EXTREMAL PROBLEMS IN ARBITRARY DOMAINS, II
T. W. Gamelin

i. INTRODUCTION

This paper deals with the extremal functions of a certain class of extremal
problems. We obtain uniqueness of the extremal functions associated with a class of
extremal problems, including the problems treated by D. Hejhal in [7]. We also
study the behavior of the extremal function near a free analytic boundary arec. Our
techniques are adapted from [4]; they are the techniques of function algebras, and
they offer a perspective that is “dual” in some sense to the classical approach of
S. Ja. Havinson [6] and others.

In order to state explicitly the main results, we fix some notation.

Let D be a bounded domain in the complex plane C, let K be a compact subset
of D, and let 7 be a measure on K. Let u be a continuous real-valued function on
D. The basic extremal problem is the following:

Sfdn

that |f| <e% on D.

To maximize , among all analytic functions f on D such

(1.1)

The extremal problem (1.1) is nonirivial if there exists a competing function f for
which Sfdn # 0.

A normal-families argument shows that there exists an extremal function ¥ for
(1.1). Upon multiplying F by a unimodular constant, we can arrange that

SF dn > 0. Such an extremal function is said to be normalized.

An example of Hejhal [7, p. 114] shows that the normalized extremal function for
(1.1) need not be unique, even if u is harmonic. One of Hejhal’s uniqueness theo-
rems can be stated as follows.

THEOREM 1.1. Suppose that u is harmonic on D and that every component of
D \ K includes in its boundary an essential boundary point of D. If the extvemal
problem (1.1) is nontrivial, then the problem has a unique novmalized extvemal
Junction.

Hejhal’s proof of Theorem 1.1 depends on the methods developed by Havinson
[6], who proved the uniqueness of the Ahlfors function of arbitrary domains. Now
there is in [4] an economical proof of Havinson’s theorem that depends on function-
algebraic techniques (see also [3] and [5]). In Section 2, we show how this simple
proof can be extended to include Theorem 1.1. Sections 3 and 4 include assorted ex-
tensions of the basic uniqueness theorem. In particular, a result obtained in Section
3 includes the various uniqueness assertions of [7].
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S. Fisher proved in [2] that the Ahlfors function of an arbitrary planar domain
extends analytically across free analytic boundary arcs and has unit modulus on
these arcs. Proofs of this theorem, covering a broader class of extremal problems,
have been given in [3] and in [4]. In Section 5 we show that the methods of [4] can be
extended to yield the following result.

THEOREM 1.2. Suppose that u is harmonic on D, that the extvemal problem
(1.1) is nontvivial, and that D \ K is connected. Let T be a free analytic boundary
arc for D, and let v be a conjugate harmonic function for u, defined on an open sub-
set of D adjacent to T. If F is the extvemal function for (1.1), then Fe-{utiv) egx-
tends analytically acvoss T and has unit modulus on T.

We shall adhere to the usual conventions and notational usages. By “measure”
we always mean “finite regular Borel measure.” The closed support of a measure
v is denoted by supp v. The space of continuous complex-valued functions on a
topological space E is denoted by C(E). Associated with it is the norm of uniform
convergence on E, defined by

£z = sup{|ix)|: x € E}.
The extended complex plane is denoted by C*. For the precise definitions of “es-
sential boundary point,” “free analytic boundary arc,” and so forth, see [2], [3],
or [4].
2. A PROOF OF THEOREM 1.1
Let B(D) denote the Stone-Cech compactification of D, and let
Z: B(D) —» D

be the extension of the coordinate function z from D to 8(D). Let B be the sub-
space of C(B(D)) consisting of functions of the form

g =fe™,

where f is analytic on D and fe~" is bounded on D. Evidently, B is a closed sub-
space of C(B(D)).

If g € B, then log [g| - log [fl - u is subharmonic on D. Consequently g can-
not assume its maximum modulus on D unless g is constant. Every g € B then as-
sumes its maximum modulus on B(D) \ D:

(2.1) lellp = lelgonp (€€ B.

Now define a continuous linear functional A on B by

(2.2) Alg) = Sge“dn = Sfdn (g € B),

where g =fe v . Since lfl < eV if and only if |g| < 1, the extremal value for (1.1)
coincides with the norm of A on B. An analytic function ¥ on D is a normalized
extremal function for (1.1) if and only if the corresponding function G =Fe~" € B
satisfies the conditions
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(2.3) lg| <1, A@) = |4a].

The problem then is to show that there exists a unique G € B that satisfies (2.3).

In view of (2.1), there is a measure v on B(D) \ D satisfying the conditions
(2.4) Alg) = Sgdv (g € B),

(2.5) lall = {v1.

The hypotheses of Theorem 1.1 guarantee that A # 0, so that v # 0. The crucial
properties of v are given in the form of two lemmas.

LEMMA 2.1. Let V be a component of D\ K. Suppose theve exists zg € V
such that the evaluation functional g — g(zg) (g € B) is not continuous in the norm
of uniform convevgence on K \ supp v. Then

v (@z-1@Vv) = o.

Proof. Note that Z maps B(D) \ D onto 9D. Since 9V N 8D is a closed and
open subset of 9D, Z-1(3V N aD) is a closed and open subset of 8(D) \ D. The
lemma asserts that v has no mass on this subset.

Define E = K U supp ¥. Then the measure e%y - v € B! is supported on E.

Let g € B. Since the evaluation functional is not continuous, its kernel is dense
in B in the norm || ”E Consequently there exists a sequence {gn} in B such

that g (zg) = 0, while {g,} converges uniformly to g on E. By the definition of B,
the functions g, /(Z - zg) also belong to B, and moreover {g,/(Z - zg)} converges

uniformly to g/(Z - zg) on E. Using B|g to denote the uniform closure of B|E in
C(E), we conclude that at g e B]E implies g/(Z - zg) € BIE In fact, if g € B|E,
then g/(Z - zo)™ € B for all integers m > 0.

Now V separates dD N 9V from K and from 3D \ aV. By Runge’s Theorem,
there is then a sequence {h,} of polynomials, such that h,(1/(Z - zg)) converges
uniformly to 0 on 9D N 9V, andto 1 on K and on 9D\ daV. Now ey - v is ortho-

gonal to B| g, and h,(1/(Z - zp))g € B|g for all g € B. Consequently

Sh ge“d'n—Sh (Z_Z)gdv (g € B).

Passing to the limit, we obfain the relation

Ag) = S geldn = 5 gdv (g e B).
K -1(3D\oV)

Hence the restriction of v to Z~1(3D \ 9V) also represents the functional A. Since
v has minimal norm among the measures representing A, the measure » must co-
incide with its restriction to Z-1(dD \ 9V). Consequently, ¥ has no mass on
Z-l(@bNav). m

LEMMA 2.2. Let V be a component of D\ K such that |v|(z"1(8V)) > 0. If
g€ Band g=0 on Z 1 (3V) N supp v, then g = 0.
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Proof. Since 9V includes an essential boundary point of D, there exists an
analytic function h on D such that

(2.6) |h(z)| <1 (z € D),

(2.7) limsup  |h(z)| = 1,
D>z —3DN3V

(2.8) lim sup |h(z)| <1,
D3z —9D\3V

Now h extends continuously to B(D), and (2.8) shows that the maximum modulus of h
on Z-1(aD \ aV) is strictly less than 1. Since also ”h"K < 1, we can by (2.7) find
an open disc A, in V such that

(2.9) |h(z)| > |[h||KU 21 (50\0 ) (z € Ag).

Now fix zy € Ag. The functions
g, = h®g/h{zy)" (n>1),

belong to B. On account of (2.9), {gn} converges uniformly to zero on K and on
Z-1(aD \ 9V). By Lemma 2.1, |g,(zo)| — 0. Since g, (zq) = g(z,), we see that
g(zg) = 0. Since zy € Ag is arbitrary, g vanishes on Ag. In view of the definition
of B, the function g is identically zeroon D. H

Now we complete the proof of Theorem 1.1 as follows. Suppose G € B satisfies
(2.3). Then the inequalities in the chain

la] = a@ = Jeav < [alalv] < la] Iv] = [A]

become equalities. We conclude that Gy > 0 and
(2.10) IGI =1 on supp v .

If Go, G; € B both satisfy (2.3), then each convex combination of Gy and G,
also satisfies (2.3). By (2.10), every convex combination of Gg and G; is unimodu-
lar on supp v. This can occur only if Gg = G; on supp v. Since v # 0, there is at
least one component V of D\ K such that IV | (@Vv) > 0. Applying Lemma 2.2 to
this component V, we see that Gg - G| = 0, and therefore Gg = G;. The function
satisfying (2.3) is therefore unique, and the proof is concluded.

3. RELAXING THE HYPOTHESES

There are various ways in which the hypotheses of Theorem 1.1 can be relaxed.

First, u can be any continuous superharmonic function on D. The proof goes
over verbatim for such u. We can also easily reduce this case to the harmonic case,
by replacing u by its greatest harmonic minorant.
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Second, D can be any domain in the extended complex plane. In this case, it is
convenient to perform a rotation so that « € D \ K. Again the coordinate function
extends to a mapping Z of 8(D) onto D, and Z maps S(D) \ D onto 9D. If the point
at « is avoided, then the remainder of the proof of Theorem 1.1 goes over un-
changed.

Third, one can consider a more restricted class of admissible functions. For
instance, let {z, }}.; be a sequence of points in D, and let {my })., be a sequence
of positive integers. Suppose we modify the extremal problem (1.1) by considering
only analytic functions f on D that have zeros of order my at each z, (k > 1).
Then Theorem 1.1 remains valid, and the proof given in Section 2 goes over as it is,
once B is defined appropriately.

Fourth, the condition that each component B of D \ K contain an essential
boundary point of D in its closure can be replaced by the following condition.

If V is a component of D \ K such that 8V does not include an essential
boundary point of D, then there is a closed subset T of gD N 9V that has
logarithmic capacity 0, and such that u extends continuously to a super-
harmonic function on a neighborhood of (3D N aV) \ T.

(3.1)

Because in this case the generalization is not completely trivial, we state the resuilt
explicitly and give a proof. For convenience, we omit the conditions on the zeros of
the admissible functions.

THEOREM 3.1. Le! D be a domain in the extended complex plane, and let u be
a continuous supevhavmonic function on D. Let K be a compact subsel of D, and let
n be a measuve on K such that the extvemal problem (1.1) is nontvivial, Suppose
that (3.1) is valid. Then theve exists a unique novmalized extremal function for the
extvemal problem (1.1).

Pyroof. Let V;, -+, V. be the components of D \ K with the property that
dV; 0 9D is a nonempty set containing no essential boundary points of D. Then
dV; N oD is a compact, totally disconnected subset of C* of analytic capacity 0.
Let Tj be the compact subset of 9V; N 9D given by (3.1), so that cap (Tj) = 0. Then

the union D of D and the sets (an) \ T; (1<j<r) is a domain. By hypothesis, u
extends to a continuous and superharmonic function on D. If f is an analytic func-
tion on D such that |f| < €%, then f is bounded near each point of (3Vj) \ T;.
Since the sets (3V;) \ T; have zero analytic capacity, f extends analytically across
(3V;) \ Tj. Consequently, f extends analytically to D and satisfies the inequality
|f| < e¥ there. Replacing the extremal problem on D with the obvious equivalent
extremal problem on D, and replacing V; by V;U (aV; \ T;), we can make the
following assumption:

If Vi, -+, V. are the components of D \ K such that 3V;N 3D is a non-
(3.2) empty set of analytic capacity 0, then each 3V; N 8D has logarithmic
capacity 0.

Now let T = U;:I 2V; N 3D, so that cap (T) = 0. Define B as in Section 2, and let
g € B. Then log Igl is subharmonic on D and bounded above. By a result in poten-
tial theory, which can be proved simply by means of the Evans function, log |g| ex-

tends across T to a subharmonic function on the domain D U T. Now there are two
cases.
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If T=29D, then DU T coincides with the extended complex plane. In this case,
log |g| is constant, and each function in B has constant modulus. It follows that B

is a one-dimensional linear space, so that the uniqueness of the normalized extremal
function is trivial.

On the other hand, suppose that T # 9D. The subharmonicity then yields the
estimate

log |[g(z)| < limsup log|g(w)| (z € D).
D>w— (@D\T

In other words, the following analogue of (2.1) is valid:

(3.3) (g € B).

lell = ”g”B(D)\(D Uz-1(T))

In this case, the norm-preserving extension v of A can be chosen to be situated on
the compact subset S(D) \ (DU Z-1(T)) = Z-1((3D) \ T) of B(D). In particular, if V
is any component of D\ K such that |v|(Z-1(3D N aV)) > 0, then 3V includes an
essential boundary point of D. Since the proof of Lemma 2.2 is valid for such a V,
the proof given in Section 2 serves to complete the proof of the theorem. N

Now consider the uniqueness theorem obtained by Hejhal [7, p. 94, Theorem 1].
The theorem breaks into four parts. Of these, part (b) is Theorem 1.1, while part
(d) can be reduced easily to part (b). Parts (a) and (c) are included in Theorem 3.1,
and one of the hypotheses of part (c) is found to be superfluous.

4. EXTREMAL PROBLEMS WITH SIDE CONDITIONS

We have already discussed side conditions requiring that admissible functions
vanish on a given sequence. Another type of side conditions is related to Pick-
Nevanlinna interpolation. Let D, K, u, and n be as before, let 1, ---, n,, be
measures supported on K, and let b;, ---, b, be complex numbers. The problem
is the following:

To maximize R S fdn, among all analytic functions £ on D satisfying the
(4.1)
conditions |f| < e and Sfdnj =b; (1 <j<m).

One can deduce the uniqueness of the extremal function for (4.1) by imposing the hy-
potheses of Theorem 1.1 (or Theorem 3.1), together with the two trivial require-
ments

(4.2) there exists a competing function f for (4.1),
1 is not congruent to a linear combination of 1, -+, 7 ,, modulo the
(4.3) annihilator of the space of analytic functions f such that |f|e-v is
bounded.

The reduction of a uniqueness assertion for a problem of type (4.1) to the simpler
problem treated in Theorem 1.1 can be handled as in [4, p. 9]. The reduction is a
simple consequence of an assertion that is valid for all Banach spaces.
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THEOREM 4.1. Le! B be a Banach space, and let L, Ly, ***, L, be continu-
ous linear functionals on B such that L does not depend linearly on Ly, -+, L.
There exists a nonzevo linear combination A of L, Ly, -, L, such that each ex-
tremal function for the problem

(%) to maximize R L(f), among all f € B satisfying the conditions
[£]] <1 and L;(f) =b; (1 <j < m),

is also an extrvemal function fov the problem
(%) to maximize |A(f)|,among all f € B satisfying the condition |ff < 1.

The proof of Theorem 5.1 of [4] extends immediately to this generalization. We
do not give details, except to mention that the proof involves a simple application of
the separation theorem for convex sets.

5. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 will be based on the methods used in [4, Section 4].
We shall omit the details when they overlap with [4].

Because Theorem 1.2 is local, we can restrict our attention to arbitrarily small
neighborhoods of a fixed point on I'. By applying a conformal map, we can assume
that D is a bounded subset of the upper half-plane, that T" is an open interval lying
on the real axis, and that the point in question is the origin. Let W be the open upper
half of an open disc centered at 0, such that W € D and W N K = . By shrinking T,
we can assume that I" lies on an open interval contained in dW. By shrinking W and
I', we can also assume that there exists a continuous real-valued function v on D
such that u + iv is analytic on W.

Define B to be the set of all continuous complex-valued functions on D of the
form fe-(utiv)  where f is analytic on D and |f| < ev. In other words, we are

multiplying the subspace used in Section 2 by the unimodular function e'iv, so that
the functions in B are now analytic on W.

The functions in B now have nontangential limits a.e. (dx) on I. The boundary-
value function of g € B will be denoted by g € L™(T, dx).

Define A analogously to (2.2), by the formula
(5.1) Ag) = Sgeu“" dp (g e B).

If F is the normalized extremal function for (1.1), then the corresponding function
G =Fe-{utiv) 5 B is again characterized by (2.3). We must show that G extends
analytically across I' and has unit modulus on I'. We begin with the following
lemma.

LEMMA 5.1. Theve exists g € B that extends analytically acvoss T and has
unit modulus on T,

Proof. By hypothesis, there is a nonzero function h € B. By the Nevanlinna
factorization theory, there is an analytic function k in the Nevanlinna class of the
upper half-plane such that k and 1/k are bounded outside W, k has unit modulus on
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R\ f, and h/k is analytic on W U T’ and has unit modulus on I'. The function k
can be expressed explicitly in the form

k = SpS; exp(w +i*w),

where S is the Blaschke product (in the upper half-plane) of the zeros of h near T,
S is an appropriate singular inner function on the upper half-plane, and w is the
Poisson integral of the function that is 0 on R\ T" and log |h| on I From the
definition of B, one verifies that g = h/k belongs to B.

Let A € T, and consider the fiber Z-1({x}) € B(D) of B(D) over A. Since W
coincides with D near A, every bounded continuous function W also extends continu-
ously to Z-1({1}). In particular, the functions in H®(W) extend continuously to

z-1({x}).

Let Y be the compactification of D obtained from B(D) by the identification of
all points of Z-1(I') that are identified by H®(W). In other words, the fiber of Y
over A € 3D coincides with the fiber of B(D) over X if A ¢ T, while it coincides

with the fiber of the maximal-ideal space of H”(W) over A whenever X € T. The
functions in B all extend continuously fo Y.

When it is convenient, we shall regard Z as the extension of the coordinate

function to Y, so that Z maps Y onto D. Let S(W) be the Shilov boundary of
H*(W), and set

Q=z1ep\ Dulz-Y(D)n SW)];

then Q is a compact subset of Y \ D. The term Z-1(I) n S(W) has a simple inter-
pretation. Let Z(dx) be the maximal-ideal space of L™(T’, dx), so that

(5.2) LO(T, dx) = C(Z(dx)) .

Again the coordinate function z in L *(dx) determines a continuous function, also_
denoted by Z, that projects Z(dx) onto the closure T of I'. The term Z- l(I‘) N S(W)
can be 1dent1f1ed with the piece of Z(dx) lying over T,

-H) NS§W) = Z-1(I) N 3(dx) .
The values of a function f € H®(W) on Z-}(I) N S(W) are determined via Fatou’s
theorem, which assigns to f its nontangential-boundary-value function f € L™(T, dx).
Now B is a closed subspace of C(Y), and the analogue of (2.1) is the following.

LEMMA 5.2. Forallge B, |g|p=legla.

Proof. Let g € B. Since log Ig[ is subharmonic on D, the function g attains
its maximum modulus on the fringe Y \ D = Z-1(3D), and hence on Z-1({)}) for
some X € 9D. If A € (D) \ T, then Z- 1({h}) C Q; therefore g attains its maximum
modulus on Q. On the other hand, if A € I, then

lim sup |g(z)| = |g]| -
Waz —A

The nontangential-boundary-value function g of g then satisfies the condition
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ess lim sup |gx)| = ||g| .
Tax—A

Under the isomorphism (5.2), the “essential lim sup” of |§] at A coincides with the
maximum modulus of g on Z(dx) N Z-1(A). This latter set is included in Q, so that
again g attains its maximum modulus on Q. ®

In view of Lemma 5.2, there is a measure v on Q that satisfies (2.4) and (2.5),
that is, |v| = [|A]], and A(g) = Sgdv (g € B). As in [4], let dX denote the meas-
ure on Z(dx) that is the natural lift of dx to Z(dx).

LEMMA 5.3. The restviction of v o QnN Z'I(I‘) is absolutely continuous with
vespect to dX.

We omit the proof, since it is the same as that in [4, p. 8].

By Lemma 5.3, there is a function h € LI(I', dx) such that on Z~}(I), v co-
incides with the lift of hdx. In other words,

A@ = § gav+ [ ghax  (gem).
o\z-}1) r

LEMMA 5.4. There is an analytic function on W of class H! near T that has
nontangential boundary values equal to h a.e. (dx) on T.

Proof. By Lemma 5.1, some function gg in B extends analytically across I
and has unit modulus on I'. Define the measure ¢ on K U gD to be the projection of

go v - go eu+iV7):
G = Z*(go v - g eu+iv,n) = Z*(go y) - g0 eu+ivn .

On account of the definition of A, v - eutivy is orthogonal to B. Since
g0/(Z - €) € B for all ¢ ¢ D,

0= (Figeodw -e®ivy = ( Zlraom € ¢D).

By [4, Lemma 4.3], the analytic function
~ d
(5.3) 5@ = (228 gew),

is of class H! near I' and has nontangential boundary values equal to 27iggph
a.e. (dx) along I'. It follows that goh, and hence h, is the boundary-value function
of an analytic function of class H! near I". ™

It is in the proof of the next lemma that we use the topological hypothesis on
D\ K.
LEMMA 5.5. The function h does not vanish identically on T.

Proof. Suppose, on the contrary, that h=0 on I, so that v has no mass on
Z-1(1).
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Let o be a cyclein D\ K that surrounds K in the usual sense of contour inte-
gration. Let g € B. Since v - eutiVy is orthogonal to B,

utiv —
(5.4) § g9 - (e =01 (tee\D).

Now both sides of (5.4) are analytic on D \ K and across I'. Since D\ K is con-
nected, the identity (5.4) persists for all { € D\ K. Integrating both sides of (5.4)
along the cycle «, and interchanging the orders of integration, we obtain the equation

0 = -27i SgeuHVdn = -2miA(g) .

Consequently A = 0. This contradiction establishes the lemma. B

Now the relations (2.4) and (2.5) show that the nontangential-boundary-value
function G of the extremal function G satisfies the conditions Gh > 0 and Gh = |h]|
a.e. (dx) on I'. The classical proof, which uses the Hl-version of the Schwarz re-

flection principle as in [4, p. 9], then shows that G is analytic across T, and that G
is unimodular on I'. That completes the proof of Theorem 1.2.

We close with some comments on the hypotheses of Theorem 1.2.

The hypothesis that D \ K be connected is necessary, as the example of [4, p. 6]
shows. Without this hypothesis, one can only conclude that there is a component V
of D\ K such that Fe-{utiv) extends analytically across any free analytic boundary
arc in ¢D N 9V and has unit modulus there.

The boundedness of D is irrelevant, since we can reduce the unbounded case to
the bounded case by mapping D onto a bounded domain. Moreover, Theorem 1.2 re-
mains valid if u is only continuous and superharmonic, providing in the conclusion u
is replaced by its greatest harmonic minorant.

The imposition of side conditions as in (4.1) does not affect the behavior of the
extremal function at a free analytic boundary curve, as Theorem 4.1 shows. How-
ever, if the admissible functions are required to vanish on a sequence {zk} in D,
Then Fe-(utiv) cannot extend analytically across any accumulation point on I' of
the points z;, . Nevertheless, in this case there is a certain “Blaschke product” S,
bounded and analytic on D, such that Fe-(utiv) /s extends analytically across I' and
has unit modulus on T'.
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