A ROTUND REFLEXIVE SPACE HAVING A SUBSPACE OF CODIMENSION TWO WITH A DISCONTINUOUS METRIC PROJECTION

A. L. Brown

If E is a strictly convex (rotund) and reflexive Banach space and L is a closed linear subspace of E, then L is a Chebyshev subspace of E; that is, corresponding to each point x in E there exists in L a unique point $P_L(x)$ that is nearest to x. The *metric projection* of E onto L is the mapping P_L . In [2], the authors constructed a strictly convex but nonreflexive Banach space possessing a linear subspace of codimension 2 whose metric projection is discontinuous. They conjectured that if L is a closed subspace of a strictly convex reflexive space, then P_L must be continuous. The conjecture is false even in spaces equivalent to a Hilbert space. An elegant counterexample was constructed by B. Kripke, and independently the present writer constructed a more complicated example, some features of which are more general. In both examples, the subspace L is of infinite codimension, and Ivan Singer, in a private communication, asked whether an example with a subspace L of codimension 2 could be constructed. Here we construct such an example by modifying our original method.

THEOREM. There exist a strictly convex, reflexive, and separable real Banach space E and closed linear subspaces L and M, with $L \subseteq M$, having the properties

- (1) P_I is discontinuous,
- (2) L is of codimension 2 in E, and
- (3) M is of codimension 1 in E and is a Hilbert space with respect to the norm of E.

The construction of E depends upon a lemma asserting the existence of strictly convex norms with prescribed properties.

LEMMA. Let F be a real linear space, and let p_1 and p_2 be two equivalent norms on F with respect to which F is separable. If $p_1(x) \le p_2(x)$ for all $x \in F$ and the set $\{x \in F: p_1(x) = p_2(x) = 1\}$ contains no nondegenerate line segment, then there exists a strictly convex norm p on F with $p_1(x) \le p(x) \le p_2(x)$ for all $x \in F$.

Proof. Throughout the proof, there will be a single topology on F, the norm topology determined by p_1 and p_2 .

Suppose that y is a point of the open set $V = \{x \in F: p_1(x) < p_2(x)\}$. The first step in the proof is to show that there exists a norm p_y between p_1 and p_2 that is 'strictly convex near y'. Replacing y by a multiple, we shall suppose that $p_1(y) < 1 < p_2(y)$. Since F is p_2 -separable, and by a well known result of J. A. Clarkson [1], there exists a strictly convex norm q on F that is equivalent to p_2 . The norm p_y will be obtained as a modification of q.

Let $f \in F^*$ be a continuous linear functional on F that has p_2 -norm equal to 1 and attains its norm at y: that is, such that $|f(x)| \le p_2(x)$ for all $x \in F$, and $f(y) = p_2(y)$. Let

Received October 6, 1972.

Michigan Math. J. 21 (1974).

$$k = \sup \{q(x)/p_2(x): x \in F \setminus \{0\}\}$$
 and $\theta = \frac{1}{2k} \left(1 - \frac{1}{p_2(y)}\right)$.

Define q_v on F by

$$q_{y}(x) = q_{y} \left(\frac{f(x)}{f(y)} y + \left(x - \frac{f(x)}{f(y)} y \right) \right) = \left(\left(\frac{f(x)}{f(y)} \right)^{2} + \theta^{2} q \left(x - \frac{f(x)}{f(y)} y \right)^{2} \right)^{1/2}.$$

Then (i) $q_y(y) = 1$, (ii) q_y is a strictly convex norm on F, and (iii) $q_y(x) \le p_2(x)$ for all $x \in F$. To prove (iii), we use the properties of f to obtain the inequalities

$$\begin{split} q_y(x) & \leq \left| \frac{f(x)}{f(y)} \right| q_y(y) + q_y \left(x - \frac{f(x)}{f(y)} y \right) \leq \left| \frac{f(x)}{f(y)} \right| + \theta \left(q(x) + \left| \frac{f(x)}{f(y)} \right| q(y) \right) \\ & \leq p_2(x) \left(\frac{1}{p_2(y)} + 2\theta k \right) \leq p_2(x) \,. \end{split}$$

Now let $p_y = q_y \lor p_1$. Then $p_1(x) \le p_y(x) \le p_2(x)$ for all $x \in F$, so that p_y is a norm equivalent to p_1 and p_2 . Furthermore, $p_y(y) = q_y(y)$. The norms p_1 , p_2 , p_y are all continuous in the topology of F, and therefore the set

$$V_v = \{x \in F: p_1(x) < p_v(x) < p_2(x)\}$$

is an open subset of F containing y. If $x \in V_y$, then $p_y(x) = q_y(x)$.

The set V is an open subset of the separable metric space F. It thus has a countable base for its topology, and therefore it is a Lindelöf space—that is, every open cover has a countable subcover. Therefore there exists a sequence $(x(n))_{n\geq 1}$ such that $V=\bigcup_{n=1}^{\infty}V_{x(n)}$. Define p by

$$p(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} p_{x(n)}(x).$$

Then p is a norm on F, and it satisfies the conditions of the lemma. Suppose, to the contrary, that p is not strictly convex. Then the set $\{x: p(x) = 1\}$ contains a nondegenerate line segment. The norms p_1 , p_2 , and p coincide on $F \setminus V$, and therefore, by the condition of the lemma, the line segment must intersect V. It now follows that, for some m, the set $V_{x(m)} \cap \{x: p(x) = 1\}$ contains a nondegenerate line segment, [y, z] say. Then, by the equality of $p_{x(m)}$ and $p_{x(m)}$ on $p_{x(m)}$ and by the strict convexity of $p_{x(m)}$,

$$1 = p\left(\frac{1}{2}(y+z)\right) = \frac{1}{2^{m}}q_{x(m)}\left(\frac{1}{2}(y+z)\right) + \sum_{n \neq m} \frac{1}{2^{n}}p_{x(n)}\left(\frac{1}{2}(y+z)\right)$$

$$< \frac{1}{2^{m}}\left(\frac{1}{2}q_{x(m)}(y) + \frac{1}{2}q_{x(m)}(z)\right) + \sum_{n \neq m} \frac{1}{2^{n}}\left(\frac{1}{2}p_{x(n)}(y) + \frac{1}{2}p_{x(n)}(z)\right) = 1,$$

which is a contradiction. This completes the proof of the lemma.

The construction of an example. Let E be the space ℓ^2 of real sequences,

$$E = \left\{ x = (\xi_k)_{k \geq 1} : \sum_{k=1}^{\infty} \xi_k^2 < \infty \right\},\,$$

and let e_1 , e_2 , \cdots be the standard basis. Let $M = \{(\xi_k) \in E: \xi_1 = 0\}$. It will be notationally convenient to write $M = M_2$. For $k = 3, 4, \cdots$, let $M_k = \text{sp}\{e_1, e_k\}$. We shall obtain an example satisfying the statement of the theorem, by giving E a suitable norm q equivalent to the ℓ^2 -norm. Throughout the discussion, the topology on E is that of the ℓ^2 -norm. In the first place, we shall define the norm q on the subspaces M_k ($k = 2, 3, \cdots$), and we shall then invoke the lemma to obtain an extension to the whole of E.

For
$$0 < t < 1/3$$
,

$$1 + \frac{1}{2}t \le (1+t)^{1-t} \le 1+t.$$

Therefore we can inductively define positive real sequences $(\delta(k))$, (p(k)), $(\alpha(k))$, $(\lambda(k))$ $(k = 3, 4, \cdots)$ by

$$\delta(3) = 1/8, \quad p(3) = 16,$$

and, for $k = 3, 4, \dots$,

(1)
$$\alpha(k) = p(k)^{-1/p(k)},$$

(2)
$$\lambda(k) = \left(1 + \frac{1}{p(k)}\right)^{-1+1/p(k)},$$

(3)
$$\delta(k+1) = \frac{1}{4} \delta(k) p(k) \left(\frac{1}{\lambda(k)} - 1 \right),$$

(4)
$$p(k+1) = \delta(k+1)^{-p(k)}.$$

We also put q(k) = p(k)/(p(k) - 1).

It follows that

(5)
$$\delta(k+1) \leq \frac{1}{4} \, \delta(k) \quad \text{and} \quad p(k) \leq p(k+1) \, .$$

Therefore the sequences (p(k)), (α (k)), and (λ (k)) are increasing and (δ (k)) is decreasing, with

(6)
$$p(k) \to \infty$$
, $\alpha(k) \to 1$, $\delta(k) \to 0$, $p(k) \delta(k) \to \infty$ as $k \to \infty$.

Furthermore

(7)
$$\frac{1}{2} < \alpha(k), \quad \frac{\delta(k)}{\alpha(k)} \le \frac{1}{4}, \quad 2 \le p(k) \, \delta(k), \quad \sum_{k=3}^{\infty} \left(\frac{\delta(k)}{\alpha(k)}\right)^2 \le \frac{1}{15},$$

and, since $1/p(k) \le 1/p(3) \le 1/3$,

(8)
$$\lambda(k) \leq \left(1 + \frac{1}{2p(k)}\right)^{-1} < 1.$$

Now for k = 3, 4, \cdots put $x_k = e_1 + \delta(k) e_2$ and $y_k = \delta(k) e_2 + \alpha(k) e_k$, and let L be the closed linear hull of $\{y_k; k = 3, 4, \cdots\}$.

For $k = 2, 3, \cdots$ define seminorms p_k on E by

$$p_2(x) = \left(\sum_{k=2}^{\infty} \xi_k^2\right)^{1/2},$$

$$p_k(x) = (|\xi_1|^{p(k)} + |\xi_k|^{p(k)})^{1/p(k)}$$
 $(k = 3, 4, \dots),$

where $x=(\xi_k)\in E$. Thus the restriction of p_2 to M_2 is the ℓ^2 -norm, and the restriction of p_k to M_k ($k=3,4,\cdots$) is the $\ell^{p(k)}$ -norm on M_k . These norms are strictly convex, and for all k and m, the seminorms p_k and p_m coincide on $M_k\cap M_m$.

Linear functionals f_k (k = 3, 4, ...) and a strictly convex norm q will be defined on E so that they have the following properties: for k = 2, 3, ...,

(9)
$$q(x) = p_k(x) \quad \text{for all } x \in M_k,$$

(10)
$$q(x) \ge p_k(x) \quad \text{for all } x \in E,$$

and for $k = 3, 4, \dots,$

(11)
$$q(x) \ge |f_k(x)| \quad \text{for all } x \in E,$$

(12)
$$f_k(x) = 0 \quad \text{for all } x \in L,$$

(13)
$$f_k(x_k - y_k) = p_k(x_k - y_k).$$

Suppose that such q and f_k have been constructed. Then, writing P_L for the metric projection onto L associated with the norm q, we deduce from (11), (12), and (13) that $P_L(x_k) = y_k$. However, by (10) $(k \ge 3)$ and the definition of p_k we see that $P_L(e_1) = 0$. Therefore, by (6), P_L is discontinuous at e_1 .

The $\ell^{p(k)}$ -norms are smooth, and therefore the linear functional f_k is determined on M_k by (9), (11), and (13), and then upon E by (12). Let f_k (k = 3, 4, \cdots) be defined by

$$f_k(x) = \lambda(k) \xi_1 + \frac{\lambda(k)}{p(k) \delta(k)} \left(\xi_2 - \sum_{m=3}^{\infty} \frac{\delta(m)}{\alpha(m)} \xi_m \right)$$

for $x = (\xi_k) \in E$. It follows from the last inequality of (7) that f_k is a well-defined continuous linear functional on E, and we can verify that (12) and (13) are satisfied.

Next we obtain inequalities for the norms of the restrictions of the functionals f_k (k = 3, 4, ...) to the normed linear spaces M_m (m = 2, 3, ...).

There is a constant $\theta < 1$ such that, for all $x \in M_2$ and $k = 3, 4, \dots$,

$$|f_k(x)| \leq \theta p_2(x).$$

If $x \in M_k$, then

$$\left|f_{k}(x)\right| \leq p_{k}(x).$$

There exist constants $\,\theta_{\,k} < 1\,$ (k = 3, 4, ...), such that if x \in M_{m} and m \neq k, then

$$|f_{k}(x)| \leq \theta_{k} p_{m}(x).$$

It follows from the Schwarz inequality, (8), and the last two inequalities of (7) that (14) is satisfied with $\theta = \frac{1}{2} \left(\frac{16}{15} \right)^{1/2}$

If $x \in M_m$, then, by Hölder's inequality,

$$|f_k(x)| \leq \theta(k, m) p_m(x),$$

where

$$\theta(k, m) = \lambda(k) \left(1 + \left(\frac{\delta(m)}{p(k) \delta(k) \alpha(m)}\right)^{q(m)}\right)^{1/q(m)}$$

If m = k, then $\theta(k, m) = 1$, and we have (15). We shall show that (16) is satisfied with $\theta_k = (1+4p(k))(2+4p(k))^{-1}$. The cases m < k and k < m must be considered separately. For $m > k \ge 3$ we obtain from the triangle inequality for the $\ell^{q(m)}$ -norm, from the first inequality of (7), from the monotonicity of $(\delta(k))$, and from (3) and (8) the inequalities

$$\theta(k, m) \leq \lambda(k) \left(1 + \frac{\delta(m)}{\alpha(m)} \frac{1}{p(k) \delta(k)}\right) \leq \lambda(k) \left(1 + \frac{2\delta(k+1)}{p(k) \delta(k)}\right) = \frac{1}{2} (1 + \lambda(k)) \leq \theta_k.$$

For $3 \le m < k$, we use the second inequality of (7), the monotonicity of (p(k)), and (8) to deduce that

$$\begin{split} \theta\left(k,\,m\right) &\leq \lambda(k) \left(\frac{\theta\left(k,\,m\right)}{\lambda(k)}\right)^{q(m)} \\ &= \lambda(k) \left(1 + \left(\frac{\delta(m)}{\alpha(m)}\right)^{q(m)} \left(\frac{1}{p(k)}\right)^{q(m)} \left(\frac{1}{\delta(k)^{p(m)}}\right)^{q(m)/p(m)}\right) \\ &\leq \lambda(k) \left(1 + \frac{1}{4} \left(\frac{1}{p(k)}\right)^{q(m)} \left(\frac{1}{\delta(k)^{p(k-1)}}\right)^{q(m)/p(m)}\right) = \lambda(k) \left(1 + \frac{1}{4p(k)}\right) \leq \theta_k. \end{split}$$

Thus (14), (15), and (16) are satisfied.

Now let q₁ be the norm on E defined by

$$q_1(x) = \sup \{p_k(x): k = 2, 3, \dots\} \cup \{|f_k(x)|: k = 3, 4, \dots\}.$$

The inequalities (14), (15) and (16) ensure that q_1 and p_k coincide on M_k for $k=2, 3, \cdots$. Later we shall use the fact that for each $x \in E$ the supremum in the definition of q_1 is attained (because $\left|\xi_1\right| = \lim_{k \to \infty} \left|f_k(x)\right| = \lim_{k \to \infty} p_k(x)$).

Let A be the closed convex hull of $\left\{x \in \bigcup_{k=2}^{\infty} M_k : q_1(x) \leq 1\right\}$, and let q_2 be the norm for which A is the unit ball. Then $q_2(x) \geq q_1(x)$ for all $x \in E$ and $q_1(x) = q_2(x)$ for $x \in \bigcup_{k=2}^{\infty} M_k$. Clearly, q_1 and q_2 are equivalent norms. If it is shown that

$$\{x: q_1(x) = q_2(x)\} = \bigcup_{k=2}^{\infty} M_k,$$

then it will follow by the lemma that there exists an equivalent strictly convex norm q on E such that $q(x) \ge q_1(x)$ for all $x \in E$ (from which it follows that (10) and (11) are satisfied), and such that (9) is satisfied. The proof of the theorem will then be complete.

Suppose that y = (η_k) ϵ A and $q_1(y)$ = 1 but that y \notin $\bigcup_{k=2}^{\infty} M_k$. Then $0<|\eta_1|<1$.

There exists a functional f such that f(y) = 1,

$$|f(x)| \le q_1(x)$$
 for all $x \in E$,

and such that for some k and some $\theta' < 1$

$$|f(x)| \le \theta' p_m(x)$$
 for all $x \in M_m$ if $m \ne k$.

Since the supremum in the definition of q_1 is attained, there must exist a k for which either $|f_k(y)|=1$ or $p_k(y)=1$. If $|f_k(y)|=1$ for some k, then we can take $f=f_k$ and $\theta'=\theta(k)$. If $p_2(y)=1$, take k=2, define f by

$$f(x) = \sum_{m=2}^{\infty} \eta_m x_m,$$

and take $\theta' = (1 - \eta_1^2)^{1/2}$. If $p_k(y) = 1$ for some $k \ge 3$, then with this k define f by

$$f(x) = \operatorname{sgn} \eta_1 \left| \eta_1 \right| p^{(k)-1} \xi_1 + \operatorname{sgn} \eta_k \left| \eta_k \right| p^{(k)-1} \xi_k$$

and take $\theta' = (1 - |\eta_1|^{p(k)})^{1/q(k)}$.

We can now obtain a contradiction. For each $\epsilon>0$ we can find a finite convex combination $\sum_{m\geq 2} \beta_m z_m$ with $z_m \in M_m$, $q_1(z_m) \leq 1$ for $m\geq 2$, and $q_1\left(y-\sum \beta_m z_m\right) < \epsilon$. Then

$$1 = |f(y)| \le |f(y - \sum \beta_m z_m)| + |f(\sum \beta_m z_m)|$$

$$\le \varepsilon + \sum_{m \neq k} \beta_m \theta' + \beta_k = \beta_k (1 - \theta') + \theta' + \varepsilon,$$

so that $\beta_k \ge 1 - \frac{\varepsilon}{1 - \theta'}$ and

$$\begin{split} q_1(\mathbf{y} - \beta_k \mathbf{z}_k) &= q_1 \left(\left(\mathbf{y} - \sum \beta_m \mathbf{z}_m \right) + \sum_{m \neq k} \beta_m \mathbf{z}_m \right) \leq \varepsilon + \sum_{m \neq k} \beta_m \\ &= \varepsilon + (1 - \beta_k) \leq \varepsilon \frac{2 - \theta'}{1 - \theta'} \,. \end{split}$$

It now follows that y is in the closure of \mathbf{M}_k , so that it is in \mathbf{M}_k ; this is a contradiction.

REFERENCES

- 1. J. A. Clarkson, *Uniformly convex spaces*. Trans. Amer. Math. Soc. 40 (1936), 396-414.
- 2. R. Holmes and B. Kripke, *Smoothness of approximation*. Michigan Math. J. 15 (1968), 225-248.

The University, Newcastle upon Tyne NE1 7RU, England