HOLOMORPHIC FUNCTIONS WITH LINEARLY
ACCESSIBLE. ASYMPTOTIC VALUES

David C. Haddad

Let D and C denote the open unit disc and the unit circle. An arc T C D ends
at zg € C if T U z( is a Jordan arc. A holomorphic function f in D has asymplotic
value wq at zg € C if there exists an arc T C D, ending at z;, such that f(z) — w,
as z — zy (z € T). The arc T is then an asymptotic path of f. If £ maps T one-
to-one onto a linear segment ending at wg, then f has a linearly accessible asymp-
totic value at zp. Let Aj(f) denote the set of points at which f has linearly ac-
cessible values. G. R. MacLane [8, Theorems 3, 5, 7] has given several sufficient
conditions for A1 (f) to be dense on C. We shall give a necessary and sufficient con-
dition for A; (f) to be dense on C.

Let S be a nonempty subset of D. For each r (0 <r < 1), let the components of
SN {z:r<|z| <1} be Sg(r) (8 € B). Let dg(r) be the diameter of Sg(r), and let
d(r) = supge B d (r). Clearly, disa nonlncreasmg function of r. The set S ends at

points of C if d(r) 1 0 as r T 1.

If w = f(z) is a nonconstant, holomorphic function in D, we denote by F the
Riemann surface of f~! (as a covering surface over the w-plane). Let p denote the
projection from F onto the w-plane, and let f be the one-to-one conformal map of
D onto F, so that f = pof. Corresponding to each set S in the w-plane, we denote
by Fg the set of points of F lying over S.

Mac Lane's class A is the class of nonconstant holomorphic functions in D that
have asympiotic values at a dense subset of C. A function f belongs to class & if it
is nonconstant and holomorphic in D and if for each r > 0 the level set
{z: |f(z)| = r} ends at points of C. MacLane [7, Theorem 1] proved that « = £.
We now state our main result.

THEOREM 1. Let f be a nonconstant, holomorphic function in D. A necessary

and sufficient condition for ALN(f) to be dense on C is that there exists a line K in
the w-plane such that the set f‘l(FK) ends at points of C..

REMARKS. 1. In the notation of this paper, we can restate the assertion «& = £
as follows. A necessary and sufficient condition for a nonconstant holomorphic func-
tion f to belong to class & is that the set f‘l(FIWl:r) ends at points of C, for each
r > 0. From this restatement it is clear that the condition of Theorem 1 for lifting
lines is analogous to MacLane’s condition expressed in « = & for lifting circles.

2. In proving Theorem 1, we shall prove that a necessary condition for A; (f) to
be dense on C is that the set f- 1(FK) ends at points of C for every line K in the
w-plane. Hence, if the set - 1(FK) ends at points of C for one line K in the w-
plane, then AL(f) is dense on C and hence the set f- I(Fk) ends at points for every
line K in the w-plane.
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3. The condition of Theorem 1 is obviously a sufficient condition for a holo-
morphic function in D to belong to class . To see that it is not a necessary condi-
tion, consider K. Barth and W. Schneider’s example [2, Main Theorem] of a holo-
morphic function f such that f € & but exp f ¢ . If there were a line K in the
w-plane such that the set f"!(Fyk) ends at points of C, then by the preceding remark
the set f-}(Fk) would end at points of C for every line K. Hence, for each r > 0,
the level set {z: |exp #(z)| =r} would end at points of C. Therefore, exp £ would
belong to class £ and hence to class .

It is convenient to introduce the following notation. If a and b are two real
numbers (0 <a <b <a+2n), we write C(a, b) = {et9:a < 9 <b}. For each sub-
set S of the complex plane, we denote by S and 8S the closure and the boundary of
S in the Euclidean topology of the plane. Finally, a sequence {Tk} of curves lying
in D tends to the arc C(a, b) if for each £ > 0, there exists a positive integer n
such that for k> n

(i) T c {z:1-¢ <|z| <1},
(ii) |inf{argz:z € Ty} - a| < ¢,
(iii) |sup{argztz e Ty} - b| <e.
We are now ready to prove Theorem 1.

Proof of the sufficiency. We shall do most of our work in the following two
lemmas.

LEMMA 1. Suppose that no point of the arc C(a, b) on C is the end of an as-
ymptotic path for a linearly accessible asymptotic value, that K is a line such that
the set T-1(Fy) ends at points of C, and that zq is a point of D such that f(zg) € K
and f'(zg) + 0. Then zg lies on a crosscut T of D such that f(T) C K, the endpoints
of T liein C - C(a, b), and { has a linearly accessible asymptotic value along each
end of T.

Proof. Let (s, t) be a maximal segment of the line K (in the w-plane) that can
be lifted into the surface F so that the lifted segment contains the point f(zo). If the
surface F has no branchpoints over K, there exists exactly one such segment. If F
has branchpoints over K, these branchpoints are at most countable, and the segment
(s, t) is uniquely determined if for each branchpoint we determine in advance the
sheet on which we shall exit from the branchpoint, in case we encounter it. To see
how this could be done, let q;, q2, *** be the branchpoints of F, and let n; be the
order of the branchpoint q) . Then there exists a neighborhood Nj of p(qy), the
projection of ¢, onto the w-plane, such that the component of F N p-1(N,) contain-

ing qx has precisely ny + 1 sheets Slf, Slz‘, e Sﬁk.!_l lying over Ny - {p(q)}. If
we encounter q, in the lifting process, then we agree in advance to exit in the sheet
sT.

Let G denote the lifted segment in F, and write T =f-1(G). Clearly, s and t

are linearly accessible asymptotic values of f along the two ends of T, and our as-
sumption on C(a, b) implies that T ends at points of C - C(a, b).

In the following lemma, let ¢ = exp[i(a + b)/2].

LEMMA 2. Under the conditions of Lemma 1, the set T"Y(Fy) 0 {|z - ¢| <r}
is emply for all sufficiently small values r.

Proof. Suppose f- l(FK) meets each neighborhood of ¢. Since f'(z) =0 for at
most countably many z, there exists a point z; € f'l(FK) such that lzl - ¢l < 1/2
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and f'(z;)# 0. By Lemma 1, some arc T of f-1(Fg) contains z; and ends at
points of C - C(a, b). In the component of D - T; whose boundary contains the arc.
C(a, b), there exists a point z, € £~ 1(Fg) such that |z, - £| <2-2 and f'(z,) # 0.
By Lemma- 1, some arc T, of f~1(Fg) contains z, and ends at points of C - C(a, b).
Proceeding inductively, we arrive at a sequence of arcs T, and points z, such that
(i) z, € T, C f"l(FK), ' ’

(ii) T, ends at points of C - C(a, b),

(iii) |z, - €] <277
Clearly, a subsequence of {Tn} must tend to an arc containing either the arc

C (a, a -2’_ b ) or the arc C ( a ;b, b) . This contradicts the hypothesis that the set

f-1(Fi) ends at points of C, and establishes Lemma 2.

To finish the proof of the sufficiency of the condition of Theorem 1, suppose
AL(f) is not dense on C and C(a, b) is an arc having'no point that is an end of an
asymptotic path for a linearly accessible asymptotic value. Let ¢ be the midpoint
of C(a, b), and let K be a line in the w-plane such that f~!(F) ends at points of C.
By Lemma 2, the set f-1(F) N {]z - ¢| < rq} is empty for some r,. Hence, the
values w = f(z) for z € D N {|z - £] <rg} lie entirely in one of the half-planes with
boundary K. Let J denote the arc C N {|z - ¢| < ry}. Then, by an easy extension
of Fatou’s well-known theorem on radial limits [4, p. 17], f has radial limits almost
everywhere on J; hence, by a theorem of MacLane [8, Theorem 5], £ has linearly ac-
cessible asymptotic values on a dense subset of J. Since J C C(a, b), this contra-
dicts the choice of C(a, b) and completes the proof of the sufficiency.

Pyoof of the necessity. We shall use a lifting technique of Barth and Schneider
[3]. Suppose there is a line K in the w-plane such that the set f'l(FK) does not end
at points of C. Then there exists a sequence {Tn } of mutually disjoint arcs tend-
ing to an arc C(a, b) on C such that f(T,) C K. By translating and rotating the w-
plane, if necessary, we can assume that K is the real axis. Since f is an open map,
there exists a sequence {z,} of points in D such that z, — exp[i(a + b)/2] and
3 (f(z,)) > 0 for each n. ' '

Let [f(z,), s,) be a maximal half-open segment of the line
J.o= {w: sw) = 3(i(z,), %w)> 9(f(z,))}

that can be lifted into the surface F so that f(zn) is the initial point of the lifted
segment. Let G, denote the lifted segment in F, and R, the arc f*1(G,) in D.
Clearly, the set R, N Ty is empty for all n and k, and s, is a linearly accessible
asymptotic value of f along R, . Hence, there exists a sequence {Rﬁ} of arcs such
that R is a subarc of some R, and {R;} tends to one of the two arcs

C(a,a;b) and C(a;b,b), say C(a,a;b).

Since Aj(f) is dense, f has a linearly accessible asymptotic value at ¢, an in-
a+b
2
maps S one-to-one onto a line segment £(S). Clearly, the arc S must intersect in-
finitely many of the arcs T, . Hence, the line segment f(S) must be a segment of the
real line K. On the other hand, S must intersect infinitely many of the arcs R{{k, and
hence, f(S) must intersect the lines Jy . This contradiction concludes the proof of

Theorem 1.

terior point of C ( a, ) Let S be an asymptotic path of f ending at { so that f
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EXAMPLE. Theorem 1 is false for mevomovphic functions. Let K denote the
real line (in the w- plane) We exhibit a meromorphic function f without asymptotic
values such that the set f~ (FK) ends at points of C. This example is due to Lehto
and Virtanen [5, p. 58], and it was used by Barth [1, Example 1] to show that the
meromorphic analogue of the statement «# =% is false. Let g be a modular func-
tion omitting the values 0, 1, and i (that is, let g be a one-to-one conformal map of
D onto the universal covering surface of the extended complex plane with the points
0, 1, and i removed). Then g is a normal function [5, p. 53] having radial limits at
E, a countable dense subset of C. By a theorem of A. J. Lohwater and G. Piranian
[6, Theorem 6], there exists a bounded holomorphic function in D having a radial
limit at each point of C - E and at no point of E. Let h denote this function, and let
r denote a positive number that is an upper bound for |h| . The function f=3rg+h
has no radial limits, and it is a normal function, since h is bounded and g is nor-
mal [5, p. 53]. Hence, by a theorem of O. Lehto and K. I. Virtanen [5, Theorem 2], £
has no asymptotic values.

We now show that the set f* l(FK) ends at points of C. If 'I(FK) did not end at
points of C, then there would exist a sequence {T,} of arcs in D such that
f(T,) €K and {T,} tends to an arc C(a, b) on C. Then we could choose a point
¢ € C(a b) and a sequence {z } of points on the radius of D ending at ¢ such that

(i) g has radial limit i at ¢,
(ii) z, € T,,
(iii) z, — €.

On the one hand, $(f(z,)) = 0 for each n, since I(f(z)) =0 for z € T, ; on the other
hand, S(f(z,)) = 3rc(g(z ) + S(h(zy)) > 2r - r > 0 for sufficiently large values n.

Thus the set f1(Fg) ends at points of C.
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