QUASIALGEBRAIC OPERATORS, COMPACT PERTURBATIONS,
AND THE ESSENTIAL NORM
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1. INTRODUCTION AND NOTATION

Quasialgebraic operators generalize algebraic operators, in the same way that
quasinilpotent operators generalize nilpotent operators. An element T of a Banach
algebra is quasialgebraic if one can find a sequence {p,} of monic polynomials
with deg p, = d(n), such that lim, " po(T) || 1/d(n) = 0, This concept was first intro-
duced by P. R. Halmos in [14], where he related it to the potential-theoretic notion
of capacity. As a starting point for our paper, we rely on some of his observations
and techniques to focus on this question: if T is a bounded operator on a Hilbert
space, and the coset v(T) in the Calkin algebra is quasialgebraic, does it contain a
compact perturbation of T that is quasialgebraic with respect to the same sequence
of polynomials?

More precisely, W. B. Arveson has asked: if {p,} is a sequence of monic
polynomials of degrees d(n) such that limy ||p,(v(T))||}/d(n) = 0, does there exist a
compact K such that lim  [|p, (T +K) ||1/d(“) = 0? Like other questions involving
the structure of the Calkin algebra, it is recalcitrant. But it deserves attention, for
an affirmative answer would imply two previous results: for a Hilbert space
operator T, C. L. Olsen has proved that if p(¢(T)) =0, for some polynomial p,
then there is a compact K with p(T + K) =0 [17]; T. T. West has shown that if

lim_ [|[v(T)]||1/? = 0, then there is a compact K such that lim_ [|(T + K)=[|1/n =0

[24, Theorem 7.5]. In other words, an algebraic coset in the Calkin algebra contains
an algebraic operator, and a quasinilpotent coset contains a quasinilpotent operator.

If the answer to Arveson’s question is yes, then a quasialgebraic coset in the
Calkin algebra must contain a quasialgebraic operator. In fact, we show that even
more is true, by observing that a coset and every element in it must have the same
capacity [Section 2]. These results were also obtained independently by David S. G.
Stirling [22]. Complications arise when we insist that some compact perturbation of
T be quasialgebraic with respect to the same sequence of polynomials as v(T).
However, if the sequence {pn} of monic polynomials has a subsequence of bounded
degree, then, using Halmos’s techniques and Olsen’s theorem, we can easily answer
Arveson’s question. In any case, an application of a theorem of J. G. Stampfli [21]
enables us to answer a weakened version of the question [Section 3]; that is, if a Hil-
bert space operator T is such that lim_ ||p (v(T))||1/d() =0 for a sequence {p,}
of monic polynomials with deg p,, = d(n), then there exist a compact K and a se-
quence {s(n)} of positive integers such that

lim_ ||[p (T +K)]st)||1/dm)s(n) = ¢

Received August 26, 1973,
C. L. Olsen's contribution to this research was partially supported by National
Science Foundation Grant PO37621.

Michigan Math, J. 21 (1974).

385



386 ) CATHERINE L. OLSEN and JOAN K. PLASTIRAS

The most difficult aspect of this problem seems to involve those operators
whose norms cannot be appropriately related to their spectral radii. On the other
hand, if some compact perturbation of an operator T is subnormal, a much stronger
statement is true: there exists a compact K such that ”p(T +K)| is the essential
norm of p(T) for all polynomials p; by the essential norm of an operator T we
mean the norm || v(T)| of its image in the Calkin algebra [Section 4]. We show that
an analogous result holds for any essentially normal operator. For an operator T
unrelated to the family of subnormal operators, we offer a more modest conjecture
(still much stronger than Olsen’s result): corresponding to each polynomial p, there
exists a compact K such that ||p(T +K)| is the essential norm of p(T) (where K
now depends on p).

It is well known that this conjecture holds for p(z) = z, so that for each Hilbert
space operator T, there is a compact K with |[T + K| equal to the essential norm
of T [11], [15]. This result is due to I. C. Gohberg and M. G. Krein. We establish
our conjecture for p(z) = z2, under the additional assumption that either T is a
partial isometry, or else TT* commutes with T*T. Finally, in Section 5, we are

able to show that infx compact | p(T + K)|| equals the essential norm of p(T) for
every polynomial p if either T or T¥* is quasitriangular.

Throughout the paper, Z(s¢) will denote the algebra of bounded linear operators
on a separable, complex Hilbert space. Let & denote the closed two-sided ideal in
#(or) of compact operators, and let v: B(w) — B(H)/H be the natural homo-
morphism onto the C*-algebra quotient, the Calkin algebva. Define the essential
norm of T € B(H) to be

infie g T +X|[ = [v(m],

the norm of its image in the Calkin algebra. We use ¢(T) to denote the spectrum of
T in B (), while o(v(T)) will denote the spectrum of v(T) in B(#)/ K, com-
monly referred to as the essential spectvum of T. Let r(T) and r(v(T)) denote the
spectral radii of T and v(T), respectively. The Weyl spectrum of T, which is

n ke O(T +K), will be denoted by 0 (T). A polynomial is monic if its leading
coefficient is one. If T is an element in a Banach algebra and p(T) = 0 for every

polynomial p, then T is algebraic; if limp ”Tn” 1/n - 0, then T is quasinilpotent.
For general facts about Hilbert space operators, the reader is referred to [12].

2. LIFTING QUASIALGEBRAIC ELEMENTS OF THE CALKIN ALGEBRA

Corresponding to each element T of a Banach algebra, define the capacity of T

by
cap T = limn{ inf ||p(T)|| }Un .

p monic
deg p=n

This limit does exist [14, p. 857]. Define the capacity of a compact set X C C to be

cap X = limn{ inf  supq{|p(z)|:z € X}} /=

p monic
deg p=n
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As in [14], define the spectral capacity of T to be cap o(T). Note that in the defini-
tion of cap o(T), the expression sup { ]p(z)l: z € X} can be replaced by r(p(T)).

Halmos proved that T is quasialgebraic if and only if cap T = cap ¢(T) = 0. In po-
tential theory, the number cap X is known as Tchebycheff’s constant, as transfinite
diameter, and by other names. Much is known about sets of capacity zero, and this
translates immediately to facts about quasialgebraic operators. We shall refer to
[23] for this information.

First we state a precise comparison between various spectra associated with
T € #(o). In addition to 0w (T) and o(v(T)) specified in the introduction, define
the left essential spectrum of T to be

0o(v(T)) = {X: v(T) - » is not left-invertible in the Calkin algebra},

and the Browder spectvum of T to be o(T)\ 0go(T), where o¢g(T) denotes the set
of isolated eigenvalues of finite multiplicity. If X is a compact set of complex num-
bers, a hole in X is a bounded component of €\ X. Now the boundary of o (v(T))
is contained in 0 p(v(T)), and o ¢(v(T)) is compact [10, Theorem 3.1]; clearly,

0 o(v(T)) € o(v(T)). It is an elementary topological fact that this implies o(v(T)) is
obtained from o p(v(T)) by filling in some holes. This method of argument estab-
lishes the following result (see [10, Theorem 2.4] and [19, Theorem 1]).

THEOREM 2.1. If T € B(x), then
o 9(v(T)) S a(v(T)) S 0 (T) S o(T)\ 04e(T),

and each of these compact sets is obtained by filling in some holes of the preceding
set.

The next result shows that Weyl’s theorem holds for every quasialgebraic
operator [4].

THEOREM 2.2. For a quasialgebraic T € B(x),
09(v(T)) = a(v(T)) = 0,(T) = o(T)\ 0go(T).

Proof. A compact set of capacity zero can contain no continuum [23, p. 56}, and
hence it must be totally disconnected. In particular, it has no holes. Since
cap o(T) = 0, the result follows from Theorem 2.1.

Theorem 2.3 and Corollary 2.4 have also been obtained independently by Stirling
[22, pp. 51-54].

THEOREM 2.3. For each T € B(x),
cap o(v(T)) = cap 0, (T) = cap o(T).

Proof. From the definition, we see that capacity is a monotone set function;
therefore

cap o(v(T)) < cap 0, (T) < cap 6(T) \ 04p(T) < cap o(T).

Since sup { |p(z) !: z € o(v(T))} must occur on the boundary of o(v(T)), filling in
holes of o(v(T)) does not increase capacity. Thus

cap 0(v(T)) = cap 0,(T) = cap o(T) \ 0go(T).
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Now, any countable set has capacity zero, and adding a set of capacity zero does not
increase capacity [23, pp. 53, 57]. Thus cap ¢(T) = cap o(T) \ 0o(T), and the re-
sult follows.

Using Halmos’s theorem that capacity and spectral capacity of an operator are
the same, and his characterization of quasialgebraic operators as those having
capacity zero, we immediately obtain the following result.

COROLLARY 2.4. For T € #B(#) and K € K, cap v(T) =cap T = cap(T +K).
Thus T is quasialgebraic if and only if v(T) is quasialgebraic and if and only if
T + K is quasialgebraic for every compact K € ().

3. CONSTRUCTION OF AN OPERATOR T + K CORRESPONDING
TO A PRESCRIBED SEQUENCE {p,}

THEOREM 3.1. Let T € #(x) be such that lim, ||p,(v(T))||1/4®) =0, for a
sequence {p,} of monic polynomials with deg p = d(n). If {p,} has a subsequence
of bounded degvee, then there exists K € # with lim, ||p,(T +K)| 1/d{n) = 0.

Proof. Halmos shows that the hypothesis implies v(T) is in fact algebraic [14,
p. 857]. Let p be the monic polynomial of least degree such that p(v(T)) = 0, and
let deg p = m. Then there is a K € &# with p(T +K) = 0 [17, Theorem 2.4].

Arguing as in [14, p. 857], we set |q] = [|a(v(T))|| to define a norm on the m-
dimensional vector space of all polynomials with degree q < m. In particular, there
is a constant @ > 0 such that

max | coefficients of q| < o [|q(v(T))],

whenever degree q < m. We can represent each p, in the form p,=s,p+q,
(deg q_ < m). Then

lim, [|p (T +K)|[1/4®) = 1im_ [[q (T + K) ||}/ ()

< limy {ma g (v(T) | - max [(T + KX [}/ =0,
k<m
Thus the result is proved.

Stampfli has shown that for each T € #B(s¢’), there is a K € A with
o(T +K) = 0, (T) [21]. Using this, and techniques similar to those of {14, Theorem
3], we get a modification of Arveson’s conjecture for every T € RB().

THEOREM 3.2. Suppose that T € B(#) and that lim, |p,(v(T))[!/d) = o,
for a sequence {p,} of monic polynomials (deg p, = d(n)). Then there exist a
K € o and a sequence {s(n)} of positive integevs such that

lim_ [|(p (T +K))3(0) ||1/dmist) = o
Proof. Applying Stampfli’s result, we have an element K € & with
o(T +K) = 0,(T) = o(v(T))

(the latter inequality follows from Theorem 2.2 and Corollary 2.4, since v(T) is
quasialgebraic). Thus
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r(pn(T +K)) = rp,(v(T)) < [pa(v(T)],

so that lim_ r(p,(T + K))l/d(n) = 0. For fixed n,
[ (po(T + KNE| 1% - r(p (T +K)), as k<.

Given €, > 0, we choose s(n) with _

” (p,(T + K))S(n)” 1/s(n) < r(p, (T +K)) +¢,.
Now simply choose g€, small enough so that

[ (pn(T + &))@ 1/sWIdn) < (p (T +K)) +£,)1 /4™ = 0

as n — «. The theorem is proved.

Note that lim, r(p,(T))!/d(™} = 0 does not imply lim, [ pa(T) | 1/d) = g9, To
see this, consider a quasinilpotent T with p (T) = T™ + T.

4. COMPACT PERTURBATIONS AND THE REALIZATION OF
THE ESSENTIAL NORM OF p(T)

An operator T € #B(x¢) is subnovmal if T is unitarily equivalent to the re-
striction of a normal operator (on some Hilbert space) to a closed invariant sub-
space; T is hyponormal if T*T > TT*, and T is seminormal if either T or T*
is hyponormal. Each condition is more general than the preceding.

THEOREM 4.1 (N. Salinas [19]). Let T € #(w¢) be hyponovmal. Then theve
is a compact normal K that commutes with T and such that o(T + K) is the Weyl
spectvum of T. In addition, T + K is hyponormal, subnormal, normal, or positive
whenever T is.

Proof. According to Coburn’s generalization of Weyl’s theorem [7],
0(T) = 0w(T) U 0 go(T). Now, 0og(T) is a sequence {r,}, which converges to the
compact set 0(T). The finite-dimensional eigenspace &, associated with A, re-
duces T. For each A, choose pu, € 0y (T) so that l)\n - “nl — 0 as n — o} set

K= En(,un - Ap) Ep, where E, is the projection with range &,. Then K is clearly
compact and commutes with T, and o (T +K) = ¢ (T).

We conjecture that every T € #(s) and every polynomial p, it is possible to
find K € o such that |p(T +K)| is the essential norm of p(T). If T € #(s¢) and
[p(T)|| is determined by o(T), a stronger statement is true:

THEOREM 4.2. If T € B() is subnovrmal, then there exists a compact

normal opervator K that commutes with T and such that |p(T +K)| = [[p(v(T)) ||
Jov all polynomials p. If T is merely seminormal, then theve exists such a K
satisfying the condition |[(T +K)"| = |v(T)|| for n=1, 2, ...

Proof. Choose K as in Theorem 4.1. Stampfli has shown that the norm of each
hyponormal operator is equal to its spectral radius [20]. If T + K is subnormal,
then for each polynomial p, p(T + K) is subnormal. Thus



390 CATHERINE L. OLSEN and JOAN K. PLASTIRAS

It + 10

r(p(T +K)) = sup{|pM)]|: x € 0 (T)}

sup{ [p0)|: 1 € c(u(TH} = r(p(v(T)) < [[pv(T)],

1l

since 0,,(T) is obtained by filling in some holes of o(v(T)). It is obvious that
Ip(T +K)[| > [[p(v(T))].

If T is seminormal, then by taking adjoints we see that it suffices to consider
the case where T is hyponormal. Then T + K is hyponormal, so that

”T,-l— K” = r(T + K). Although (T + K)™ may not be hyponormal, it is easily seen
that [|[(T +K)"| = r((T + K)®). Indeed, choose A € o(T +K), with |x| = [| T +K].
Then A" € o((T + K)?), so that

M2 T+ 2 e(T+R™ > 17

Thus the argument above for subnormal T applies to polynomials p(T) = Tn
(n=1, 2, ---), for hyponormal T.

COROLLARY 4.3. If some compact pertuvbation of T € B(H) is subnormal
(seminormal), then there exists a compact K such that ||p(T +K)|| is the essential
novm of p(T) for all polynomials p (for all p(z) =z, n=1, 2, --).

An operator T € B() is called essentially noymal if T*T - TT* is compact
(so that v(T) is normal) [5]. In general, T may not be a compact perfurbation of a
normal operator.

COROLLARY 4.4. If T € B(x) is essentially novmal, then there exists a
compact K such that ||p(T +K) || is the essential novm of p(T) for all polynomials

p.
Proof. L. Brown, R. G. Douglas, and P. A. Fillmore have shown that if T is an
essentially normal operator on <, then there exist subnormal operators S; and S,

such that T is unitarily equivalent to some compact perturbation of 8, (8% [5, p.
123]. The result follows from this and the preceding corollary.

Let #(v(T)) denote the closed subalgebra of the Calkin algebra generated by
v(T). Corollary 4.4 implies that if T is essentially normal, then there exists an
isometric isomorphism ¢ from £ (v(T)) into # () such that the composition vo
is the identity on £ (v(T)). This should be contrasted with the results of Brown,
Douglas, and Fillmore, who show that an analogous *-isomorphism into #Z(#’) from
the C*-subalgebra generated by v(T) in the Calkin algebra exists only when T is a
compact perturbation of a normal operator [5, p. 85].

We can now answer Arveson’s question for any operator similar o a normal
operator.

COROLLARY 4.5. If T € B(H) is a spectral opevator of scalay type and there
exists a sequence {p,} of monic polynomials with deg p, = d(n) and with
lim_ || p,(v(T)) ””d(n) = 0, then theve exists a K € A such that

lim_ |[p(T +K)|1/d®) = o,

Proof. By definition, T is similar to a normal N, say T =SNS-!. Choose K
with ”p(N + K) || = || p{v(N)) ” for all p. Then T + SKS -1 satisfies the conclusion.

The reader may wonder why the preceding corollary was not stated for all T
similar to a subnormal operator. In answer, we remark that a seminormal
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quasialgebraic operator is necessarily normal. If cap o(T) = 0, then o(T) has
Lebesgue measure zero [23, p. 58], and C. R. Putnam has proved that a seminormal
operator whose spectrum has measure zero is normal [18]. On the other hand, non-
diagonalizable normal quasialgebraic operators do exist: for example, multiplication
by f(x) =x on LZ(C, i), where C is a Cantor set of finite logarithmic measure, and
¢ is induced by a homeomorphism to a Cantor set of nonzero Lebesgue measure [23,
p. 66].

The next result involves no assumption related to normality. An operator
U € B(H) is a partial isometry if U*U is a projection. We adopt the standard
notation |T| = (T*T)!/2,

THEOREM 4.6. If U € #8() is a pavtial isometry, then there exists a com-
pact K such that ||(U +K)2| is equal to the essential norm ||v(U)2|.

Proof. Let U¥U=E and UU* = F, where E and F are projections of infinite
rank. Then U2 = UEFU, and ||[v(EF)| = |»(U?)].

Let & and & denote the ranges of E and F, respectively. We can decompose
S into an orthogonal sum of six closed subspaces as follows:

H=FDF = (FOF,DF)D(F;DFIDF),

where

F,=Fn e, Fi1=F+n &t

F,=FnNne&t, Fr=Ftn &,
F3=F0F. 0%, F3='0050¢7:.
Now, if we define &3 =& - 971@9.72', then the subspaces &3 and %3 are appro-

priately related within &3 @ F3, so that we can write E as a 6-by-6 operator
matrix

1 0 0 0 0 0]
0 0 0 0 0 0
0 0 P (P - p3l/z 0 0

" 0 0 (p - p2)l/2 I-P 0 o |
0 0 0 0 0 0

K 0 0 0 0 I

relative to our decomposition for & ; here P € #(#;) and 0 < P <1 (#3 is equiv-
alent to #3, and we are suppressing the equivalence operator) [8, p. 180]. Now ob-
serve that
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I 0 0 0 0 0
0 0 0 0 0 0
0 0 P 0 0 0
FEF =
0 0 0 0 0 0
0 0 0 0 0 0
| 0 0 0 0 0 0|

If dim &, is infinite, then
l02]| =1 = |vEFEF| < [vER] = |vU?],

and the proof is complete. Hence we may assume that 9“1 is finite-dimensional.

Since P is positive, it follows from Theorems 4.1 and 4.2 that there exists a
compact operator L such that P+ L > 0 and such that

o(P+L) = o (P)=0o(w(®), [P+L]| = ||v®]|.

Let Q=P+ 1L, sothat 0 <Q <I. We can then define a projection

0 0 0 0 0 0
0 0 0 0 0 0
0 0 Q Q- Q12 0 0
o 0 0 Q- Q1/2 I-Q 0 0
0 0 0 0 0 0
| 0 0 0 0 0 I |

(direct computations show that G2 = G and G* = G). Furthermore, G - E is com-
pact: for &, is finite-dimensional, the operator L is compact, and in addition

Q- QY2 - (P-PH/2) = (WP +L - (P+L)2)/2 - (v(P - P2)L/2 = 0,

since v maps the unique positive square root of a positive operator to the unique
positive square root of its image in the Calkin algebra. Set K = U(G - E), so that
U + K = UG.

Observe that since norm equals spectral radius, it follows from the spectral-
mapping theorem that each positive A in % () satisfies the conditions

|al/z|| = |A||}/2 and |[»(A)L/2]] = |v(A)]|}/2. This allows us to compute:
(v + k2| = [(We)?2] = |[vEGFUG| < [GF| = [[[GF[] = [(FGF)/2] = |Q1/2]
= Q)2 = Jv@|/2 = |vFER)|/? = |[vEP|?]!/?

=[lvE®[] = [v@®] = [»@UH] .
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Since the inequality |[(U+K)2| > || v(U2)| is obvious, the theorem is proved.

COROLLARY 4.7. If some compact periturbation of T € B(H) is a partial
isometry, then theve exists a compact K with ||(T +K)?| = | v(T)?||.

Note that the proof of Theorem 4.6 differs from the proofs of all our earlier re-
sults insomuch as it does not refer to ¢(U). However, a spectral assumption is im-
plicitly involved; the argument requires that ¢ (U*U) be equal to {0, 1}. One might
next attempt to extend this result to operators T such that o(T*T) is finite. In the
following theorem we again impose a hypothesis related to normality. Operators
with this property have recently been studied in [6] and [16].

THEOREM 4.9. For T € B(H), assume that T*T commutes with TT*. Then
theve is a compact K with [|(T +K)2 | = [v(T)?].

Proof. Let U|T| be the polar decomposition for T. Then T* = U* | T*| and
|T*| =U |T| U*. Since |T| is a strong limit of polynomials in T* T, it commutes
with TT*. Similarly, |T*| commutes with |T|. Thus A = |T||T*| is a positive
operator. Set p = ||v(T)2]|. Then

v = v vr]T*hven] = [vrd)] = u.
We can assume that p < ||A| (= || T2 ), for otherwise the proof is trivial. We now

construct S sothat S - T is compact and |[S2] = .

First we isolate those spectral subspaces for A on which ||A|| is large. Let
E()) be the spectral resolution of A. Let {a,} be a sequence of positive numbers
with a9 =0, o) = “A”— Kk, an N 0. Set

Ey = E([0, p]) and E, = E((p +apypy, p+ay]) @>1).
Then we claim that E is a finite-rank projection for n > 1: for all x € E, &
(n>1),
(n+an)[x] < lax] < (u+an)|x].

Now, if there were an infinite orthonormal sequence (x3) C E, &, we would have the

inequality |]Axk” > 1 +a,y for each k, and hence || v(A) " > u+ans41, acontra-
diction.

We now define S by altering |T| with a convenient scalar factor on each E, .
Let B be the positive operator

[>.e]
_ [

(note that |T| commutes with A, so that Ei commutes with |T| for all k). Set
S = UB: this is the polar decomposition for S; in particular, IS*I = UBU*. Also,
T - S = U(|T| - B), where

| -8 =

o
T|E
> - [T By

L+ a

is compact; therefore T - S is compact.
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To show that ||S2] = u, it suffices to show that ” ]S*I [s] ]| <, since clearly

|82l > i, and since
Is2l = [1sfis*[1l = Fis*]Is]1-

First, observe that

|s*| = UBU* = 20 m & kU|T|EkU*

= 2 m fak (UE U (U |T| U%) (UELU*

I
8

m f:ak Qu | T*| Qx,

k=0

where the Qy = UEU* are pairwise orthogonal projections; since
U*UEy = U*UE((0, u}),
we see that U¥UEy = Ex (k > 1). Also,

0
2 Q| T* @ = |T*,
k=0

since

|T*| Q = U|T|EU* = UE |T|U* = Q|T*|.

Hence for each unit vector x € &,

IselIs]xl = 12 (e ) () @Il ma?

— o 2 u 2
B ?(M +Olj) "E i) +aij|T*”T‘EkX"

< DD g gyl el < 12 e r B
J

2 2
< son () aml® < o (g ) v en® = w2,

The proof is complete.

COROLLARY 4.10. If S*S commutes with SS* for some compact perturbation
S of an operator T, then there exists a compact K with " (T +K)?2 ” = ” V(T)ZH-
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5. THE ESSENTIAL NORM OF p(T) AS inf ||p(T +K)||

An operator T € B(H) is quasitriangular if there exists an increasing se-
quence {E_} of finite-rank projections of supremum I such that

lim, [EZTE,] = o,

where E} denotes I - E,,. This property was first considered in a paper of W.
Arveson and J. Feldman [3] in connection with the existence of invariant subspaces.
It was later studied systematically by Halmos [13], who indicated a relationship be-
tween quasitriangular and quasialgebraic operators in [14]. Quasitriangular opera-
tors have recently been characterized [1], [9] as those operators for which T - X is
not a semi-Fredholm operator of negative index for any complex A; thus the class of
T for which either T or T* is quasitriangular is very large. To prove Theorem
5.2 for this class, we use the following lemma, proved in [2, p. 292].

LEMMA 5.1. Let T € B(H), and let {En} be an increasing sequence of
Sinite-rank projections of supremum 1. Then lim, |E;TES || is the essential norm
of T.

The authors are indebted to the referee for suggesting the following short proof
for Theorem 5.2.

THEOREM 5.2. If T € #(#) and either T or T* is quasitviangular, then

infre 5 [P(T+K)| = |||,
for each polynomial p.

Proof. It suffices to assume T is quasitriangular. Choose an increasing {En}
of finite-rank projections of supremum I, with lim ||E$ T En” = 0. Since

p(E; TE}) = p(T +K,) for some K, € o, and in view of the lemma, it suffices to
show that

tim, [p(BE TEL) | = tim, |BL p(r) BL]

It is convenient to consider first an arbitrary polynomial p with constant term
zero. Now write p(T) = p[T(E, + EZ)], and expand

Ex p(T(E, +EZ)]Eq .

Observe that we obtain a sum of terms each of which contains E,, as a factor, plus a
summand

1

E. p(TEZ)Ex: = p(E; TE})

(since p has zero constant term). Now, each of the first-mentioned terms is a
product of the form

@E, TX,;TX, " TXE;,
for some j < deg p, where X is either E_ or Ej, and ¢ € C. Let k be the small-
est index with X; = E. Then X, _; TXy = E} TE,_, so that ||X,_; TXy| — 0.

n

Thus the norm of each of these terms converges to zero as n — «, and we are left
with
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lim |Ey p(T) Ef || = lim, |p(E: TEL) |,
as desired.

Now assume that p is a polynomial with nonzero constant term; that is, let
p(z) =xg(z - Ap) -+ (z - X)), where A; # 0, for each i. Let q be the polynomial
a(z) = p(z +x1). Then q(T - A;) = p(T), and clearly T - A; is quasitriangular when-
ever T is quasitriangular.

Since q has no constant term, we can apply the result above to deduce that
infee 5 [D(T+K)| = infe 0 a(T -2 +K)| = [vl@(T -2)] = [v@@)],

and the proof is complete.
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