CONDUCTORS WITH RESPECT TO HEREDITARY ORDERS
David Sjostrand

1. INTRODUCTION

Let o be a Dedekind ring with quotient field k, let A be a separable, finite-
dimensional k-algebra, and let A be an p-order in A. Let 0ps Ap, kp, A, and so
on denote the completions at p, where p is a prime ideal in o. If T is an o-order
in A, we denote by (A: I'). the maximal right I'-ideal in A, or equivalently,

(A: D). = {xe AixTC A}.

This ideal is called the right conductor of I' in A. In a similar way we define the
left conductor (A: 1")1 of I" in A. These conductors are related to properties of

ExtA (M, N), for arbitrary A-lattices M and N. Let cen A be the center of A, and
let J(A) denote the set of elements x in cent A that satisfy the condition

xExt} (M, N) = 0

for every pair of left A-lattices M and N. D. G. Higman [4] has proved that
J(A) # 0. H. Jacobinski [5] has shown that (A: T); N cen A C J(A) for all hereditary
o-orders I' containing A. K. W. Roggenkamp [6] has proved that

J(A) C((A: T); ) N cen A,

for all hereditary o -orders I' containing A. Therefore, if there exists a hereditary
p-order I' D A such that the left conductor (A: 1")1 is a two-sided I'-ideal, then -

J(A) = (A: T); Ncen A.

In a special case, the existence of such an order is known. Let G be a finite group
of order n, such that char k /' n, A =kG, and A = 9G. Jacobinski [5] has proved
that the left conductor (A: I‘)l is a two-sided I'-ideal for all o-orders I' contain-
ing A.

Let A be an o-order contained in only finitely many maximal orders. In this
paper, we shall prove that there exists a hereditary » -order T containing A such
that the left conductor (A: 1")1 of I" in A is a two-sided I'-ideal. In fact, we shall
prove a slightly more general result. Let I be a full ideal in A, that is, a finitely
generated o-module such that kI = A. Let A be the left order of I. If T" is an
order, let (I: T), be the maximal right I'-ideal in I.

THEOREM 1. Let I be a full ideal in A with left ordey A such that A is con-
tained in only finitely many maximal ovders. Then theve exists a heveditary o -
ovdev T, containing A, such that the vight conductor (I: T'),. is a two-sided T-ideal.

Remark 1. By symmetry, a similar result holds for the left conductor.
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Remark 2. If the field k is an algebraic number field or an algebraic function
field in one variable over a finite constant field, then the condition that A is con-
tained in only finitely many maximal-orders is automatically satisfied.

2. REDUCTION TO THE CASE WHERE A IS A SIMPLE ALGEBRA
OVER A p-ADICALLY COMPLETE FIELD

An order T is hereditary if and only if I', is hereditary for all prime ideals in
o. Conductors also localize well; that is, (Ip: I'p)y = ((I: I');)p for every prime ideal
p in o. An order A is contained in only finitely many maximal orders if and only if
Ap is contained in only finitely many maximal orders, for every prime ideal in o.
Therefore it is sufficient to prove Theorem 1 in the case where A is an algebra over
a p-adically complete field. From now on we deal only with this case, and we can
omit the subscript p and assume that o is a p-adically complete ring. Let e;
(i=1, 2, ---, n) be the primitive central idempotents of A. If T is hereditary,
then e; € I" and each I'e; is a hereditary order in Ae;. The converse holds if

n
r=@® T'e; , where each T'e; is hereditary. Now let A be the left order of I. Then
1
clearly I N Ae; admits Ae;. But A; =IN Ae; is a full ideal in Ae;. If Theorem 1
is proved for simple algebras, we can find a hereditary order I'; in Ae;j, containing
Ae;, such that the conductor (Aj: Ij), is a two-sided T'j-ideal. But then I'= D I}
is hereditary and contains () Ae; D A, and (I: ), = @ (A;: Iy), is a two-sided I'-
ideal. Now we see that it is enough to prove Theorem 1 in the case where A isa
simple algebra.

3. HEREDITARY ORDERS

We now mention some known facts about hereditary orders in a simple algebra
over a p-adically complete field. Let A = (D), where D is a skew field with the
unique maximal o-order £, and let P = rad . From now on we fix an irreducible
left A-module W. This A-module is a right D-module. We denote by W¢, the set
of all right Q-lattices V in W such that kV = W. For every V € Wq, Endg(V) isa

maximal order in A. Conversely, the set {Endg (V)| V € Wq} contains all maxi-

mal orders in A. If O is a maximal order in A and V € Wg is a left O-lattice,
then every full right O-ideal I is equal to Homg (V, U), where U € Wg . In fact,
U =1V, and U is uniquely determined by V. Clearly, Endg (U) is the left order of I.

LEMMA 2. If Vy, V2, U e Wq, then

(i) Homg (V], U) + Homg (Vz, U) = Homg(V; N V2, U),

(ii) Homg (U, V;) + Homg (U, V,) = Homg (U, V, +V,).

Proof. There exists a right D-basis {e;, ez, -, €.} of W such that

t t
V, =@e;p”t  and Vv, =®eipﬁi.
1 1

This implies that there are two right Q-lattices V] and V3 such that
V; NV, =V, @V, and V; is an Q-direct summand of V; (i =1, 2). Thus
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Homg (Vy N V3, U) = Homg (V}, U)@ Homg (V3, U)
_C_ HOII]Q (Vl N U) +H0m9 (Vz, U).

The reverse inclusion is trivial. The proof of (ii) is similar to that of (i).

Now, if M is a finite subset of W¢,, then

Ay = {x e Al xVCV forall Ve M} = ﬂ Endg (V) .
VeM

A s is an order. We see that if
M= {VP¥ Ve Mand @ € 2},

then Ay;= Ajg. Therefore we can always assume that V € M implies that vP? e M
for all integers . If V|, V2 € M, then V; and V, are isomorphic as Aps-lattices

if and only if V; = V, P® for some integer @. By V we denote the set {VP?| & an
integer }, that is, the isomorphism class of V.

THEOREM 3 (A. Brumer [1] and [2], M. Harada [3]; for a proof, see Jacobinski
[6]). (i) An ovder T in A is heveditavy if and only if T = Ay for some M C Wgq,
wheve M is totally ovdeved by inclusion and closed undev isomovphism.

(ii) Let T = Ay be hereditary. Then every indecomposable left T-lattice is
isomovrphic to some V € M.

LEMMA 4. Let M C Wq be closed under isomovphism. Then Ap is a hevedi-
tary ovdev if and only if M satisfies the following condition. Fov each pair
U, V € M, there exists U' isomovphic to U, as left Ays-lattice, such that
VPCU' CV.

Proof. It is enough to prove that the condition means that M is totally ordered
by inclusion. If M is totally ordered and U, V € M, then the maximal element
U' € U such that U' C V satisfies the condition VP C U'. On the other hand, if V
and U € M and U ¢V, the least integer a such that UPY® C V is positive. But then
VP C UP% C V and thus V - up®-l C U. Therefore M is totally ordered by in-
clusion.

4. CONDUCTORS

Let I be a full ideal in the simple algebra A.

LEMMA 5. If T is a hereditary ovdev and O; (i=1, 2, ---, n) are the maximal
ovders containing it, then

(I T),=2:(1:0),.

Proof. By Theorem 3, (I: T), is a sum of right O;-ideals. Thus

(I: T) ¢ 27; (I: 0;). Since T = ni O;, we see that 2J; (I: O;), is a right I'-ideal,
and therefore the opposite inclusion also holds.
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Let A be the left order of I, and let M be the set of all left A-lattices V € Wg .
If V € M, then, by (ii) in Lemma 2, there exists a maximal element U of Wg such
that Homg (V, U) C 1. If O is the left order of V, we see that Homg (V, U) is the
maximal right O-ideal in I. If A € A, then X Hom(V, U) C I, and thus
A Homg (V, U) € Homg (V, U). Therefore U is a left A-lattice. We see that the
map B: V — U takes M into itself. Obviously, B has the property that

B(VPY) = (BV)P® (a an integer).

LEMMA 6. If V,,V, € M, then B(V, N V,) =BV, N BV,.
Proof. Because Homg (V;, BV; N BV,) C Homg (V;, BV;) (i=1, 2),

Homg(V; NV, BV N BVZ) = HOII]Q(VI , BV N BVZ) +Hom9(V2, BV n BVz) clI.

We conclude that BV; N BV, € B(V] N V,). The opposite inclusion is an immediate
consequence of the definition of B.

5. PROOF OF THEOREM 1

As before, I is a full ideal in the simple algebra A with left order A. If
U, V € W are A-lattices, then U and V are isomorphic as A-lattices if and only
if Endg (U Q) Endg (V). The assumption that the number of maximal orders contain-
ing A is finite implies that the number of nonisomorphic A-lattices in W, is finite.

In fact, these numbers are equal. Now take a A-lattice T in Wg. The sequence

T BT * must be periodic. We can assume that T, BT, , Bm-1T are noniso-
morph1c but T and B™ T are isomorphic. Therefore BmT = TP® for some integer
a. Now we define a A-lattice V in W by the formula

m-1

 girpl-ie/m}

i=0

where B T =T and {-ia/m} is the least integer that is not less than -ia/m.
From Lemma 5 we get the relation

BV = BT n B2TP1-¢/m} .. pmppl-tm-a/m ]

But
gmrppl-im-Na/m} _ ppet{-(m-lYa/m} _ TP{a/m},

and therefore BV = nmo B'T P{(1 1)oz/m} By induction, we find that

m-1

Bty = [1 pirpl-da/m}
i=0

If x and y are real numbers, then {x +y} < {X} + {y} < {x +y} + 1, and this
implies that

{(v -1)a/m} < {(v - p)a/m} +{(p - Da/m} < {{r -)o/m} +1,

where v and p are nonnegative integers. Therefore
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m-1 m-1
n BiTP{(v—i)oz/m} 5 n BiTP{(V-u)a/m}+{(u_i)a/m}
i=0 i=0
m-1
2 n BiTP{(V'l)a/m}+l’
i=0

and this is equivalent to
(1) BYv o BEyplv-mea/m} 5 pryp,

The sequence V, _ﬁ—, --- must be periodic, and we can assume that V, BV, =, B®V

n .
are nonisomorphic and V and B®1V are isomorphic. Put M = Uizo B'V. By

Lemma 4 and (1), we conclude that I" = Ay, is a hereditary order. Let O; be the
left order of BiV (i=0, 1, ---, n). Then

n n
=Moo, ana @D, =2 ®@oy),,
i=0 i=0
by Lemma 5. But the left order of (I: O;), is O;y; for i =0, 1, *--, n - 1, and the
left order of (I: O,), is Og. Therefore I' = n?=0 O; is contained in the leit order,

n .
of (I: T), = 2;_, (I: O;),.. Finally, T contains A, because all the B{V are A-
lattices. Thus Theorem 1 is proved.
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