THE SINGULAR SET OF A BOUNDED ANALYTIC FUNCTION
Stephen Fisher

INTRODUCTION

A bounded holomorphic function S on the open unit disc A is a singulay junction
if it has the form

2T i
S(z) = exp (— S‘ e—.ﬂdu(t)) (z €4),

0o elt-gz

where pu is a real, nonnegative measure that is singular with respect to Lebesgue
measure. The measure [ is called the measure associated with S, while S is
called the singular function detevmined by p. The function S is called {rivial if
¢ = 0. Each bounded holomorphic function g on A has a canonical factorization
g = Sh, where S is the greatest singular function (possibly trivial) that divides g,
and where h is bounded and holomorphic on A.

Let f be a bounded holomorphic function on A. J. G. Caughran and A. L.
Shields [3] have raised the question how many complex numbers c¢ there are with
the property that f(z) - ¢ has a nontrivial singular factor. The set of such ¢ may
be rather large; for example, if K is a compact set of logarithmic capacity 0 in A,
then there exists a bounded holomorphic function f such that f(z) - ¢ has a nontriv-
ial singular factor for each ¢ € K (see [3]). I, however, we ask how many numbers
¢ there are for which f(z) - ¢ has a singular factor whose associated measure has
positive mass at one or more points, then the size of the set of such values ¢ is sub-
stantially diminished; Theorem 1 asserts that the set can be at most countable. In-
deed, we show more. We shall say that a point x (|x| = 1) is in the singular sel of
f if there exists a number ¢ such that f(z) - ¢ has a singular factor whose asso-
ciated measure has positive mass at x. Theorem 1 asserts that the singular set of {
is countable. If A is in the singular set of f, then f(z) — ¢ as z — X\ nontangentially;
it follows that the set of such numbers ¢ is countable. Theorem 2 gives a restriction
on the weights that can occur in the associated measures. Theorem 3 shows that the
countability restriction in Theorem 1 can not be improved. Theorems 1, 2, and 3 are
in Section 2; Section 1 contains two results on angular derivatives that we need in the
proofs of Theorems 1 and 2.

1. SINGULAR FACTORS AND ANGULAR DERIVATIVES

Definition. Let ¢ be holomorphic in A and bounded by 1, and suppose that
¢(z) — B (|| =1) as z approaches eif nontangentially within A. The function ¢

has an angular dervivative with value y at eif if
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lim B_—(b(z—) =y as z — eif nontangentially .
ell _ 4

This is equivalent to the condition that lim ¢'(z) = v as z — el? nontangentially (see

[1, Section 299]).

PROPOSITION 1. Let ¢ be holomorphic and bounded by 1 in A, and suppose
that ¢(z) — B (|g] =1) as z — ei® nontangentially. Let S be the singular function
determined by a mass of weight 1 at z =f. Then S(¢(z)) has a singular factor whose
associated measure has positive mass at eid if and only if ¢ has an angulay deriva-
tive at eif. The absolute value of the angular devivative of ¢ at eif is the recipro-
cal of the weight at eif of the measuve associated with the singular factor of S(¢(z)).

Proof. The identity |S(z)| = exp(-(1 - |z]2) (| - z|) ~2) implies that
1S(e(z))] = exp(-(1 - |9(z)|2)(|B - ¢(2)])%).

Now ¢ has an angular derivative with absolute value no more than 6 > 0 at eif if
and only if

(|8 - #@)]?) (1 - |2]?) < 6(|eif - z|?)(1 - |¢(z)]®) (]z]| < 1)

(see [1, Sections 296-298]). S(¢(z)) is divisible by a singular function whose asso-
ciated measure has mass ¢ at eif if and only if

|S(e(z))| < exp(-e(1- |z|2)(|elf - z|)-2).
This inequality and the inequality above, combined with the formula for |S(¢(z))],

yield the conclusions of the proposition.

We shall need the following result of S. Warschawski on the existence of the
angular derivative (see [5, Chapter 9, Theorem 9, p. 366]).

PROPOSITION 2. Let R be a Jovdan domain in the uppev half-plane U that is
tangent to the veal axis at the origin. Suppose R U {O} conlains the graph of a
Sfunction h defined on [-0, 8], wheve y = h(x) for -6 < x < 8, and where h is even,
positive, continuous, and increasing on (0, 6] and

6
S x 2h(x)dx < .
0
Let ¢ be a one-to-one conformal mapping of U onto R with ¢(s) = 0 for some real

numbey s. Then theve is a number ¥y (0 <y < ©) such that

lim ¢'(w) =¥  as w — s nontangentially, with w € U.

2. COUNTABILITY OF THE SINGULAR SET

THEOREM 1. The singular set of a bounded holomovrphic function is counitable.

Proof. Although the theorem concerns functions holomorphic on A, we begin by
making several estimates and a construction in the upper half-plane U, since the
technicalities are less formidable there. Let 7(z) = (z - i)(z +i)"! ; then 7 is a
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one-to-one conformal mapping of U onto A. Let t be a real number; we shall de-
note by R(t) the region in U that is symmetric about the line 9%z = t, bounded on the
right by the graph of y = (x - t)3/2, and bounded above by the line 3z = 1. Let

x = 7(t), and let S be the singular function on A determined by a mass of weight ¢
at z = A. Then the function

S1(2) = S(r(@)) = exp (16 1L )

is holomorphic and bounded by 1 on U, and
ISI(Z)| =exp(-8(1+t2)y|z—t|'2) (z=x+iy € U).

In particular, for z € R{t), we have the inequality

|Sl(z)| < exp (— %8 (1 +t2)y‘1/3) .

Furthermore,
|si@)] = e(@+t)(|z - t])~2¢|s1(2)],

and hence Sll(z) — 0 as z — t (z € R(t)), since S goes to zero exponentially in R(t).

Let f be a bounded holomorphic function on A, and let f;(z) = £(7(z)). Let X be
a point of the singular set of f, let ¢ = lim,._, ; f(rr), and let 7(t) = A. Because A is
in the singular set of f, we have the factorization

f(z) - ¢ = S(z; ) glz) (z € A),

where S(z; \) is the singular function on A determined by a mass of weight € at A
(¢ depends on 1), and where g is bounded and holomorphic on A. Thus

£,(z) - ¢ = 8(7(2); M) g(7(2)).

This implies that
f1(z) = 7'(2)8'(7(2); N g(7(2)) + 7'(2) g (7(2)) S(7(2); 1) .

The first term on the right-hand side goes to zero as z — t with z € R(t), by our
comments above. The second term also goes to zero as z — t with z € R(t), be-
cause g'(7(z)) is no larger than a constant times y-! . Hence, f'l(z) —0as z—t
with z € R(t). ‘

Let E, consist of those real numbers s in the interval [-n, n] for which
|£1(z)] <1 when z € R(s) and 0< Sz < 1/n. Note that E,, is a closed set; more-
over, if A lies in the singular set of f and 7(t) =2, then t lies in E,, for some n.
We-shall show that each E, is countable, and this will prove the theorem. For the
remainder of the proof, we shall work with one set E_; therefore, to simplify the
notation, we denote E, by E.

Let V be the union of the rectangle
{x+iy: |x| <n+1and n-l<y<2}

and the set U {R(t): t € E}. The set V is open, and it is bounded by a rectifiable
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Jordan curve. Furthermore, f'l is bounded on V. Finally, if  is a one-to-one con-
formal mapping of U onto V and y(s) =t € E, then Proposition 2 assures us that
has an angular derivative at s. Let © = 7(V); the domain £ is bounded by a rectifi-
able simple closed curve, and f' is bounded on . Select a point b € 2, and let ¢
be the Riemann mapping of A onto © with ¢(0) =b. Let F = 7(E); then ¢ has an
angular derivative at each point of G = ¢'1(F), since Y has an angular derivative at
each point of ¥-1(E).

Let g(z) = f(¢(z)). Then g' = (f' o ¢) ¢', and because the boundary of 2 is recti-
fiable, ¢' is in the Hardy space H1(A) ([4, Theorem 3.12]). Since f' is bounded on
Q, g' is also in H!(A). Consequently, by a theorem of Caughran [2, Theorem 1],
the singular factor of g divides g'; similarly, the singular factor of g - ¢ divides
(g - ¢)' =g'. By Proposition 1, the measure associated with the singular factor of
g - ¢ has mass at some point of G, and as ¢ varies, each point of G must therefore
appear. Hence, the measure associated with the singular factor of g' has mass at
every point of G. Thus G is countable, and therefore F and E are also countable.
This completes the proof.

Remark. Let K be a compact set in A, of logarithmic capacity 0, and let f be
an inner function on A whose range is A - K. Then, for each ¢ € K,
fo=( - ¢)(1 - ¢f)-! must be a singular function. Theorem 1 then implies that for
all but a countable number of points ¢ in K the measure associated with {. must be
continuous (no point masses). Just how the measure associated with f. changes as
¢ varies in K is unknown.

THEOREM 2. Lel 6 > 0. Then theve ave only a finite numbeyv of points in the
singulay set of f at which the measure associated with the singular factor of f(z) - ¢
has mass exceeding 0.

Proof. The proof is a continuation of that of Theorem 1, with the same notation.
We first note that corresponding to 6 there is an n such that t lies in E, for all
those points t for which the singular factor of f(z) - ¢ has mass exceeding 6 at
A = 7(t). This follows immediately from the estimates on the size of |f'1| in the
proof of Theorem 1. We shall work with this E, and again drop the subscript. The
remaining step in the proof is to show that the weight of the measure associated with
the singular factor of g - ¢ exceeds a constant multiple of the corresponding weight
for the singular factor of f - ¢. This will follow from the final assertion of Propo-
sition 1, if we show that the absolute value of the angular derivative of ¢ is bounded
above on G.

Let el € G, » = ¢(e19), t = T‘I(eie), and let w = 7(R(t)). Then w is a subset
of © and is bounded by a Jordan curve. Let 7 be a one-to-one conformal mapping
of A onto w with 7(0) =b (there is no loss in assuming b € w). Let p = ¢-! o 7;
then p maps A into A, p(0) = 0, and if eiS = 7-1(\), then p(eis) = eif, The function
p must have an angular derivative at els ; to see this, we observe that both ¢ and 7
have angular derivatives at eis and eif, respectively, by Proposition 2, because,
with the obvious notation,

o' (p(els)) p'(els) = n'(els).
However, |p'(els)| > 1 (see [1, Section 301]), so that |¢'(eif)| < |n'(els)|; this

establishes the desired inequality.

Theorem 3 below shows that the countability conclusion of Theorem 1 can not be
improved. For part (ii), we recall that a Carleson set is a closed set of Lebesgue
measure zero in the unit circle whose complementary intervals have length ¢,

where - 27 £, log €, is finite.
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THEOREM 3. (i) Let E = {Ai} be a countable set in the unit civcle T, and let
{si} be a summable sequence of positive numbers. Then theve exists a function f,
continuous on A U T and holomorphic on B, such that £(z) - 1(\;) is divisible by the
singulay function determined by a mass of weight €; at x; (i=1,2, -*-).

(ii) If E is closed but is not a Cavleson set, then { assumes infinitely many dis-
tinct values on E.

Proof. (i) Let p be the positive measure with mass ¢; at x; (i=1, 2, ---), and
let I be the singular function determined by p. Let

f(z) = SO Iw)dw  (z € A).

Then f has a bounded derivative, and thus it is continuous on the closed unit disc. A
straightforward computation (or Theorem 2 of [2]) shows that f(z) - f(x;) is divisible
by.the singular function determined by a mass of weight €; at a;.

(ii) It is known that a closed set E is a Carleson set if and only if there exists a
function g that is analytic on A and continuous on A U T and belongs to the class
Lip I on T, with g = 0 precisely on E (see [2, Theorem A]). In (i), the function f
isin Lip 1 on T. Suppose f assumes only the values ¢}, **-, cqy on E. Let
gi=f-¢ for i=1, -+, Njthen g; vanishes on a certain closed set E; in E, where
E; U - UEN =E, and E; is therefore a Carleson set. Since the union of finitely
many Carleson sets is a Carleson set, this implies that E is also a Carleson set, a
contradiction.

I would like to thank Professor A. L. Shields for showing me part (ii) of Theo-
rem 3.

REFERENCES

1. C. Carathéodory, Theory of functions. Vol. 2. Chelsea, New York, 1960.

2. J. G. Caughran, Factorization of analytic functions with HY derivative. Duke
Math. J. 36 (1969), 153-158.

3. J. G. Caughran and A. L. Shields, Singular innevr factors of analytic functions.
Michigan Math. J. 16 (1969), 409-410.

. P. L. Duren, Theory of HP spaces. Academic Press, New York, 1970.

[S2 B

. M. Tsuji, Polential theory in modern function theovy. Maruzen Co., Tokyo, 1959.

Northwe‘stern University
Evanston, Illinois 60201






