LIPSCHITZ FUNCTIONS AND BAD METRICS
Anthony G. O’Farrell

We explore conditions under which a metric space admits metrics that are in a
certain sense smaller than the original metric. The question is related to the exist-
ence of certain Lipschitz functions, and the answers throw light upon some problems
encountered by J. D. Stein [6], concerning the Lipschitz index of a metric space and
the ideal structure of Lipschitz algebras.

1. BAD METRICS

Let (X, p) be a metric space. We say that a pseudometric ¢ on X (see [4]) is
smaller than p on X if for each point x in X the quotient

(1) ' o(x, y)
plx, y)

converges to zero as p(x,y) | 0, y € X. We say that ¢ is much smallerv than p on
X if for each point x in X the quotient

oly, z)
ply, z)

converges to zero as p(x, y) | 0 and p(x, z) | 0. A metric o on X is largeyr than
p if for each x in X the quotient (1) tends to infinity as p(x, y) | 0. Observe that
the statements “o is larger than p” and “p is smaller than ¢” are not necessarily
equivalent. They are equivalent if o induces the same topology as p. Also, p is
smaller than p if and only if (X, p) is a discrete topological space. If h(r) is a
concave, increasing function, defined for r > 0, with h(0) = 0, then hop is a metric
on X. The spaces (X, p) and (X, hop) are homeomorphic if the restriction of h to
the image of p is continuous at 0. Thus there exist metrics on X that are larger
than p and induce the same topology. On the other hand, it may happen that there
are no metrics, or even nonzero pseudometrics, smaller than p. For instance, if ¢
is a pseudometric on Euclidean space IR™ that is smaller than the Euclidean metric,
then

lo(x, z) - oly, z)] < o(x, y)
|x -yl = ==yl

hence the gradient Vy0(x, z) vanishes identically as a function of x, for each fixed
z, hence ¢ is identically zero.

We say that p is a bad metrvic on X if X admits a smaller metric that induces
the same topology. We say that p is a good metric if X admits no smaller metric,
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and that p is a very good metric if X admits no smaller pseudometric. Thus a
very good metric is good, and a good metric is not bad. The square root of the
Euclidean metric on R" is bad, whereas the Euclidean metric itself is very good.
If X is the union of two disjoint closed balls in IR?, then the Euclidean metric is
good on X, but not very good.

We ask: how can we tell, by looking at (X, p) as a metric space, whether p is
bad, good, or very good? If p is bad, how can we construct a smaller metric giving
the same topology? If p is not very good, how can we construct a smaller pseudo-
metric? For instance, given R™ with the square root of the Euclidean metric, how
can we “rediscover?” the Euclidean metric, using only metric-space operations?

(By metric-space operations we mean functors on the category of metric spaces
with isometries.)

I am grateful to the referee for many constructive suggestions.

2. LIPSCHITZ FUNCTIONS

Let (X, p) be a metric space. For g > 0, the space Lip(B, p) consists of all
real-valued functions f on X for which the pseudonorm

|£(x) - 1(y)]

P . %,y € X,
Il g, p Sup{ e L R X?&y}

is finite. If 0 < B < 1, then for each point z in X the function x — p(z, x)P belongs
to Lip(B, p), and hence Lip(B, p) separates points on X (that is, for each pair of
points x and y in X, there exists a function f € Lip (8, p) such that f(x) # f(y)). On
the other hand, if 8 > 1, then it may happen that Lip (3, p) consists only of the con-
stants. Indeed, Lip (8, p) # R if and only if X admits a pseudometric ¢ such that
o < pB, hence Lip(8, p) =R where 8> 1 and p is very good.

LEMMA 1. Let (X, p) be a metric space, and let 8 > 0. Suppose Lip (8, p)
separates points on X. Then theve is a meitvic 0 on X such that o < pﬁ ,
Lip (8, p) = Lip(1, o), and |f| B,p = £l 1,0 Whenever f: X — RR.

Proof. We simply define o as the Gleason metric [3] of Lip(8, p):
o(x, y) = sup {|tx) - {®)]: [[£]lg,p <1}.

It is easy to see that o is a metric and that ¢ < pB .
Let f € Lip(B, p). Then, by definition of o,

|tx) - iy)] < [ltlg,p ol v
whenever x, y € X. Hence f € Lip(1, 0) and "f"l,(7 < "f"B,p-
Conversely, let f € Lip(1, o). Then
1169 - 1] < el 4 ot 3 < Nell, o o, 8.

Thus f € Lip (8, p) and ||t]g,p < |l£ll1,6 -

The converse to this lemma is trivial: if there exists a metric ¢ on X such
that 0 < pB, then Lip (B, p) separates points on X.
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In order to apply the lemma to the study of bad metrics, we need to know
whether ¢ induces the same topology as p.

LEMMA 2. Let (X, p), B, and o be as in Lemma 1. Then p and o induce the
same topology on X if and only if for each point x in X and each positive & therve
exists a positive n such that, for each point y in X such that p(x, y) > &, there
exists a function f such that

ltllgp <1 and  |ix) - )] > 7.

Proof. We say that a set U C X is a p-neighborhood of the point x if U isa
neighborhood of x in the topology induced by p. Since o < pB , it follows that for
each point x in X, every o-neighborhood of x is a p-neighborhood of x. Hence p
and o induce the same topology if and only if for every point x each p-neighborhood
of x is a o-neighborhood. Fix x € X and ¢ > 0. The basic p-neighborhood of x,

{y € X: plx, y) < e},

is a o-neighborhood of x if and only if there exists a constant i > 0 such that for
each y in X,

(2) o(x,y) <n implies p(x, y) <e.

The following three statements are clearly equivalent, for fixed x, €, and 7.
1. For all y in X, (2) holds.
2. For all y in X,

p(x, y) >¢ implies o(x,y)>7.
3. For all y in X with p(x, y) > ¢, there exists a function f such that
It p <1 and [ix) - 10| > .
The result follows.

Another condition that implies the two spaces are homeomorphic is that for
each point x in X there exists a constant k¥ > 0 such that for each y in X there
exists a function f such that [|f] g,p<1 and

kp(x, Y)P < |1(x) - £(3)] .

This condition is satisfied if each pair (x, y) € X X X is a peak pair for Lip(B, p),
in the sense that there exists a function f in Lip (B, p) suchthat |[f[g ,=1 and
|£(x) - £#(y)| = p(x, y)B.

PROPOSITION 1. If (X, p) is a compact metric space, B > 1, and Lip (B, p)
separates points, then the Gleason metric o of Lip (B, p) induces the same topology
as p, hence p is a bad metric on X,

Proof. Fix x € X and € > 0. For each point y € X with p(x, y) > ¢, let
Ny =2-10(x, y). Then the set

N, = {z € X: there exists a function f such that ||f"3,p_<_ 1 and |f(z) - £(x)| > ny}

is an open neighborhood of x. Thus the family {NY: p(x, y) > 8} is an open cover-
ing of the set
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T = {y e X: plx, y) > €},

which is compact. Thus there exists a finite number of points y;, y2, -+, ym in X
such that p(x, y;) > € and

T C NYl U NYZ U - UNYm'

Let
n = min{nyi: 1_<_i_§m}.

Then for each point y in X with p(x, y) > €, there exists a function f such that
”f"B,P <1 and |f(x) - f(y)| >n. Thus, by Lemma 2, p and ¢ induce the same
topology on X.

A slight variation on this argument shows that if (X, p) is locally compact and
Lip (B, p) is regular (that is, separates points from closed sets), then p is a bad
metric on X.

In case (X, p) is compact, Lip (8, p) forms an algebra under pointwise addition
and multiplication. Endowed with the norm

I = el + suo el

Lip (B, p) becomes a commutative Banach algebra with identity [5], [6]. The algebra
Lip (1, p) has been studied extensively [2], [5], [7], from the point of view of ideal
theory and derivations. These results extend automatically to Lip (8, p) for

0 <B < 1. J.D. Stein [6] attempted to extend the ideal theory of D. R. Sherbert and
L. Waelbroeck to Lip (B, p), for 8 > 1. The foregoing results show that every

Lip (B, p) space is isometrically isomorphic to some space Lip(l, &) (where & is a
metric on a quotient space of (X, p)), and hence the theory of Lip 8 is contained in
the theory of Lip 1. In particular, every closed ideal in Lip (8, p) is the intersec-
tion of closed primary ideals (see [5], [6], [7]).

3. CONNECTEDNESS

Let (X, p) be a metric space. If X is the union of two subsets that lie at
positive distance from one another, then p is not very good. This remark has a
local analogue.

PROPOSITION 2. Let (X, p) be a locally compact, totally disconnected, metvic
space. Then p is a bad metric on X.

Proof. Let E be a closed subset of X, and let p be a point of X ~ E. Then
there exist a compact neighborhood Y of p and a closed neighborhood Z of E such
that

X=YUZ, YNZ =¢@.
Since Y is compact, the distance between Y and Z is positive, hence the character-

istic function of Y belongs to Lip(2, p). Thus Lip(2, p) is regular, and the propo-
sition follows from the remark after Proposition 1.



LIPSCHITZ FUNCTIONS AND BAD METRICS 281

In case X is locally compact, the next proposition is a special case of the last.

PROPOSITION 3. Let (x, p) be a metric space. Suppose theve exist a positive
constant k and a sequence of positive numbers €, | 0 such that, for each n, X ad-
mits a covering {Ug}a by paivwise disjoint sets such that diam Ug < €, and

dist[Uq, Ugl > xe, (2 #p).

Then p is bad.
Pyoof. Choose a sequence of positive numbers 1, | 0 such that

(o]

> on,<ed (m=1,23, ).

n=m

Let x5 denote the characteristic function of Up,, and define

o(x,y) = 27 221, |xa® - x5!,
n=]1 &

whenever x, y € X. Clearly, 0 is a metricon X. If ke ., < p(x, y) < ke, then
for each n < m, x and y belong to the same U’& . Thus

[ o]

ox,y) <2 L n, <28, <2r%plx, y)2.

n=m+1

Hence o(x, y) < 2k % p(x, y)* whenever p(x, y) < k€, so that ¢ is much smaller
than p. In order to show that ¢ induces the same topology as p, it suffices to show
that for each point x in X, each p-neighborhood of x is a o -neighborhood, that is,
that we can force p(x, y) to be small by making ¢ (x, y) small. However, if

o(x, y) <N , then x and y belong to the same Up', and hence p(x, y) <€, .

Hence ¢ does induce the same topology as p, so that p is a bad metric on X.

A net on the unit interval I is a finite ordered set of points
0 =ay<a <--<a, =1,

Let T be an arc (I" is a se#) in the metric space (X, p), andlet ¢: I —= I be a
homeomorphism. A nef on T is an ordered set (bg, -+, by) such that

(¢-1(bg), =+, ¢-Ub,)) is a net on I. The p-length of I is the supremum over all
nets on I of the sums

n

E p(bi, bi-l) .

i=1
If the p-length of TI' is finite, we say I is p-vectifiable. If T' is a countable union
of p-rectifiable subarcs, then we say that I is countably p-vectifiable.
PROPOSITION 4. Let (X, p) be a metvic space.

(i) If X contains a p-vectifiable arc, then X does not admit a metvic much
smaller than p.
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(ii) If X is connected by countably p-rectifiable arcs, then X does not admit a
nonzevo pseudometvic much smalleyv than p.

Proof. (i) Let T be a p-rectifiable arc, with p-length L. Suppose, contrary to
the assertion, that there exists a metric ¢ on X that is much smaller than p. Let
€ > 0. The function F, defined on I' X I" by

0 x=y)),
F(x,y) =

Wy ey

is continuous on I' X I' and vanishes on the diagonal D. For o > 0, let

Ny, = {(x, y) e IxT:plx, y) < af.

Then each N, is compact, and ﬂa >0 Ny = D. Hence there exists 6 > 0 such that
N C {(x,y) e TXxI: F(x,y) <e}.

Thus p(x, y) < 6 implies o(x, y) < € p(x, y).
Choose a net (bg, **+, by) on I' such that p(b;, b;_;) < 6. Then

n
a(bg, by) < 27 olb;, b;_)) < eL.
i=1

Since € > 0 is arbitrary, we conclude that o(bg, b,) = 0, which is impossible.
Assertion (ii) is proved in a similar way.

An arc T is called a p-Lip arc if there exist a parametrization ¢: I — I" and a
constant « > 0 such that

(3) po@®), o] < k|t - ul,

whenever t, u € I. Every p-Lip arc is p-rectifiable. A p-rectifiable arc is a p-
Lip arc if and only if the parametrization induced by arc length satisfies (3).

If X contains a p-Lip arc T, then the metric p is good; for if 0 were a
smaller metric on X, then the pullback of o0 from I' to I would be a smaller metric
than the pullback of p, and hence smaller than the Euclidean metric.

Similarly, if X is connected by piecewise p-Liparcs, then p is a very good
metric,

Stein [6] introduced the following equivalence relation on X: x =~ y if and only if
x and y may be joined by a p-Lip arc. He called the equivalence classes L-compo-
nents of (X, p). He defined the Lipschitz index of (X, p) as

sup {8 > 0: Lip(8, p) + R},

and he asked whether an arcwise-connected metric space with Lipschitz index 1
need be an L-component. In view of the remark before Lemma 1, we see that the
Lipschitz index of (X, p) is equal to the supremum of the numbers g > 0 such that
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X admits a pseudometric o satisfying the inequality ¢ < pB . Consider the unit in-
terval I with the metric

p(t, u) = [t - u] log CH

|t -
The Lipschitz index of (I, p) is 1, whereas I is not even countably p-rectifiable.
Therefore the answer to Stein’s question is negative. A more difficult question is

whether an arcwise connected space with a very good metric p need be connected
by countably p-rectifiable arcs. I do not know.

If Y is a subset of X, and p is a metric on X that is good on Y, then p is good
on X. Hence, the completion of a good metric is good. However, the completion of
a metric that is not good may also be good; indeed, the completion of a bad metric
may be very good. For example, let p denote the Euclidean metric on I, and let ¢
be the Lebesgue singular function; then ¢ is a homeomorphism of I to itself, and
¢'=0 on a set E C1I with full measure. Define the metric ¢ by setling

alt, uw) = |ot) - ¢(w)] .

Then o induces the Euclidean topology, and ¢ is smaller than p on E, hence p is
a bad metric on E. Since E is dense, the completion of (E, p) is (I, p). This exam-
ple also shows that very good metrics are by no means unique: ¢ is also a very
good metric on I.

By the method of Proposition 4, we see that if X contains an arc with p-Haus-
dorff dimension equal to 3, and y > 8, then X does not admit a nonzero pseudo-
metric o < p?, hence the Lipschitz index of X does not exceed f.

4, LITTLE LIP CRITERIA

Let (X, p) be a metric space. We define lip(p) as the space of all functions
f: X — IR such that, corresponding to each x € X and each € > 0, there exists 6 > 0
such that

|£(y) - £(z)| < eply, 2)

whenever p(x, y) < 6 and p(x, z) < 6. We define flip(p) (f for feeble) as the space
of all functions f: X — IR such that, for each x € X and each £ > 0, there exists
0 > 0 such that

|£(x) - (y)| < ep(x, y)

wherever p(x, y) < 6. Clearly, lip(p) C flip(p). In case (X, p) is compact, the
number & in the definition of lip{p) may be chosen to depend only on ¢. It is easy
to see that flip(p) = R if and only if p is a very good metric on X. Also, lip(p) = R
if and only if X admits no nonzero pseudometric much smaller than p.

PROPOSITION 5. Let (X, p) be a separable metvic space.

(i) X admits a metric smallev than p if and only if flip(p) separates points
on X.

(ii) X admits a metrvic much smaller than p if and only if lip(p) separates
points on X.
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Proof. The two parts are similar in proof. We prove (i). The “only if” part is
trivial.

Suppose flip (p) separates points on X, For each pair (%, y) € X X X with
X # y, choose a function f € flip (p) such that f(x) # f(y). Define
F(x, y; z, w) = f(z) - f(w). The set

N(x, y) = {(z, w) € XX X: F(x, y; 2, w) # 0}
is an open neighborhood of (x, y) in X X X, and the family

{NGx, y):x # y}

is an open covering of the complement of the diagonal in the separable space X X X.
By Lindelof’s theorem, we may choose a countable subcover. Let {fm}"f be the

sequence of functions in flip(p) corresponding to the elements of this subcover. We
define

olx, y) = T 2™ fli )l 11,00 - £,.0)]

m=1

whenever (x, y) € XX X. Since {f,,}T separates points, it follows that ¢ is a
metric. Let x,, x € X, with p(x,, x) | 0. Then

_ S -m -1 |1‘:n’1(x)_f1'ﬂ(xn)l
e B i e

o(x, x,)

converges to zero, by the dominated-convergence theorem. Thus o is smaller than
p, and the proof is complete.

If (X, p) is a compact metric space, then arguing as in Proposition 1 we see
that p is a bad metric on X if and only if flip {p) separates points.

5. POOR SETS

Let (X, p) be a metric space, and let E be a subset of X. We say that E isa
p-poor set if there exists a metric ¢ on X such that for each point p € E the quo-
tient

o (p, x)

p(p, x)

tends to zero as p(p, Xx) | 0, x € X (this is stronger than the statement that o is
smaller than p on E). If p is not a good metric on X, then every subset of X is p-
poor. The example of Section 3, involving the Lebesgue singular function, exhibits a
dense p-poor set, with p very good. The main result of this section is that every
metric space contains poor sets, in fact, all reasonably small sets are poor.

The derived set E' of a subset E of a metric space is the set of accumulation
points of E. The second derived set E(2) is E", and so on.
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PROPOSITION 6. Let (X, p) be a metvic space, and let E be a countable sub-
set of E. Suppose therve exists a posilive integer n such that En) = @. Then E is

p-poor.
First we prove the result in case E = {p}, a singleton.

LEMMA 3. Let (X, p) be a metric space, and let p € X. Then there exists a
metric 0 on X such that

a(p, x) < plp, x)?

whenever x € X and p(p, x) < 1.

Proof. First, suppose X is a Euclidean space, p is the Euclidean metric, and
p is the origin. Define o by

(4) a(x, y) = p[|x]> % |y|?y]
for x, y € X. It is clear that ¢ is a metric, and that
a(0, x) = p(0, x)¢ (xe€ X).
Next, suppose (X, p) has the Euclidean four-point property (this means that

each four-point subspace of X may be imbedded isometrically in IR3). Define o as
follows. For x and y in X, set

r=plp,x), s=ppy, d=pxy),
(5) o(x, y)2 = r8+s88-r3s5-r5s3 +r3s342.

Observe that (5) defines the same function as (4) in case X is a Euclidean space and
p = 0. Also, the assertion that o is a metric involves at most four points of X at a
time. For instance, when the triangle inequality o(x, y) < o(x, z) + o(y, z) for o is
written in terms of p, it involves only the p-distances between the points p, x, y,
and z. That o is a metric therefore follows from the Euclidean four-point property
and the fact that (4) defines a metric on Euclidean space. Clearly,

olp, x) = p(p, x)*  (x€ X).
Finally, let (X, p) be an arbitrary metric space. Then [1, p. 131] the metric

space (X, p1/2) has the Euclidean four-point property. By the previous case, there
is a metric ¢ on X such that

olp, x) = p(p, x)> (x € X),

and the proof is complete.

It is a simple matter, given a positive number 0§, to modify the construction
above so that it yields a metric ¢ such that

a(p, x) = plp, x)°
for small p(p, x), while

o(x, y) = p(x, y)
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whenever p(p, x) > 6 and p(p, y) > 6. Hence, given any countable discrete set F,
we may construct a metric ¢ on X such that

o(p, x) = p(p, x)?

when p € F and p(p, X) is small.

Now suppose E is a countable subset of X and E(n) = ¢ for some positive inte-
ger n. Then E(n-1) is countable and discrete, and therefore we may construct a
metric 0; on X such that

a,(p, x) = p(p, x)?
for p € EM-1) and small p(p, x), while for each qe X~ En-1) the quotient

0 (q: X)
pla, %)
is bounded above and below for small nonzero p(q, x). Next, the set E(n-2) ~ g(n-1)

is countable and discrete, and E(n-1) jis closed, and therefore we may construct a
metric o, on X such that

0,(p, x) = 0,(p, x)?

for each point p € E(-2) » gn-1) 544 small p(p, x), whereas for each point
q ¢ E@-2) ~ E(n-1) the quotient

o,(q, x)
o liq, x)

is bounded above and below for small p(q, x). Continuing in this way, we obtain a
metric o, on X such that for each point p in the closure of E there exists a con-
stant k > 0 such that

o (b, X) < Kk plp, )2

provided p(p, X) is small. Thus E is p-poor. This concludes the proof of Proposi-
tion 6.
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