr)¥-

Denote by g — g* the canonical homomorphism of R[X; S] onto (R/Py)[X; S]. Then
in (R/Py)[X; 8],

m Kk

k * <53 4 iy U S

(99 = (7" =  1x) =D naxae
i=1 i=1

k
By choice of k, no two of the distinct exponents of (f*)9" are q-equivalent. Clearly,
(¥)2" belongs to the nilradical of (R/Py)[X; S], which is

({rx? - rXbl r € R/Py and a 3 b},
by Theorem 2.4; therefore

(f*)qk € (0% +({rx*-rxP| r e R/P, and a : b}).

k k
Since no two of the exponents of (f¥)4" are g-equivalent, (f¥)4 = 0*, by Lemma 3.12.
Therefore £9¥ ¢ P, [X; S), and in any case, f' € P) [X; S] for each A. Since

n7\€A P [X; 8] =(0), it follows that ft= 0, and this completes the proof of Theo-
rem 3.14.

Theorem 3.14 characterizes the nilpotent elements of the semigroup ring
R[X; 8] for a commutative ring R and an abelian semigroup S. Our final results

provide alternate descriptions of the ideal ﬂM A 1Py [X; S1+ IPA} that are, in
some cases, easier to apply.

(3.15) PROPOSITION. Let the hypothesis and notation be as in Theorem 3.14.
Then

QA {py[x 81+1, } = ﬂo {Ay % 8]+1, 1,

where p, =0, p_ is the nth prime integer,

.= n {P,| R/P) has characteristic pit,

A
Pi AeA

1, is the ideal of R[X; S] genevated by the set
{rx?®- rXbl r € R and a is asymplotically equivalent to b} ,

and 1, is the ideal of R[X; S] generated by the set {rX? - rbe reRand a 5 b}.
1

1

[~.o]
Proof. Write A = Uizo A; , where A = {x e A| R/P) has characteristic p;J-
Then
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ADA {P, [X; S] Px} = DO(AD& {P, [X; 8] +1 })

so that we need only establish the equality N ren; {PA[X; 8]+ Ipi} = A, [X; S]+ 1,

Since I, is the kernel of the canonical homomorphism of R[X; S] onto RI[X; S/ﬁ'-]’
1 1

this amounts to establishing the equality ﬂM A, {P)\ [X; S/;_]} = A [X; S/I;]; but
1 1
this equality follows immediately from the fact that Api = n;\EAi P, .

(3.16) PROPOSITION. Let the hypothesis and notation be as in Theovem 3.14.
The nilvadical of R[X; S] is

27 {(cﬂ[x; s]+10)m[ N (AL [X; S]HP)J}’

TCP pET
|m] <

where &P is the set of posilive prime integers, where

= n {P, | the characteristic of R/Py, is distinct from each prime in 77} ,
7 xed A A
€

and wheve 1y, A, and Ip are defined as in Proposition 3.15.

p’
Proof. In view of Theorem 3.14 and Proposition 3.15, it is clear that the set

Eﬁc g - is contained in the nilradical of R[X; S].
| m]<eo
Conversely, if f is nilpotent, then f € n)\GA {PA [X; 8] } and the proof of

Theorem 3.14 shows that f belongs to

(C,;[X; s]+1p) N { N (Ap[X; s] +Ip)},

peET

where q € 7 if and only if there exist distinct exponents s and t in the canonical
form of f such that s a' t.

Proposition 3.16 indicates how examples may be constructed to show that Theo-
rem 3.9 does not generalize to rings with zero divisors. Thus, let R be the weak
direct sum of the family {GF(pi)}?zl of prime fields, where p; <p, <p; <:--- is
the sequence of primes, and let S = {0 g} be the cyclic group of order 2; R is a
ring of characteristic 0, and S is free of asymptotlc torsion; but the n11rad1ca1 of
R [X; S] can easily be shown to be {0 e X x0 - e; X } where e, is the element

(1, 0, 0, ---) of R. In the notation of Proposition 3.16, ;X x9 - e X8 is in

C,[X;s]n I, , where 7 = {p,} ={2}.
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