CONDUCTORS WITH RESPECT TO HEREDITARY ORDERS

David Sjöstrand

1. INTRODUCTION

Let $\mathfrak o$ be a Dedekind ring with quotient field k, let A be a separable, finite-dimensional k-algebra, and let Λ be an $\mathfrak o$ -order in A. Let $\mathfrak o_p$, A_p , k_p , Λ_p and so on denote the completions at p, where p is a prime ideal in $\mathfrak o$. If Γ is an $\mathfrak o$ -order in A, we denote by $(\Lambda: \Gamma)_r$ the maximal right Γ -ideal in Λ , or equivalently,

$$(\Lambda: \Gamma)_{\mathbf{r}} = \{ x \in \Lambda: x\Gamma \subseteq \Lambda \}.$$

This ideal is called the right conductor of Γ in Λ . In a similar way we define the left conductor $(\Lambda: \Gamma)_1$ of Γ in Λ . These conductors are related to properties of $\operatorname{Ext}^1_{\Lambda}(M, N)$, for arbitrary Λ -lattices M and N. Let cen Λ be the center of Λ , and let $J(\Lambda)$ denote the set of elements x in cent Λ that satisfy the condition

$$x \operatorname{Ext}_{\Lambda}^{1}(M, N) = 0$$

for every pair of left Λ -lattices M and N. D. G. Higman [4] has proved that $J(\Lambda) \neq 0$. H. Jacobinski [5] has shown that $(\Lambda: \Gamma)_1 \cap \text{cen } \Lambda \subseteq J(\Lambda)$ for all hereditary $\mathfrak o$ -orders Γ containing Λ . K. W. Roggenkamp [6] has proved that

$$J(\Lambda)\subseteq ((\Lambda\colon\thinspace\Gamma)_1\;\Gamma)\,\cap\,\operatorname{cen}\,\Lambda$$
 ,

for all hereditary $\mathfrak o$ -orders Γ containing Λ . Therefore, if there exists a hereditary $\mathfrak o$ -order $\Gamma\supseteq\Lambda$ such that the left conductor $(\Lambda\colon\Gamma)_1$ is a two-sided Γ -ideal, then

$$J(\Lambda) = (\Lambda: \Gamma)_1 \cap \operatorname{cen} \Lambda$$
.

In a special case, the existence of such an order is known. Let G be a finite group of order n, such that char $k \not\mid n$, A = kG, and $\Lambda = \mathfrak{g}G$. Jacobinski [5] has proved that the left conductor $(\Lambda: \Gamma)_1$ is a two-sided Γ -ideal for all \mathfrak{g} -orders Γ containing Λ .

Let Λ be an $\mathfrak o$ -order contained in only finitely many maximal orders. In this paper, we shall prove that there exists a hereditary $\mathfrak o$ -order Γ containing Λ such that the left conductor $(\Lambda:\Gamma)_1$ of Γ in Λ is a two-sided Γ -ideal. In fact, we shall prove a slightly more general result. Let I be a full ideal in A, that is, a finitely generated $\mathfrak o$ -module such that kI = A. Let Λ be the left order of I. If Γ is an order, let $(I:\Gamma)_r$ be the maximal right Γ -ideal in I.

THEOREM 1. Let I be a full ideal in A with left order Λ such that Λ is contained in only finitely many maximal orders. Then there exists a hereditary \circ -order Γ , containing Λ , such that the right conductor (I: Γ)_r is a two-sided Γ -ideal.

Remark 1. By symmetry, a similar result holds for the left conductor.

Received March 6, 1972.

Michigan Math. J. 20 (1973).

Remark 2. If the field k is an algebraic number field or an algebraic function field in one variable over a finite constant field, then the condition that Λ is contained in only finitely many maximal-orders is automatically satisfied.

2. REDUCTION TO THE CASE WHERE A IS A SIMPLE ALGEBRA OVER A p-ADICALLY COMPLETE FIELD

An order Γ is hereditary if and only if Γ_p is hereditary for all prime ideals in $\mathfrak o.$ Conductors also localize well; that is, $(I_p\colon \Gamma_p)_r=((I\colon\Gamma)_r)_p$ for every prime ideal p in $\mathfrak o.$ An order Λ is contained in only finitely many maximal orders if and only if Λ_p is contained in only finitely many maximal orders, for every prime ideal in $\mathfrak o.$ Therefore it is sufficient to prove Theorem 1 in the case where Λ is an algebra over a p-adically complete field. From now on we deal only with this case, and we can omit the subscript p and assume that $\mathfrak o$ is a p-adically complete ring. Let e_i ($i=1,2,\cdots,n$) be the primitive central idempotents of Λ . If Γ is hereditary, then $e_i \in \Gamma$ and each Γe_i is a hereditary order in Λe_i . The converse holds if

 $\Gamma = \bigoplus_{i=1}^{n} \Gamma e_{i}$, where each Γe_{i} is hereditary. Now let Λ be the left order of I. Then

clearly $I \cap Ae_i$ admits Λe_i . But $\Delta_i = I \cap Ae_i$ is a full ideal in Ae_i . If Theorem 1 is proved for simple algebras, we can find a hereditary order Γ_i in Ae_i , containing Λe_i , such that the conductor $(\Delta_i \colon \Gamma_i)_r$ is a two-sided Γ_i -ideal. But then $\Gamma = \bigoplus \Gamma_i$ is hereditary and contains $\bigoplus \Lambda e_i \supseteq \Lambda$, and $(I \colon \Gamma)_r = \bigoplus (\Delta_i \colon \Gamma_i)_r$ is a two-sided Γ -ideal. Now we see that it is enough to prove Theorem 1 in the case where A is a simple algebra.

3. HEREDITARY ORDERS

We now mention some known facts about hereditary orders in a simple algebra over a p-adically complete field. Let $A=(D)_t$, where D is a skew field with the unique maximal $\mathfrak o$ -order Ω , and let $P=\mathrm{rad}\ \Omega$. From now on we fix an irreducible left A-module W. This A-module is a right D-module. We denote by W_Ω the set of all right Ω -lattices V in W such that kV=W. For every $V\in W_\Omega$, $\mathrm{End}_\Omega(V)$ is a maximal order in A. Conversely, the set $\left\{\mathrm{End}_\Omega(V)\middle|\ V\in W_\Omega\right\}$ contains all maximal orders in A. If O is a maximal order in A and $V\in W_\Omega$ is a left O-lattice, then every full right O-ideal I is equal to $\mathrm{Hom}_\Omega(V,U)$, where $U\in W_\Omega$. In fact, U = IV, and U is uniquely determined by V. Clearly, $\mathrm{End}_\Omega(U)$ is the left order of I.

LEMMA 2. If V_1 , V_2 , $U \in W_{\Omega}$, then

- (i) $\operatorname{Hom}_{\Omega}(v_1, U) + \operatorname{Hom}_{\Omega}(v_2, U) = \operatorname{Hom}_{\Omega}(v_1 \cap v_2, U)$,
- (ii) $\operatorname{Hom}_{\Omega}(\mathtt{U},\,\mathtt{V}_1) + \operatorname{Hom}_{\Omega}(\mathtt{U},\,\mathtt{V}_2) = \operatorname{Hom}_{\Omega}(\mathtt{U},\,\mathtt{V}_1 + \mathtt{V}_2)$.

Proof. There exists a right D-basis $\{e_1, e_2, \cdots, e_t\}$ of W such that

$$V_1 = \bigoplus_{i=1}^{t} e_i p^{\alpha_i}$$
 and $V_2 = \bigoplus_{i=1}^{t} e_i p^{\beta_i}$.

This implies that there are two right Ω -lattices V_1' and V_2' such that $V_1 \cap V_2 = V_1' \oplus V_2'$ and V_i' is an Ω -direct summand of V_i (i = 1, 2). Thus

$$\operatorname{Hom}_{\Omega}(V_{1} \cap V_{2}, U) = \operatorname{Hom}_{\Omega}(V_{1}', U) \oplus \operatorname{Hom}_{\Omega}(V_{2}', U)$$

$$\subseteq \operatorname{Hom}_{\Omega}(V_{1}, U) + \operatorname{Hom}_{\Omega}(V_{2}, U).$$

The reverse inclusion is trivial. The proof of (ii) is similar to that of (i).

Now, if M is a finite subset of W_{Ω} , then

$$\Lambda_{\,\mathrm{M}} \,=\, \big\{ \, \mathbf{x} \,\, \epsilon \,\, \, \mathbf{A} \, \big| \,\, \, \mathbf{x} \, \mathbf{V} \,\subseteq\, \mathbf{V} \,\, \, \, \mathbf{for \,\, all} \,\, \, \mathbf{V} \,\, \epsilon \,\, \, \mathbf{M} \, \big\} \,\, = \,\, \bigcap_{\, \mathbf{V} \, \epsilon \,\, \mathbf{M}} \, \mathbf{End}_{\Omega} \, (\mathbf{V}) \,\, .$$

 $\boldsymbol{\Lambda}_{M}$ is an order. We see that if

$$\overline{\mathbf{M}} = \{ \mathbf{VP}^{\alpha} | \mathbf{V} \in \mathbf{M} \text{ and } \alpha \in \mathbf{Z} \},$$

then $\Lambda_M = \Lambda_{\overline{M}}$. Therefore we can always assume that $V \in M$ implies that $VP^{\alpha} \in M$ for all integers α . If V_1 , $V_2 \in M$, then V_1 and V_2 are isomorphic as Λ_M -lattices if and only if $V_1 = V_2 P^{\alpha}$ for some integer α . By \overline{V} we denote the set $\{VP^{\alpha} \mid \alpha \text{ an integer}\}$, that is, the isomorphism class of V.

THEOREM 3 (A. Brumer [1] and [2], M. Harada [3]; for a proof, see Jacobinski [6]). (i) An order Γ in A is hereditary if and only if $\Gamma = \Lambda_M$ for some $M \subseteq W_\Omega$, where M is totally ordered by inclusion and closed under isomorphism.

(ii) Let $\Gamma = \Lambda_M$ be hereditary. Then every indecomposable left Γ -lattice is isomorphic to some $V \in M$.

LEMMA 4. Let $M \subseteq W_{\Omega}$ be closed under isomorphism. Then Λ_M is a hereditary order if and only if M satisfies the following condition. For each pair $U, V \in M$, there exists U' isomorphic to U, as left Λ_M -lattice, such that $VP \subseteq U' \subseteq V$.

Proof. It is enough to prove that the condition means that M is totally ordered by inclusion. If M is totally ordered and U, V ϵ M, then the maximal element U' ϵ \overline{U} such that U' \subseteq V satisfies the condition $VP \subseteq U'$. On the other hand, if V and U ϵ M and U $\not\subseteq$ V, the least integer α such that $UP^{\alpha} \subseteq V$ is positive. But then $VP \subseteq UP^{\alpha} \subseteq V$ and thus $V \subseteq UP^{\alpha-1} \subseteq U$. Therefore M is totally ordered by inclusion.

4. CONDUCTORS

Let I be a full ideal in the simple algebra A.

LEMMA 5. If Γ is a hereditary order and O_i (i = 1, 2, …, n) are the maximal orders containing it, then

$$(I: \Gamma)_r = \sum_i (I: O_i)_r$$
.

Proof. By Theorem 3, (I: Γ)_r is a sum of right O_i -ideals. Thus (I: Γ) $\subseteq \sum_i$ (I: O_i)_r. Since $\Gamma = \bigcap_i O_i$, we see that \sum_i (I: O_i)_r is a right Γ -ideal, and therefore the opposite inclusion also holds.

Let Λ be the left order of I, and let M be the set of all left Λ -lattices $V \in W_{\Omega}$. If $V \in M$, then, by (ii) in Lemma 2, there exists a maximal element U of W_{Ω} such that $\operatorname{Hom}_{\Omega}(V, U) \subseteq I$. If O is the left order of V, we see that $\operatorname{Hom}_{\Omega}(V, U)$ is the maximal right O-ideal in I. If $\lambda \in \Lambda$, then $\lambda \operatorname{Hom}(V, U) \subseteq I$, and thus $\lambda \operatorname{Hom}_{\Omega}(V, U) \subseteq \operatorname{Hom}_{\Omega}(V, U)$. Therefore U is a left Λ -lattice. We see that the map B: $V \to U$ takes M into itself. Obviously, B has the property that

$$B(VP^{\alpha}) = (BV)P^{\alpha}$$
 (\alpha \text{ an integer}).

LEMMA 6. If V_1 , $V_2 \in M$, then $B(V_1 \cap V_2) = BV_1 \cap BV_2$.

Proof. Because $\operatorname{Hom}_{\Omega}(V_i, BV_1 \cap BV_2) \subseteq \operatorname{Hom}_{\Omega}(V_i, BV_i)$ (i = 1, 2),

 $\operatorname{Hom}_{\Omega}(\mathtt{V}_1 \,\cap\, \mathtt{V}_2\,,\; \mathtt{B}\mathtt{V}_1 \,\cap\, \mathtt{B}\mathtt{V}_2) = \operatorname{Hom}_{\Omega}(\mathtt{V}_1\,,\; \mathtt{B}\mathtt{V}_1 \,\cap\, \mathtt{B}\mathtt{V}_2) + \operatorname{Hom}_{\Omega}(\mathtt{V}_2\,,\; \mathtt{B}\mathtt{V}_1 \,\cap\, \mathtt{B}\mathtt{V}_2) \subseteq \mathtt{I} \;.$

We conclude that $BV_1 \cap BV_2 \subseteq B(V_1 \cap V_2)$. The opposite inclusion is an immediate consequence of the definition of B.

5. PROOF OF THEOREM 1

As before, I is a full ideal in the simple algebra A with left order Λ . If U, V \in W $_{\Omega}$ are Λ -lattices, then U and V are isomorphic as Λ -lattices if and only if $\operatorname{End}_{\Omega}(U) = \operatorname{End}_{\Omega}(V)$. The assumption that the number of maximal orders containing Λ is finite implies that the number of nonisomorphic Λ -lattices in W $_{\Omega}$ is finite. In fact, these numbers are equal. Now take a Λ -lattice T in W $_{\Omega}$. The sequence \overline{T} , \overline{BT} , \cdots must be periodic. We can assume that T, BT, \cdots , B^{m-1} T are nonisomorphic but T and B^m T are isomorphic. Therefore B^m T = TP^{α} for some integer α . Now we define a Λ -lattice V in W $_{\Omega}$ by the formula

$$V = \bigcap_{i=0}^{m-1} B^i T P^{\{-i \alpha/m\}},$$

where B^0 T = T and $\{-i\alpha/m\}$ is the least integer that is not less than $-i\alpha/m$. From Lemma 5 we get the relation

$$BV = BT \cap B^2 T P^{\{-\alpha/m\}} \cap \cdots \cap B^m T P^{\{-(m-1)\alpha/m\}}.$$

But

$$B^{m}TP^{\left\{-i(m-1)\alpha/m\right\}} = TP^{\alpha+\left\{-(m-1)\alpha/m\right\}} = TP^{\left\{\alpha/m\right\}},$$

and therefore BV = $\prod_{i=0}^{m-1} B^i T P^{\{(1-i)\alpha/m\}}$. By induction, we find that

$$B^{\mu} V = \bigcap_{i=0}^{m-1} B^{i} T P^{\{(\mu-i)\alpha/m\}}.$$

If x and y are real numbers, then $\{x+y\} \le \{x\} + \{y\} \le \{x+y\} + 1$, and this implies that

$$\left\{\left(\nu\text{ - i}\right)\alpha/m\right\}\,\leq\,\left\{\left(\nu\text{ - }\mu\right)\alpha/m\right\}\,+\left\{\left(\mu\text{ - i}\right)\alpha/m\right\}\,\leq\,\left\{\left(\nu\text{ - i}\right)\alpha/m\right\}\,+\,1\,\,,$$

where ν and μ are nonnegative integers. Therefore

$$\bigcap_{i=0}^{m-1} B^{i} T P^{\{(\nu-i)\alpha/m\}} \supseteq \bigcap_{i=0}^{m-1} B^{i} T P^{\{(\nu-\mu)\alpha/m\} + \{(\mu-i)\alpha/m\}} \\
\supseteq \bigcap_{i=0}^{m-1} B^{i} T P^{\{(\nu-i)\alpha/m\} + 1},$$

and this is equivalent to

(1)
$$B^{\nu} V \supseteq B^{\mu} V P^{\{(\nu-\mu)\alpha/m\}} \supseteq B^{\nu} V P.$$

The sequence \overline{V} , \overline{BV} , \cdots must be periodic, and we can assume that V, \overline{BV} , \cdots , $\overline{B^n}$ V are nonisomorphic and V and $\overline{B^{n+1}}$ V are isomorphic. Put $M = \bigcup_{i=0}^n \overline{B^i V}$. By Lemma 4 and (1), we conclude that $\Gamma = \Lambda_M$ is a hereditary order. Let O_i be the left order of $\overline{B^i}$ V ($i = 0, 1, \cdots, n$). Then

$$\Gamma = \bigcap_{i=0}^{n} O_i$$
 and $(I: \Gamma)_r = \sum_{i=0}^{n} (I: O_i)_r$,

by Lemma 5. But the left order of (I: $O_i)_r$ is O_{i+1} for $i=0,1,\cdots,n-1$, and the left order of (I: $O_n)_r$ is O_0 . Therefore $\Gamma=\bigcap_{i=0}^n O_i$ is contained in the left order of (I: $\Gamma)_r=\sum_{i=0}^n (I: O_i)_r$. Finally, Γ contains Λ , because all the B^i V are Λ -lattices. Thus Theorem 1 is proved.

REFERENCES

- 1. A. Brumer, The structure of hereditary orders. Dissertation, Princeton, 1963.
- 2.——, Structure of hereditary orders. Bull. Amer. Math. Soc. 69 (1963), 721-724. Addendum 70 (1964), 185.
- 3. M. Harada, Hereditary orders. Trans. Amer. Math. Soc. 107 (1963), 273-290.
- 4. D. G. Higman, On orders in separable algebras. Canad. J. Math. 7 (1955), 509-515.
- 5. H. Jacobinski, On extensions of lattices. Michigan Math. J. 13 (1966), 471-475.
- 6. ——, Two remarks about hereditary orders. Proc. Amer. Math. Soc. 28 (1971), 1-8.
- 7. K. W. Roggenkamp, Projective homomorphisms and extensions of lattices. J. Reine Angew. Math. 246 (1971), 41-45.

Chalmers University of Technology and University of Göteborg Göteborg, Sweden