A ROTUND REFLEXIVE SPACE
HAVING A SUBSPACE OF CODIMENSION TWO
WITH A DISCONTINUOUS METRIC PROJECTION

A. L. Brown

If E is a strictly convex (rotund) and reflexive Banach space and L is a closed
linear subspace of E, then L is a Chebyshev subspace of E; that is, corresponding
to each point x in E there exists in L a unique point Pj(x) that is nearest to x.
The metric projection of E onto L is the mapping P1,. In [2], the authors con-
structed a strictly convex but nonreflexive Banach space possessing a linear sub-
space of codimension 2 whose metric projection is discontinuous. They conjectured
that if L is a closed subspace of a strictly convex reflexive space, then P1, must be
continuous. The conjecture is false even in spaces equivalent to a Hilbert space. An
elegant counterexample was constructed by B. Kripke, and independently the present
writer constructed a more complicated example, some features of which are more
general. In both examples, the subspace L is of infinite codimension, and Ivan
Singer, in a private communication, asked whether an example with a subspace L of
codimension 2 could be constructed. Here we construct such an example by modify-
ing our original method.

THEOREM. There exist a stvictly convex, reflexive, and separable veal Banach
space E and closed lineay subspaces L and M, with L C M, having the properties

(1) Py, is discontinuous,
(2) L is of codimension 2 in E, and

(3) M is of codimension 1 in E and is a Hilbert space with vespect to the norm
of E.

The construction of E depends upon a lemma asserting the existence of strictly
convex norms with prescribed properties.

LEMMA. Let F be a real lineav space, and let p, and p, be lwo equivalent
norms on F with vespect to which F is separable. If p(x) < pa(x) forall x € F
and the set {x € F: py(x) = pa(x) = 1} contains no nondegenevate line segment, then
there exists a stvictly convex norm p on F with p;(x) < p(x) < pa(x) for all x € F.

Proof. Throughout the proof, there will be a single topology on F, the norm
topology determined by p; and p;.

Suppose that y is a point of the open set V = {x € F: p;(x) < p,(x)}. The first
step in the proof is to show that there exists a norm py between p; and pp that is
‘strictly convex near y’. Replacing y by a multiple, we shall suppose that
p1(y) <1 <p,(y). Since F is pp-separable, and by a well known result of J. A,
Clarkson [1], there exists a strictly convex norm q on F that is equivalent to p;.
The norm py will be obtained as a modification of g.

Let f € F* be a continuous linear functional on F that has pz-norm equal to 1
and attains its norm at y: that is, such that If(x)l < p2(x) for all x € F, and
f(y) = p2(y). Let
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k = sup{a(x)/pa(x): x e F\ {0}} and 6 -2 (1‘_1'})'

Define qy on F by

2 2.1/
qy(x)=qy(%%{%}’+(x-%%y)) 2((%) +62q(x—%§};—;y) )12

Then (i) qy(y) =1, (ii) qy is a strictly convex norm on F, and (iii) dy(x) < pa(x)
for all x € F. To prove (iii), we use the properties of f to obtain the inequalities

1(x)
£(y)

f(x)

ay(x) < qy(y)+qy(x-W)Y) < \%{; + 9(q(X)+I%|q(y))

< pz(X)(ﬁ;,ijWk) < pa(x).

Now let py =qy V p;. Then p)(x) < py(x) < pp(x) for all x € F, so that py is a
norm equivalent to p) and pp. Furthermore, py(y) = qy(y). The norms pi, pz, py
are all continuous in the topology of F, and therefore the set

Vy = {x € Fi p;(x) <py(x) <py(x)}

is an open subset of F containing y. If x € Vy, then py(x) = qy(x).

The set V is an open subset of the separable metric space F. It thus has a
countable base for its topology, and therefore it is a Lindel6f space—that is, every
open cover has a countable subcover. Therefore there exists a sequence (X(n))nzl

=]
such that V = Un=1 Vi(n). Define p by
o]

px) = 2 %px(n)(X).
n=1

Then p is a norm on F, and it satisfies the conditions of the lemma. Suppose, to
the contrary, that p is not strictly convex. Then the set {x: p(x) = 1} contains a
nondegenerate line segment. The norms p;, pz, and p coincide on F \ V, and
therefore, by the condition of the lemma, the line segment must intersect V. It now
follows that, for some m, the set V, () N {x: p(x) =1} contains a nondegenerate
line segment, [y, z] say. Then, by the equality of p,(;,) and qy(y,) on V() and

by the strict convexity of g, (),

| 1 =p(%L(Y+Z)) =2—1n—1qx(m)(%(y+z)) + 2z %pX(n)(%(erz))

n#¥Fm

1 (1 1 1 /1 1 _
< (3 et ®) 3 @) I (3 Py +3 Pyy@ ) = 1.
which is a contradiction. This completes the proof of the lemma.

The construction of an example. Let E be the space £2 of real sequences,
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o

E = X = (%k E glz( <o ’
k=1

and let e;, ez, '** be the standard basis. Let M = {(Ek) e E: &) =0}. It will be
notationally convenient to write M =M,. For k =3, 4, , let My =sp{ep, ex .
We shall obtain an example sat1sfy1ng the statement of the theorem, by giving E a
suitable norm q equlvalent to the £%-norm. Throughout the discussion, the topology
on E is that of the £2-norm. In the first place, we shall define the norm q on the
subspaces My (k =2, 3, --+), and we shall then invoke the lemma to obtain an exten-
sion to the whole of E.

For 0 <t< 1/3,

1+%t <@+ttt <1+t

Therefore we can inductively define positive real sequences (8(k)), (p(k)), (a(k)),
k) (k=3,4, ) by

&(3) = 1/8, p(3) = 16,

and, for k = 3, 4,

(1) a(k) = p()~t /Pt

1 \-1+1/p(k)
(2) M) = (1+575) ,
(3) ok + 1) = 30909 ( 55~ 1),
(4) ‘ plk +1) = o(k + 1)"PK)

We also put q(k) = p(k)/(p(k) - 1).
It follows that

(5) o +1) < 700) and plk) < plk+1).

Therefore the sequences (p(k)), (@(k)), and (A(k)) are increasing and (5(k)) is de-
creasing, with

(6) plk) — o, ak) — 1, (k) -0, pk)dk) oo as k— oo,
Furthermore

1 o) _ 1 S (00\2 1
) 5 <ol, < 2 <plok), (23) <15

k=3

and, since 1/p(k) < 1/p(3) < 1/3,
-1

(8) Ak) < (1+-2-p71k—)) <1.
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Now for k=3, 4, - put x, =e; + 6(k)e, and yy = d(k) e, + a(k) ey, and let L
be the closed linear hull of {yi:k =3, 4, --- }.

For k =2, 3, :-- define seminorms py on E by
o 1/2
p2(%) =( Z aﬁ) :
k=2
pk(x) - ("Ellp(k)-l- |gk‘P(k))1/P(k) (k = 3,4, ),
where x = (£;) € E. Thus the restriction of p, to M, is the £2-norm, and the
restriction of py to My (k =3, 4, ---) is the ¢P{Kl-norm on M; . These norms are

strictly convex, and for all k and m, the seminorms p; and p,, coincide on
Mk n Mm .

Linear functionals fi (k = 3, 4, +--) and a strictly convex norm q will be defined
on E so that they have the following properties: for k=2, 3, ---,

(9) a(x) = p(x) for all x € My,
(10) a(x) > pr(x) for all x € E ,

and for k = 3, 4, ---,

(11) q(x) > Ifk(x)l forall xe E,
(12) f.(x) =0 forall xe L,
(13) B (xyx - Vi) = prlxp - ¥ -

Suppose that such g and f; have been constructed. Then, writing P;p, for the
metric projection onto L associated with the norm q, we deduce from (11), (12), and
(13) that P1(x)) = yx. However, by (10) (k > 3) and the definition of pyx we see that
P;(e;) = 0. Therefore, by (6), P, is discontinuous at e;.

The 2P(8)-norms are smooth, and therefore the linear functional f. is deter-
mined on My by (9), (11), and (13), and then upon E by (12). Let fi (k= 3, 4, ---)
be defined by

) <3008+ (- B 2)

=3

for x = (§) € E. It follows from the last inequality of (7) that fx is a well-defined
continuous linear functional on E, and we can verify that (12) and (13) are satisfied.

Next we obtain inequalities for the norms of the restrictions of the functionals
f, (k =3, 4, ---) to the normed linear spaces M,;, (m=2, 3, ---).

Theve is a constant 6 < 1 such that, for all x € M, and k =3, 4, -+,
(14) [11(x)| < 6py(x).

If x € My, then
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(15) |£.x)| < pex).

Theve exist constants 0, <1 (k =3, 4, --+), such that if x € My, and m # Kk,
then

(16) |f(x)]| < 61 pm().
It follows from the Schwarz inequia./lf.zty, (8), and the last two inequalities of (7)
that (14) is satisfied with 6 =-§ (-i—g)

If x € M, then, by H0lder’s inequality,

|fi(x)| < 6(k, m)p,(x),

where

6(m) )qhn))l/qhn)

0(k, m) = a(k) ( 1+ ( p(k) 6(k) a(m)

If m =k, then 0(k, m) =1, and we have (15). We shall show that (16) is satisfied
with 6k = (1 +4p(k)) (2 + 4p(k))-1. The cases m <k and k < m must be consid-
ered separately. For m > k > 3 we obtain from the triangle inequality for the
ﬁq(m)—norm, from the first inequality of (7), from the monotonicity of (6(k)), and
from (3) and (8) the inequalities

26(k + 1)
p(k) 6(k)

&6(m) 1
a(m) p(k) 5(k)

) = 2@+ < ok

9(k,m)_§7t(k)(1+ )sh(k)(H "3

For 3 < m <Kk, we use the second inequality of (7), the monotonicity of (p(k)), and
(8) to deduce that

9(k, m) ) q(m)

005, m) < w) (L%

(m) (m) (m)/p(m)
s (10 ()" () () )

(m) (m)/p(m)
(o) ()

Thus (14), (15), and (16) are satisfied.

1

gx(k)(1+ =x(k)(1+m—))59k.

Now let q, be the norm on E defined by
a,(x) = sup{p(x):k=2,3, -} U{|f(x)]|: k=34, -}

The inequalities (14), (15) and (16) ensure that q; and px coincide on My for
k=2, 3, ---. Later we shall use the fact that for each x € E the supremum in the
definition of q, is attained (because |&,| =limy _, |£(x) | = limy _, o pi(x)).

[+ o]
Let A be the closed convex hull of {x € Uk=2 My: q1(x) < 1} , and let q, be
the norm for which A is the unit ball. Then q,(x) > q;(x) for all x € E and

> o]
q;(x) = q,(x) for x € Uk:2 My . Clearly, q; and q, are equivalent norms. If it is
shown that
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{x: q,® =q,®} = U m,
k=2

then it will follow by the lemma that there exists an equivalent strictly convex norm
q on E such that q(x) > q(x) for all x € E (from which it follows that (10) and (11)
are satisfied), and such that (9) is satisfied. The proof of the theorem will then be
complete.

0
Suppose that y = (7,) € A and q;(y) = 1 but that y ¢ uk:Z M, . Then
0< |n,| <1.

There exists a functional f such that f(y) = 1,
|#x)] < a,(x) forall x € E,
and such that for some k and some 0' <1
[f(x)| < 6'p_(x) forall x e My, if m # k.

Since the supremum in the definition of q; is attained, there must exist a k for
which either |fi(y)| =1 or py(y) = 1. If |fi(y)| =1 for some k, then we can take
f=1f, and 6'=0(k). If p,(y) =1, take k = 2, define f by

f(x) = 20 7. x

m “"m?’
m=2

and take 0' = (1 - #2)!/2. 1f p,(y) = 1 for some k > 3, then with this k define f by
tx) = sgn oy |ny [PELg) +sgn |y [POI-1 g

and take 6' = (1 - |p, [P(k)1/alk),

We can now obtain a contradiction. For each € > 0 we can find a finite convex
combination Z)m> > BmZm With z € M, qi(z,) <1 for m > 2, and
a, (y - Z)Bm zm—)_<s. Then

1= iy < |f(y _ Eﬁmzm)l + ]f(Z)Bmzm)l

<e+ 2 By 0 4B =B (1-0')+0 +¢,
m# k

2
so that Bkz 1- —__yr and

1

ql(y—ﬁkzk)=q1((y-26mzm)+ 2 3mzm)§8+ 20 B
m+k m+# k

2 -6
E+(1-Bk)SST—_—-9—,.
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It now follows that y is in the closure of M, so that it is in M, ; this is a contra-
diction.
REFERENCES

1. J. A. Clarkson, Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936),
396-414.

2. R. Holmes and B. Kripke, Smoothness of approximation. Michigan Math. J. 15
(1968), 225-248.

The University, Newcastle upon Tyne NE1 7TRU, England






