THE SINGULAR SET OF A BOUNDED ANALYTIC FUNCTION

Stephen Fisher

INTRODUCTION

A bounded holomorphic function S on the open unit disc Δ is a *singular function* if it has the form

$$S(z) = \exp \left(-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right) \quad (z \in \Delta),$$

where μ is a real, nonnegative measure that is singular with respect to Lebesgue measure. The measure μ is called the *measure associated with* S, while S is called the *singular function determined by* μ . The function S is called *trivial* if $\mu = 0$. Each bounded holomorphic function g on Δ has a canonical factorization g = Sh, where S is the greatest singular function (possibly trivial) that divides g, and where h is bounded and holomorphic on Δ .

Let f be a bounded holomorphic function on Δ . J. G. Caughran and A. L. Shields [3] have raised the question how many complex numbers c there are with the property that f(z) - c has a nontrivial singular factor. The set of such c may be rather large; for example, if K is a compact set of logarithmic capacity 0 in Δ , then there exists a bounded holomorphic function f such that f(z) - c has a nontrivial singular factor for each $c \in K$ (see [3]). If, however, we ask how many numbers c there are for which f(z) - c has a singular factor whose associated measure has positive mass at one or more points, then the size of the set of such values c is substantially diminished; Theorem 1 asserts that the set can be at most countable. Indeed, we show more. We shall say that a point λ ($|\lambda| = 1$) is in the singular set of f if there exists a number c such that f(z) - c has a singular factor whose associated measure has positive mass at λ . Theorem 1 asserts that the singular set of f is countable. If λ is in the singular set of f, then $f(z) \to c$ as $z \to \lambda$ nontangentially; it follows that the set of such numbers c is countable. Theorem 2 gives a restriction on the weights that can occur in the associated measures. Theorem 3 shows that the countability restriction in Theorem 1 can not be improved. Theorems 1, 2, and 3 are in Section 2; Section 1 contains two results on angular derivatives that we need in the proofs of Theorems 1 and 2.

1. SINGULAR FACTORS AND ANGULAR DERIVATIVES

Definition. Let ϕ be holomorphic in Δ and bounded by 1, and suppose that $\phi(z) \to \beta$ ($|\beta| = 1$) as z approaches $e^{i\theta}$ nontangentially within Δ . The function ϕ has an angular derivative with value γ at $e^{i\theta}$ if

Received August 15, 1972.

This research was supported in part by NSF Grant No. 32116.

Michigan Math. J. 20 (1973).

$$\lim \frac{\beta - \phi(z)}{e^{i\theta} - z} = \gamma \quad \text{as } z \to e^{i\theta} \text{ nontangentially }.$$

This is equivalent to the condition that $\lim \phi'(z) = \gamma$ as $z \to e^{i\theta}$ nontangentially (see [1, Section 299]).

PROPOSITION 1. Let ϕ be holomorphic and bounded by 1 in Δ , and suppose that $\phi(z) \to \beta$ ($|\beta| = 1$) as $z \to e^{i\theta}$ nontangentially. Let S be the singular function determined by a mass of weight 1 at $z = \beta$. Then $S(\phi(z))$ has a singular factor whose associated measure has positive mass at $e^{i\theta}$ if and only if ϕ has an angular derivative at $e^{i\theta}$. The absolute value of the angular derivative of ϕ at $e^{i\theta}$ is the reciprocal of the weight at $e^{i\theta}$ of the measure associated with the singular factor of $S(\phi(z))$.

Proof. The identity
$$|S(z)| = \exp(-(1 - |z|^2)(|\beta - z|)^{-2})$$
 implies that

$$|S(\phi(z))| = \exp(-(1 - |\phi(z)|^2)(|\beta - \phi(z)|)^{-2}).$$

Now ϕ has an angular derivative with absolute value no more than $\,\delta>0\,$ at $\,e^{\,\mathrm{i}\,\theta}\,$ if and only if

$$(|\beta - \phi(z)|^2)(1 - |z|^2) < \delta(|e^{i\theta} - z|^2)(1 - |\phi(z)|^2)$$
 $(|z| < 1)$

(see [1, Sections 296-298]). $S(\phi(z))$ is divisible by a singular function whose associated measure has mass ϵ at $e^{i\theta}$ if and only if

$$|S(\phi(z))| < \exp(-\varepsilon (1 - |z|^2)(|e^{i\theta} - z|)^{-2}).$$

This inequality and the inequality above, combined with the formula for $|S(\phi(z))|$, yield the conclusions of the proposition.

We shall need the following result of S. Warschawski on the existence of the angular derivative (see [5, Chapter 9, Theorem 9, p. 366]).

PROPOSITION 2. Let R be a Jordan domain in the upper half-plane U that is tangent to the real axis at the origin. Suppose $R \cup \{0\}$ contains the graph of a function h defined on $[-\delta, \delta]$, where y = h(x) for $-\delta < x < \delta$, and where h is even, positive, continuous, and increasing on $(0, \delta]$ and

$$\int_0^\delta x^{-2}h(x)\,dx < \infty.$$

Let ϕ be a one-to-one conformal mapping of U onto R with $\phi(s) = 0$ for some real number s. Then there is a number γ $(0 < \gamma < \infty)$ such that

$$\lim \phi'(w) = \gamma$$
 as $w \to s$ nontangentially, with $w \in U$.

2. COUNTABILITY OF THE SINGULAR SET

THEOREM 1. The singular set of a bounded holomorphic function is countable.

Proof. Although the theorem concerns functions holomorphic on Δ , we begin by making several estimates and a construction in the upper half-plane U, since the technicalities are less formidable there. Let $\tau(z) = (z - i)(z + i)^{-1}$; then τ is a

one-to-one conformal mapping of U onto Δ . Let t be a real number; we shall denote by R(t) the region in U that is symmetric about the line $\Re z = t$, bounded on the right by the graph of $y = (x - t)^{3/2}$, and bounded above by the line $\Im z = 1$. Let $\lambda = \tau(t)$, and let S be the singular function on Δ determined by a mass of weight ε at $z = \lambda$. Then the function

$$S_1(z) = S(\tau(z)) = \exp\left(i\varepsilon \frac{1+tz}{t-z}\right)$$

is holomorphic and bounded by 1 on U, and

$$|S_1(z)| = \exp(-\varepsilon (1+t^2) y |z-t|^{-2})$$
 $(z = x + iy \in U)$.

In particular, for $z \in R(t)$, we have the inequality

$$|S_1(z)| \le \exp\left(-\frac{1}{2}\epsilon(1+t^2)y^{-1/3}\right)$$
.

Furthermore,

$$|S'_1(z)| = \varepsilon (1 + t^2) (|z - t|)^{-2} |S_1(z)|,$$

and hence $S_1'(z) \to 0$ as $z \to t$ ($z \in R(t)$), since S_1 goes to zero exponentially in R(t).

Let f be a bounded holomorphic function on Δ , and let $f_1(z) = f(\tau(z))$. Let λ be a point of the singular set of f, let $c = \lim_{r \to 1} f(r\lambda)$, and let $\tau(t) = \lambda$. Because λ is in the singular set of f, we have the factorization

$$f(z) - c = S(z; \lambda) g(z)$$
 $(z \in \Delta)$,

where $S(z; \lambda)$ is the singular function on Δ determined by a mass of weight ϵ at λ (ϵ depends on λ), and where g is bounded and holomorphic on Δ . Thus

$$f_1(z) - c = S(\tau(z); \lambda) g(\tau(z))$$
.

This implies that

$$f'_{1}(z) = \tau'(z) S'(\tau(z); \lambda) g(\tau(z)) + \tau'(z) g'(\tau(z)) S(\tau(z); \lambda).$$

The first term on the right-hand side goes to zero as $z \to t$ with $z \in R(t)$, by our comments above. The second term also goes to zero as $z \to t$ with $z \in R(t)$, because $g'(\tau(z))$ is no larger than a constant times y^{-1} . Hence, $f_1'(z) \to 0$ as $z \to t$ with $z \in R(t)$.

Let E_n consist of those real numbers s in the interval [-n,n] for which $|f_1'(z)| \leq 1$ when $z \in R(s)$ and $0 < \Im z < 1/n$. Note that E_n is a closed set; moreover, if λ lies in the singular set of f and $\tau(t) = \lambda$, then t lies in E_n for some n. We-shall show that each E_n is countable, and this will prove the theorem. For the remainder of the proof, we shall work with one set E_n ; therefore, to simplify the notation, we denote E_n by E.

Let V be the union of the rectangle

$$\{x + iy: |x| < n + 1 \text{ and } n^{-1} < y < 2\}$$

and the set $\bigcup \{R(t): t \in E\}$. The set V is open, and it is bounded by a rectifiable

Jordan curve. Furthermore, f_1' is bounded on V. Finally, if ψ is a one-to-one conformal mapping of U onto V and $\psi(s) = t \in E$, then Proposition 2 assures us that ψ has an angular derivative at s. Let $\Omega = \tau(V)$; the domain Ω is bounded by a rectifiable simple closed curve, and f' is bounded on Ω . Select a point $b \in \Omega$, and let ϕ be the Riemann mapping of Δ onto Ω with $\phi(0) = b$. Let $F = \tau(E)$; then ϕ has an angular derivative at each point of $G = \phi^{-1}(F)$, since ψ has an angular derivative at each point of $\psi^{-1}(E)$.

Let $g(z) = f(\phi(z))$. Then $g' = (f' \circ \phi) \phi'$, and because the boundary of Ω is rectifiable, ϕ' is in the Hardy space $H^1(\Delta)$ ([4, Theorem 3.12]). Since f' is bounded on Ω , g' is also in $H^1(\Delta)$. Consequently, by a theorem of Caughran [2, Theorem 1], the singular factor of g divides g'; similarly, the singular factor of g - g' divides g' divide

Remark. Let K be a compact set in Δ , of logarithmic capacity 0, and let f be an inner function on Δ whose range is Δ - K. Then, for each $c \in K$, $f_c = (f-c)(1-\bar{c}f)^{-1}$ must be a singular function. Theorem 1 then implies that for all but a countable number of points c in K the measure associated with f_c must be continuous (no point masses). Just how the measure associated with f_c changes as c varies in K is unknown.

THEOREM 2. Let $\delta > 0$. Then there are only a finite number of points in the singular set of f at which the measure associated with the singular factor of f(z) - c has mass exceeding δ .

Proof. The proof is a continuation of that of Theorem 1, with the same notation. We first note that corresponding to δ there is an n such that t lies in E_n for all those points t for which the singular factor of f(z) - c has mass exceeding δ at $\lambda = \tau(t)$. This follows immediately from the estimates on the size of $|f_1'|$ in the proof of Theorem 1. We shall work with this E_n and again drop the subscript. The remaining step in the proof is to show that the weight of the measure associated with the singular factor of g - c exceeds a constant multiple of the corresponding weight for the singular factor of f - c. This will follow from the final assertion of Proposition 1, if we show that the absolute value of the angular derivative of ϕ is bounded above on G.

Let $e^{i\theta} \in G$, $\lambda = \phi(e^{i\theta})$, $t = \tau^{-1}(e^{i\theta})$, and let $\omega = \tau(R(t))$. Then ω is a subset of Ω and is bounded by a Jordan curve. Let π be a one-to-one conformal mapping of Δ onto ω with $\pi(0) = b$ (there is no loss in assuming $b \in \omega$). Let $\rho = \phi^{-1} \circ \pi$; then ρ maps Δ into Δ , $\rho(0) = 0$, and if $e^{is} = \pi^{-1}(\lambda)$, then $\rho(e^{is}) = e^{i\theta}$. The function ρ must have an angular derivative at e^{is} ; to see this, we observe that both ϕ and π have angular derivatives at e^{is} and $e^{i\theta}$, respectively, by Proposition 2, because, with the obvious notation,

$$\phi^{\shortmid}(\rho(\mathrm{e}^{\mathrm{i}\,\mathrm{s}}))\,\rho^{\shortmid}(\mathrm{e}^{\mathrm{i}\,\mathrm{s}})\;=\;\pi^{\shortmid}(\mathrm{e}^{\mathrm{i}\,\mathrm{s}})\;.$$

However, $|\rho'(e^{is})| \ge 1$ (see [1, Section 301]), so that $|\phi'(e^{i\theta})| \le |\pi'(e^{is})|$; this establishes the desired inequality.

Theorem 3 below shows that the countability conclusion of Theorem 1 can not be improved. For part (ii), we recall that a Carleson set is a closed set of Lebesgue measure zero in the unit circle whose complementary intervals have length ϵ_n , where $-\sum \epsilon_n \log \epsilon_n$ is finite.

THEOREM 3. (i) Let $E = \{\lambda_i\}$ be a countable set in the unit circle T, and let $\{\epsilon_i\}$ be a summable sequence of positive numbers. Then there exists a function f, continuous on $\Delta \cup T$ and holomorphic on Δ , such that $f(z) - f(\lambda_i)$ is divisible by the singular function determined by a mass of weight ϵ_i at λ_i ($i = 1, 2, \cdots$).

(ii) If E is closed but is not a Carleson set, then f assumes infinitely many distinct values on E.

Proof. (i) Let μ be the positive measure with mass ϵ_i at λ_i (i = 1, 2, ...), and let I be the singular function determined by μ . Let

$$f(z) = \int_0^z I(w) dw \quad (z \in \Delta).$$

Then f has a bounded derivative, and thus it is continuous on the closed unit disc. A straightforward computation (or Theorem 2 of [2]) shows that f(z) - f(λ_i) is divisible by the singular function determined by a mass of weight ϵ_i at λ_i .

(ii) It is known that a closed set E is a Carleson set if and only if there exists a function g that is analytic on Δ and continuous on $\Delta \cup T$ and belongs to the class Lip 1 on T, with g=0 precisely on E (see [2, Theorem A]). In (i), the function f is in Lip 1 on T. Suppose f assumes only the values c_1 , ..., c_N on E. Let $g_i=f-c_i$ for $i=1,\,\cdots,\,N$; then g_i vanishes on a certain closed set E_i in E, where $E_1\cup\cdots\cup E_N=E$, and E_i is therefore a Carleson set. Since the union of finitely many Carleson sets is a Carleson set, this implies that E is also a Carleson set, a contradiction.

I would like to thank Professor A. L. Shields for showing me part (ii) of Theorem 3.

REFERENCES

- 1. C. Carathéodory, Theory of functions. Vol. 2. Chelsea, New York, 1960.
- 2. J. G. Caughran, Factorization of analytic functions with H^P derivative. Duke Math. J. 36 (1969), 153-158.
- 3. J. G. Caughran and A. L. Shields, Singular inner factors of analytic functions. Michigan Math. J. 16 (1969), 409-410.
- 4. P. L. Duren, Theory of H^p spaces. Academic Press, New York, 1970.
- 5. M. Tsuji, Potential theory in modern function theory. Maruzen Co., Tokyo, 1959.

Northwestern University Evanston, Illinois 60201