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1. INTRODUCTION

Suppose K is a finite topological complex in a 3-manifold M, and f is a map of
M into a 3-manifold N such that f(K) is a topological complex and K = f-1£(K). It
is known that f(K) may be tame even though K is not tame [6]. If K is tame and f
is a homeomorphism on M?> - K, then f(K) is tame [13]. We show that if K is tame
and f is a homeomorphism on K and f “doesn’t fold” at any point of f(K), then f(K)
is tame (Theorem 4). This is an extension of the singular-regular-neighborhood
theorem that was established for surfaces by J. Hempel [12, Theorem 2] and for
finite graphs by J. W. Cannon [8]. S. Armentrout showed in [2] that if K is tame
and if f is onto N and defines a cellular upper-semicontinuous decomposition of M
none of whose nondegenerate elements meets K, then f(K) is tame. Corollary 2
implies that “cellular” may be replaced by “monotone.” Theorem 5 is more general
than Theorem 4 and Corollary 2; it deals with nonfolding maps that are not neces-
sarily homeomorphisms on either K or M3 - K.

2. NOTATION AND TERMINOLOGY

The terms n-manifold, trviangulation, polyhedron, and tamely embedded are
used as in [5]. A subset A of an n-manifold M is cellular in M if and only if there
exists a sequence C;, C,, - of n-cells in M such that

(1) for each positive integer i, C;,; € Int C; , and

@ N, ¢ =a.

Suppose f is a map of an n-manifold M into an n-manifold N, p € N, and
f‘l(p) is cellular in M. Choose n-cells B and C in M and N, respectively, such
that

peIntC, flp)cmntB, £fB)cIntC.

We say f folds (doesn’t fold) at p if and only if f l Bd B is homotopically trivial
(nontrivial) in C - p. Note that this definition is independent of the choice of n-cells
B and C.

Suppose A is a subset of an n-manifold N and f is a map of an n-manifold M
into N such that A C f(M). We let G A denote the decomposition of M whose ele-
ments are the inverse images of points in A and the singletons of M - £-1(A).

A topological complex is a space homeomorphic to a locally finite simplicial
complex. Let K be a connected topological complex in a 3-manifold N. We say K
has a singulav-regular neighborhood if there exist a triangulated 3-manifold M, a
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complex K' in Int M, and a map f: M — N such that f | K' is a homeomorphism onto
K, £-1(K) = K', and K contains at least one point at which f does not fold. In Theo-
rems 2 and 4, we show that this definition is equivalent to Cannon’s [8] in case K is
a finite graph. We use the notation L(J, K) for the homology linking number (integer
coefficients) of disjoint oriented simple closed curves or loops J and K in E3. We
refer the reader to [8] for a discussion of this linking. If X is a compact metric
space and f and g are mappings from X into a metric space Y, then

D(f, g) = sup {d(f(x), g(x)): x € X}.

3. NONFOLDING MAPS

THEOREM 1. Suppose A is a connected subset of an n-manifold N, p € A, and

f is a map of an n-manifold M into N such that A C £f{(M) and Gp is a cellulay
upper-semicontinuous decomposition of M. Let B and C be n-cells such that
f-1(p) c Int B and £(B) C Int C.

(a) Then f doesn’t fold at p if and only if
fyi Ty 1(B - £71(p)) — 7,_4(C - p)
is one-to-one ov, equivalently, if and only if
fu: Hy 1(B - £71(p)) — H,_,(C - p)

is one-to-one (integer coefficients).
(b) If f doesn’t fold at p, then f doesn’t fold at any point of A.
(c) If T doesn’t fold at p, then (M) is a neighbovhood of f(A) in N.

(d) If £ doesn’t fold at p and G, is a collection of singletons, then f|f-1(A) is
a homeomovphism.

Proof. (a) Clearly, 7,,_(B - £-1(p)) = T,-1(C - p), and this is Z, the group of
integers under addition. The map f doesn’t fold at p if and only if f*(l) # 0, where

f, is the induced map on the homotopy groups.

(b) For each x in A, let B, denote an n-cell containing f~1(x) in its interior,
and let C, denote an n-cell such that f(B,) C Int C,. Let H denote the set of points
in A at which f folds. Then H is open in A. For if x € H, then there exists a map
F: B, — C, - x that extends f| Bd B,. There is an open set U of f-1(A) such that
f‘l(p) C U CInt B and U is the union of elements of GA . Thus

(Int C, - F(B,)) N £(U)

is open in A, and it is contained in H. Also, H is closed in A. For, if x € Cl1 H,
there is a point y in H such that £-1(y) C Int B, . There exists a map

F: B, — C, - y that extends f | Bd B, . Since C, can be triangulated, there is a
polyhedral arc J from y to x that lies in C, - f(Bd By). Using a sufficiently small
regular neighborhood of J in Cy, we may push the set F(By) off of x by pushing
along J without moving f(Bd B,). Thus x € H. Since A is connected, H is open
and closed in A and p ¢ H, we conclude that H = @.

(c) Suppose that x € A and that B, and C, are n-cells as in the first line of
the preceding paragraph. If f(B,) is not a neighborhood of x in N, then some
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polyhedral arc J in Cy - f(Bd B,) joins x to a point y in C, - f(B,). As in the
proof of (b), £(B,) may be pushed off of J. This is impossible, since f does not fold
at x, by (b).

(d) Suppose U is open in £-1(A) and x € f(U). There exists a B, such that
B, N £71(A) ¢ U. Thus f(B,) N A C £(U). As in the proof of (¢), f(B,) is a neighbor-
hood of x in N. Thus f|£-1(A) is open.

THEOREM 2. Suppose C is a 3-cell in E3, A is an arc in C such that
ANBAC=BdA, and A' is an arc in Bd C such that Bd A' = Bd A. Suppose B is
the unit ball in B3| p is the origin, 1 is the intersection of B and the y-axis, and D
is the intersection of B and the xz-plane. Suppose also that f is a map of E3 into
Int C such that { takes 1 homeomorphically into A and £-1(A) N B =1. Then the
following are equivalent:

(a) f does not fold at 1(p),
(b) £ | Bd D is not homologous to zevo (integey coefficients) in Int C - A,
(c) LA UA', f|BdD) # 0, and

(d) the induced homomovphism fy: H;(B - I) — H;(Int C - A) is not the trivial
homomovphism.

Proof. First we show that (b) and (c) are equivalent. Clearly,
L(AUA,f|BdD) =0

if and only if f | Bd D is nuli-homologous in E3 - (A U A'), and this condition in turn
is satisfied if and only if f l Bd D is null-homologous in Int C - A. The latter condi-
tion is satisfied because if f | Bd D bounds a singular orientable surface K in
E3-(AU A'), we may construct such a surface in Int C - A by cutting off the part
of K outside C, filling in the resulting holes in the surface with singular disks in

Bd C - (A U A'), and then pushing the resulting surface slightly into Int C - A.

Next we show that (a) implies (b). Let D, and D, be the disks in Bd B such
that

D, ND, = BAD; = BdD, = Bd D.

Let A; and A, Dbe the subarcs of A such that A} U A, = A and A] N A, = f(p). We
may assume that the indices are chosen so that A; N f(D;) = @ for i =1 or 2. Let

z = f| Bd D. Then z is a singular 1-cycle in C - A. Let d; denote the singular 2-
chain f|D;. Then ad, = z and ad, = -z. Suppose z =0 in H;(C - A). Then z = 3k,
where k is a 2-chain in C - A. Thus d; - k and d, +k are 2-cyclesin C - A, and
C - A, respectively. By duality, C - A, and C - A, are homologically trivial, so
that d) - k =0h; and d, +k =0h,, where h; isa 3-chainin C - A, and h; isa
3-chain in C - A;. Therefore h; +h, isa 3-chainin C - (A} N A}) =C - f(p), and
a(h; +hy) =d; +d, =f| Bd B. Thus f folds at f(p).

We show that (b) implies (a). Suppose f folds at f(p). Then f| Bd B is homo-
topically trivial in C - f(p). Thus there exists a map F: B — C - f(p) that extends
f| Bd B. Let Ay, Ay, Dy, and D, be defined as above. Then F-1(A;) and F-1(Ajp)
are disjoint closed sets in B - Bd D, and F-1(A;) N D; = ¢, for i =1 or 2. Hence
Bd D bounds an orientable surface in B - F-1(A,) - F-1(A,). Hence, f| Bd D is
null-homologous in C - A.
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Finally, we show (b) and (d) are equivalent. Suppose f| Bd D is homologous to
zero. The fundamental 1-cycle on Bd D generates H{(B - I) = Z. Thus fy is the
trivial homomorphism. It follows immediately that (b) implies {(d).

LEMMA 1. Suppose B is a 3-cell, K is a closed connected set in Int B,
p € K, and f: S% — (Int B) - K is a map. If f is null-homotopic in B - p, then { is
null-homotopic in B - K.

Proof. Suppose f is defined as above, except that f is homotopically nontrivial
in B - K. Let U be the component of B - K that contains £(S2). We consider two
cases.

Case 1. Suppose Bd B ¢ U. Since f is homotopically nontrivial in U, J. H. C.
Whitehead’s sphere theorem [15] implies that there exists a real polyhedral 2-sphere
T in U that is nontrivial in U. The sphere T bounds a 3-cell D in Int B. We as-
sert that KC B - D. For otherwise T = Bd D, and Bd B would be in the same com-
ponent of B - K, that is, in U. But T is null-homotopic in D, hence in U, and this
constitutes a contradiction.

Case 2. Suppose Bd B C U. In this case, we use the notation of the sphere
theorem [15]. Choose a base point q in U. We take the elements of 7,(B - K, q) to
be equivalence classes of maps from (S2, 0) into (B - K, q). Let g be a homeo-
morphism of (S2, 0) into (B - K, q) such that K C Int g(S%). Let G be the subgroup
of 7,(B - K, q) generated by g, and let

A={ta:ten(B-K,q) and @ € G}.

Finally, let 8 =[f] € 7,(B - K, q). Now B ¢ A, because 8 # 0 and every nonzero
element of A is essential in B - p. Hence, A # 73(B - K). Therefore, there exists
a real polyhedral 2-sphere T that is essential in B - K (mod A). But KC Int T,
hence T is freely homotopic (that is, without restrictions concerning the base point)
to g(S2). Therefore, if k: S2 — B - K represents T in 7,(B - K), then [k] € A.
This is a contradiction.

THEOREM 3. Suppose that A is a subset of E3 and that f: M — E3 is a map
of a 3-manifold M into E3 such that A C f(M) and £-1(A) is cellular in M. If
theve exists a point p in A such that £-1(p) is cellular in M and { doesn’t fold at
p, then A is cellular in E3.

Proof. Let C be any 3-cell in E3 containing A in its interior, and let U be
any open set in Int C containing A. There is a 3-cell B in M containing £-1(A) in
its interior, with f(B) C U. Since f| Bd B is not null-homotopic in C - p, f | Ba B
is not null-homotopic in C - A. Thus, for every x in A, fl Bd B is not null-
homotopic in C - x, by Lemma 1. Now B - £-1(A) is connected, since f-1(A) is
cellular; thus f(B - £-1(A)) is connected. Since A is compact, there exists an open
set U' in E3 suchthat AC U'C U and C - U' is connected. Let B' be a 3-cell in
M such that £-1(A) € Int B' and f(B') C U'. Then f| Bd B' is not null-homotopic in
U' - A. By the sphere theorem [15], some polyhedral 2-sphere S in U' - A is not
null-homotopic in U' - A. The sphere S bounds a 3-cell D in C. Since C - U' is
connected, DC U'., Thus ACIntDCDCU.
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4. TAME EMBEDDINGS

THEOREM 4 (singular-regular-neighborhood theorem). Suppose K is a con-
nected topological complex that is a closed subset of a 3-manifold N and has a
singulav-vegulay neighbovhood. Then K is tame in N,

Proof. Let M, f, and K' be given by the definition of singular-regular neighbor-
hood. By Theorem 1(b), f doesn’t fold at any point of K. Let G be a finite connected
graph in the 1-skeleton of K, and let Ay be an arc in G. Suppose that p € Int A
and C is a 3-cell with p € Int C and Bd Ajg C N - C. Let A denote the subarc of A,
that contains p in its interior and such that AN Bd C = Bd A. Let A' be an arc in
Bd C such that Bd A'= Bd A. Let B denote a 3-cell in M containing f‘l(p) in its
interior such that f(B) C Int C, let I denote the subarc of £-1(A) such that £-1(p) is
in the interior of I and I N Bd B = Bd I, and let D denote a disk in B that contains
p in its interior and is transverse to 1. Since f does not fold at p, Theorem 2 im-
plies that L(A U A", f | Bd D) # 0. Thus G has a singular-regular neighborhood as
defined in [8], and it is tame [8, Theorem 3.10].

Suppose p is a point in the interior of some 2-simplex A of K. By the local-
separation theorem [1, Section 2, Corollary 2], there is a neighborhood U of p in N
such that U - A has two components U} and Uz. Let D denote the unit disk in EZ,
and let h be a homeomorphism of D X [-1, 1] into M such that

f1(p) e mth(Dx {0}) c £71(a), h[(Dx[-1, 1])- (Dx {o})] c M3 - £-1(a),

and fh(D X [-1, 1]) € U. Each component of fh[(DX [-1, 1]) - (D% {0})] lies in
either U; or U,. Suppose both lie in U;. Then Int fh(D X {0}) is locally tame
from the U,-side [7, Theorem 6.7.3]. There exists a map g of fh(D x [-1, 1]) into
N that pushes Int fh(D x {0}) into U; and reduces to the identity on

th(Bd (D x [-1, 1])), and such that p ¢ gfh(D x [-1, 1]). This contradicts the fact
that f does not fold at p. Hence, one of the components lies in U; and the other in
U, . As above, it follows that A is locally tame from both sides at f(p). Hence f(A)
is locally tame at p. Since a 2-simplex is tame if its interior and boundary are
locally tame [14], each 2-simplex in K is tame. Thus K is locally tame [9] and
hence tame [5].

COROLLARY 1. Suppose K is a finite connected subcomplex of E3 and
f: E3 5E3 isa map that is a homeomovrphism on K and f“lf(K) =K. Suppose also
that theve exists a 3-cell B containing K in its intevior such that f | Bd B is not
homotopic to zevo in E3 - {(K). Then £(K) is tame.

Proof. Suppose p € f(K). By Lemma 1, f does not fold at p.

COROLLARY 2. Suppose K is a subcomplex of a 3-manifold M and G is a
monotone upp ev-semicontinuous decomposition of M into compact sets such that
M/G is a 3-manifold and K misses the nondegenevate elements of G. If P denotes
the projection map of M onto M/G, then P(K) is tame in M/G.

Proof. Suppose that T is a 1-simplex in K and p € Int T. Let C be a 3-cell
in M/G containing P(p) in its interior and small enough so that P(p) lies in some
arc A in C N P(T) whose endpoints lie in Bd C. There exists a polyhedral 3-cell
B in M suchthat pe Int BC B C p‘l(Int C) and BN T is a subarc of T whose
endpoints lie in Bd B. Thus f takes B N T homeomorphically into A. There exists
an open set U in M such that p € UC Int B and U is the union of elements of the
decomposition. Since P(U) is an open neighborhood of P(p) in M/G, there exists a
map g: S! — P(U) - A that is not homologous to zero in Int C - A [1, Section 2,
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Corollary 2]. By the simplicial-approximation theorem [10], there exists an ¢ > 0
such that if f: SI — C is a map and D(f, g) < ¢, then f and g are homotopic in

Int C - A. There exists a map g;: SI — U - T such that D(Pg;, g) <¢ [3, Lemma
3.2]. Thus Pg; is not homologous to zero in Int C - A. Hence P does not fold at
p, by Theorem 2(d). Thus P(M) is a singular-regular neighborhood of P(K) in
M/G.

THEOREM 5. Let K be a connected topological complex that is a closed subset
of a 3-manifold N, let f: M — N be a map of a 3-manifold M into N such that
K C (M), let £-1K) be a subcomplex of M, and let Gk be an upper-semicontinuous
decomposition of M such that M/Gg is a 3-manifold.

(a) If P denotes the projection map of M onto M/Gy and fp-1; M/Gg - M
doesn’t fold at some point of K, then K is tame.

(b) If K contains a 3-cell, then K is tame.

(c) If each element of Gy is cellular in M and f doesn’t fold at some point of
K, then K is tame.

(d) If £ maps M onto N and is the projection map of a monotone upper-semi-
continuous decomposition of M into compact sets, then K is tame.

Proof. (a) Let V be a regular neighborhood of f-1(K). Then P(V) is a mapping
cylinder neighborhood of P(K) in M/Gy, and P(K) is tame in M/Gg [13]. Thus
P(K) is a subcomplex of M/Gy, under some triangulation of M/Gy . Since
fP-1: M/Gkg — N is a homeomorphism on P(K) and doesn’t fold at some point of K,
K has a singular-regular neighborhood.

(b) As in part (a), fP-1: M/Gg — N is a homeomorphism on P(K). Thus {P-!
cannot fold at a point in the interior of a 3-cell in K. Thus K has a singular-
regular neighborhood.

(c) Suppose p € K and C is a 3-cell containing p in its interior. Let B be a
3-cell in M/Gg containing Pf-1(p) in its interior such that fP-1(B) C Int C. Let B'
be a 3-cell in M such that f-1(p) C Int B' € B' ¢ P-1(int B). Since f doesn’t fold at
p, the mapping f | Bd B' is not null-homotopic in C - p. Thus P | Bd B' is not null
homotopic in B - Pf-1(p). Thus (fP-1).: m,(B - Pf-1(p)) — 75(C - p) is not the triv-
ial homomorphism. Thus fP-1 doesn’t fold at p.

(d) The map fP-l: M/Gy — N is closed and satisfies the hypothesis for the
projection map in Corollary 2.

COROLLARY 3. LetK be a connected topological complex that is a closed
subset of a 3-manifold N, let f: E3— N be a map such that K c {(E3), let £-1(K)

be a subcomplex of B3 that is either a 2-manifold ov a 1-dimensional polyhedron,
and let Gi be a cellular upper-semicontinuous decomposition of E3 . If {f doesn’t

Jold at some point of K, then K is tame.

Proof. The decomposition space E3 /Gy is E3 [4, Corollaries 4.3 and 4.4].
Thus, by Theorem 5(c), K is tame.

5. AN EXAMPLE

In this section, we show that the nonfolding hypothesis in the singular-regular-
neighborhood theorem is necessary. Specifically, we give an example of a map f of
E3 onto itself that is a homeomorphism on a tame arc A, and such that
f-1f(A)) = A; and £(A}) is wild.
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Denote by EZ the plane z =0 in E3 , by EJ3r the closed upper half-space of E> s
and by A; a rectilinear interval in EZ. We shall describe f as the composite of a
finite sequence of maps f;, f,, f3, f4, 5, f¢. In what follows, A;;; will denote the
arc f:(A;). The construction will be made so that fi'lfi(Ai) = A, and f; is a homeo-
morphism on A;.

Let f; be the map (x, y, z) = (x, y, |z]) of E> onto E?r . The map {, maps E3
onto itself so that the intersection of the sets A3z =f,(A,) and E2 is an endpoint of
A3 . The map f, is a homeomorphism on Ei - EZ and identifies the disks D, and
D, in Figure 1 by folding along their intersection. Let C be a cone with open base;
that is, let C = K - D, where D is the unit disk in EZ2 and K is the join of D with
the point (0, 0, 1). The map f3 is a homeomorphism of Ei onto C such that Ay is
contained in the centerline of C, and such that the set A4 " Bd C = (0, 0, 1) is an
endpoint of A4. See Figure 2. The map f4 is an embedding of C into itself such
that [f4(C) - (0, 0, 1)] C Int C, £4(0, 0, 1) =(0, 0, 1), and As is a Fox-Artin arc [11,
Example 1.2] that is wild at exactly one point, namely (0, 0, 1). See Figure 3.

There exists a map fg of f4(C) onto C that is the identity on As. To show the
existence of f;, we divide the cone C into countably many sections, using planes
parallel to the base of C. We choose the planes so that each section looks like the
one in Figure 4. Let C' be one such section. The map f5 is defined on C' N £4(C)
so that C' N f4(C) expands to fill up C'. Note that this may be done so that

-1 _
f5(f5(A5)) = Ag.

Finally, fg, maps C onto an open 3-cell, it is a homeomorphism on Int C, and it
collapses the circles Bd C N {(x, y, z): z=r} (0 <r < 1) to points. See Figure 5.
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