AN APPLICATION OF UNIVERSAL ALGEBRA
IN GROUP THEORY
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Our purpose in this note is to give two proofs of the following result.

THEOREM. Suppose that G is a group and H a subgroup which is the inter-
section of subgroups of finite index in G. Then H is not conjugate in G to a propeyr
subgrvoup of itself.

The first proof, the line of reasoning which first led to the discovery of the
theorem, is a very natural application of standard facts of universal algebra. Since
it has other applications, one of which we shall mention at the end of this note, we
feel that the idea is worth recording even though the second proof is a direct group-
theoretic argument which shows a little more.

First Proof. We begin by defining some concepts of universal algebra which
are perhaps better known in the narrower context of group theory. A congruence p
on an algebra A is said to have finite index if the quotient algebra A/p is finite; an
algebra A is said to be residually finite if, for each pair of distinct elements
a, b € A, there is a congruence p of finite index such that a # b (mod p); and an
algebra A is said to be Hopfian if every surjective endomorphism of A is an auto-
morphism. Our proof is based on the following generalization of a group-theoretic
theorem often attributed to A. I. Mal’cev (see [4, pages 116 and 415]}).

LEMMA. Finitely generated vesidually finite algebras ave Hopfian.

This lemma has been known for many years, but since proofs do not appear in
the texts, we include a proof which is a little simpler than that of T. Evans [1].

Proof of the lemma. Suppose that A is a finitely generated, residually finite
algebra, that ¢ is a surjective endomorphism of A, and that a and b are distinct
elements of A; we must prove that a¢ # b¢. By hypothesis, there is a congruence p
of finite index on A such that a #b (mod p). Define another congruence by

o:={(x, y) € AX Al x¥ = yy for all homomorphisms ¥: A = A/p}.

Since A/p is finite and A is finitely generated, there are only finitely many homo-
morphisms ¥: A — A/p, and so 0, being the intersection of finitely many congru-
ences of finite index, is itself a congruence of finite index on A. Furthermore, if ¢
is such a homomorphism, then so is ¢y. Thus, if two elements of A are congruent
modulo o, then so are their ¢-images. It follows that ¢ induces a homomorphism
¢: A/o — A/o which is surjective since ¢ is. Because A/c is finite, ¢ must also
be injective. This means that, if two elements of A are not congruent modulo o,
then neither are their ¢-images and, a forfiori, these images are distinct. But a
and b are clearly not congruent modulo o, for they have different images under the
canonical projection from A to A/p. Therefore, a¢p # b¢. (This proof showed, in
effect, that every congruence of finite index on a finitely generated algebra contains
a fully invariant congruence of finite index.)
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Now the first proof of the theorem is to be completed as follows. Suppose that
H is an intersection of subgroups of finite index in the group G and that g-!Hg < H.
Let A be the G-space (G : H) consisting of all right cosets Hx of H in G, consid-
ered as an algebra with the elements of G acting on the right as unary operators.
Since A is a transitive G-space, it is finitely generated (in fact, generated by any
one of its elements); since congruences on A are in one-to-one correspondence with
subgroups of G containing H, the hypothesis of our theorem is equivalent to the
statement that A is residually finite. Therefore, by the lemma, A is Hopfian.

Put K := gHg-!. Because K > H, there is a natural surjective homomorphism
$;: (G : H) — (G : K); because K and H are conjugate, there is also an isomorphism
¢,: (G : K) — (G : H). The composite of these is a surjective endomorphism ¢ of A
(described by ¢: Hx +— Hg‘1 x). Since A is Hopfian, ¢ is an isomorphism; hence
¢1 is injective, and this means that K = H. Therefore, g-lHg = H, as required.

Second Proof. As promised, we shall prove a slightly stronger theorem:

If H is the intersection of subgroups whose normalisers have finite index in G,
then H is not conjugate in G to a proper subgroup of itself.

Let #:={X| H<X <G and |G: N(X)| is finite}. If X € 2, we put
?(X) := {x-1Xx| x € G, H < x-! Xx}, which is a finite set since X has only finitely
many conjugates in G.

Suppose now that g-1Hg < H. If Y € ®(X) then H<LY, so H<gHg-1 <gYg-I,
and therefore also g¥g-! € € (X). Thus, conjugation Y — gYg-1 maps ¥(X) to it-
self. Since #(X) is finite and this map is clearly injective, it also is surjective.

Now & = Uxegﬂ?(X), and therefore the map X +— gXg-! is a permutation of &
Hence,

H=[]x-= n(ng-l) =g(nX)g-1 = gHg-1 .
@ o2 a@

Therefore, g-! Hg = H, as required.

We mentioned in the first paragraph of this note that there are other applications
of the idea behind our first proof. Here is another example. It has been well known
for some time that in a finitely presented residually finite group the word problem is
soluble (see C. F. Miller, [6, page 5]). Of course this has an analogue for other
types of algebraic system.

LEMMA. Let 8 be a finitely defined varviety of algebraic systems, and A a fi-
nitely presented algebva in B. If A is residually finite then the wovd problem in A
is soluble.

By applying this to the coset space of H in G as an algebra in the variety of G-
spaces, we get the following result, implicit in [6, page 6].

THEOREM. If G is a finitely presented group and H a finitely genevated sub-
group which is an intersection of subgroups of finite index, then the genevalised wovd
problem for H in G is soluble.

This means that there is an algorithm to decide of any word in the generators of
G whether or not the element it represents lies in H.

It should be observed that the restrictions imposed on ¥ and A in our state-
ment of the lemma cannot easily be relaxed. For it is known that there exists a
finitely generated, recursively presented, residually finite group Gy whose word
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problem is not soluble (S. Meskin [5]). Taking B to be the variety of groups and A
to be Gy, we see that the lemma does not hold generally for recursively presented
algebras in a finitely defined variety; and taking 8 to be the variety of Gg-spaces
and A to be its free algebra of rank 1 (which is the regular representation space for
G), we see that the lemma does not hold generally for finitely presented algebras in
a recursively definable variety.

The referee has kindly drawn our attention to references [2] and [3], in which
our lemmas are to be found.
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