HOLOMORPHIC IDEMPOTENTS AND COMMON
FIXED POINTS ON THE 2-DISK

Dan J. Eustice

1. INTRODUCTION

Several authors have studied the question whether two functions that map a set
into itself and commute under composition must have a common fixed point. In [4],
J. P. Huneke shows that continuous, commuting functions on the unit interval need
not have a common fixed point. H. H. Glover and Huneke [5] have discussed the
general problem of spaces without the common-fixed-point property for commuting
selfmaps. In [7], A. L. Shields showed that if & is a commuting family of functions
holomorphic in the unit disk A in C, continuous in A, and mapping A into A, then
the elements of # have a common fixed point.

In this note, we prove an analogous result for the 2-disk. To do this, we first
obtain a characterization of the holomorphic idempotents of the 2-disk into itself.

We wish to thank Henry Glover for his continued interest in this material.

2. HOLOMORPHIC IDEMPOTENTS ON A2

The 2-disk is the set AX A =A% in € X €. For each pair (z;, z;) in € X C,
let ||(z;, zp)|| = max{|z,]|, |z2|}. By a disk in € x C we shall mean a set of the
form {(p) z, p22z): z € A}, where [(p;, pz2)| # 0. We shall need the following form
of Schwarz’s lemma in AZ,

LEMMA. If F: A% — A is holomovphic, with F(0, 0) =0 and |F| <M, then
|F(z1 5 25)| <M|(zy, 22)].

Moveover, if there exists a pair (z¥, 23) in A% - {(0, 0} such that
!F(g’f ,z3)| =M ".(z’f , 25|, then, with the notation p; ||(z¥, z3)|| =2 (i=1,2), F
iS linear on the disk {(pl Z, P22): Z € A}.

Proof. Writing each pair (z;, z;) in AZ as (zw;, zw,), where [[(w;, w,)|| =1
and |z| = ||(z,, 2,)|, we see, by applying Schwarz’s lemma to the function
G(z) = F(zw, , zwy), that for |(z;, z2)| =r,

|F(z,, 2,)] < max |F(zw;, zw,)| < r max |F(zw;, zw,)| < Mr.

zl=r z|<1

Now, if (z}, z}) is a point such that |[(z}, z3)|| = r (0 <r <1) and
| F(zY, z3)| = Mr, then, setting p; = z¥/r for i=1, 2 and applying Schwarz’s lemma
to the function G(z) = F(p,; z, p, z), we see that G(z) = nz, where In l = 1. From the
double power series for F, we find that there are constants A; and A, such that
F(p, z, p, z) = Ay py 2 + A, p, z; this yields the result.
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Let us now consider a holomorphic idempotent F mapping A2 into A2, If
F(0, 0) # (0, 0), then, since the relation FF = F implies that F(A2) is the fixed-
point set for F, there exists a pair L = (L;, L,) of Mdbius transformations, each a
holomorphic bijection from A to A, such that F* = L-1 FL is an idempotent from
A2 to A2 with F*(0, 0) = (0, 0).

THEOREM 1. The holomorphic idempotents mapping A2 into A2 ave of the
Sorm LFL-1 where L is a holomorphic bijection of A% onto A2, and where F has
one of the following forms:

(i) F is the constant zevo mapping,
(ii) F is the identity mapping,

(iii) F(Aa2) = {(z, h(z)): z € A}, [or {(h(z), z): z € A}], where h is a holo-
morphic function mapping A into A with h(0) = 0.

Proof. We shall say that F has a (complex) one-dimensional range when case
(iii) of the theorem occurs.

Let F =(F,, F,), where F; and F, are the holomorphic coordinate functions
mapping A2 into A, We assume F(0, 0) = (0, 0). If F is not the constant zero map-
ping, then there are two possibilities for the range of F.

Case A. F(Aa2) C {(p) z, pp2): z € A} for some pair (p;, p,). Since we have
excluded the case where F is the constant zero mapping, we can assume that not
both F, and F, are zero mappings from AZ to A. I ||(p;, p,)| < 1, then the
iterates of F converge to the zero mapping, which is excluded since F is idempo-
tent. Hence, we see that ||(p;, p2)]| =1 and F has a one-dimensional range. [The
idempotent F = (F;, F,), where F(z], z2) = Fa(z1, z2) = (2] +22)/2 + (2] - 2,)2/4,
is an illustration of this case where the coordinate functions are not linear. ]

Case B. F(AZ2) is not contained in a disk. Since F(w) =w for each w in F(A2),
either the equation F,(z;, z,) = z, holds on an infinite, connected set that is the in-
tersection of a disk in A2 with the set in A% where |z,| > |z,|, or else the corre-
sponding statement holds for F;. The lemma implies that if Fy(z;, z) =z, on
such a set, then F, is linear on an infinite number of disks. Then, as a consequence

of the Weierstrass preparation theorem [6, page 9], F, is linear on all of A%,
Therefore, there is no loss of generality in assuming that ¥, is linear on A2, Let

(2.1) FZ(ZI , Zz) = Al zZ +A2 Z> On Az .
The idempotency of F implies that
(2.2) A‘l Fl(zl s Zz) = Al(l - AZ)ZI +A2(1 - AZ)ZZ .

Case 1. A; =0. Because A, is O or 1, we see that F; is either the constant
zero mapping or the identity mapping in the second coordinate. If F, is the zero
mapping, then the function F}(z) = F,(z, 0) is a holomorphic idempotent on A, and
consequently it is either the zero function or the identity function. The idempotency
of F implies that F,; is identically zero if FT is the zero function. F-is then the
zero mapping. I F} is the identity function, then F(z;, z,) = z; for all (z;, z,)
in A2, as we can see from the double power series expansion of F; and the condi-
tion that |F;| < 1. Thus, F(z;, z,) = (z;; 0), and F has a one-dimensional range.

If F,(z,, zp) =z, on AZ, then for each z;, the function F( -, zp) is an idem-
potent from A to A. Either F;(z,, zp) = z; for a set of values z, dense in A, and
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hence, for all z, or F(z;, z,) is independent of z; on such a set and is therefore
a function of z, alone. Thus, either the idempotent F is the identity mapping or it
has a one-dimensional range. ' ‘ ' S

Case 2. A{ # 0. Both F; and F, are linear on A% and-are given by equations
(2.1) and (2.2). Since both F; and F, have modulus less than 1, we can show, by a
judicious choice of points in A2, that 1 - |Az| > LAII >|1- Az|. It follows that
A, is real and nonnegative and that A; = n(1 - A,) for some 1 with |n| = 1. Thus
F has a one-dimensional range. We can reduce this case further by using the holo-
morphic bijection of A2 onto A2 given by L(z, z2) = (2}, 722). Then F*¥=L-1FL
is an idempotent, with ¥¥(z;, z,) = (pz; + qz;,, pz; + qz;);, where p and q are non-
negative real numbers such that p + q = 1. The proof of the theorem is complete.

We can extend the characterization to idempotents that are holomorphic on A2
and continuous on A2. For such an idempotent, we have the possibility that F(A2)
contains a boundary point of A% . Then one of the coordinate functions of F maps a
point of A2 to the boundary of A. By the maximum principle, that coordinate func-
tion is constant. If F(z;, zp) = (¢, F2(z;, z2)) for all (z], z2) in AZ where
|c| =1, then Fy(c, - ) is a holomorphic idempotent on A, and is therefore either a
constant or the identity function. The idempotency of F implies that F, is either a
constant on AZ or is the identity function on {(c, z): z'e A}.

THEOREM 2. The idempotent mappings of A% onto A? that are holomorphic
on A2 and continuous on A% are of one of the following types:

(i) F maps A2 into A2 and is chavacterized by Theorem 1,
(ii) F(Zl, Zz) = (Cl, Cz),fO?’ all (Zl, Z2) in KZ’ and ” (Cl, Cz)" = 1,

(iii) F(z,, 2z,) = (¢, Fy(z;, z)) [or (F,, ¢)], for all (z,, z,) in AZ with
le| =1, and Fylc, zp) =2, for z2 € A [or Fi(z1, ¢) =z for z; € Al

3. COMMON FIXED POINTS

We recall that if G is a bounded, connected, open subset of C X € and H(G) is
the set of holomorphic mappings of G into G, then, with the operation of composition
of mappings and the topology of uniform convergence on compact subsets, H(G) is a
topological semigroup. If f is in H(G) and I'(f), the closure of the iterates of f in
the topology of uniform convergence on compact subsets of G, is a subset of H(G),
then I'(f) is a compact topological semigroup, and consequently it contains exactly
one idempotent [2, page 100]. As usual, A(G) denotes the mappings in H(G) that
have a continuous extension to G. We shall need the following result of A. Denjoy
[1] and J. Wolif [8], [9].

THEOREM (Denjoy and Wolff). If f is a holomorphic function mapping A into
A that is not a MoObius transformation with a single fixed point in A, then the itevates
of { converge uniformly on compact subsets of A to a constant z (IZOI < 1),

We can now prove the main result.

THEOREM 3. If f and g ave commuting, continuous mappings of the closed 2-
disk, and if they arve holomorphic on the open 2-disk, then they have a common fixed
point.

Proof. Case 1. If there is a mapping F = (F;, F,) in I'(f) that is not in H(A2),
then F must map some element of A% onto the boundary. Without loss of general-
ity, we can assume that there is a constant 7 of modulus 1 such that Fi(z;, z,) =7
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for some pair (z;, z;) in A%. By the maximum principle, F; = 5 on AZ. If the
coordinate function F, is also a constant function, then F is a constant mapping,
and f and g have a common fixed point, since each commutes with F.

If F, is not a constant function, then, since f and g commute with F, the co-
ordinate functions f; of f=(f;, f;) and g; of g=(g;, g2) are constant on the set
{(n, z): z € F»(A2)}, and hence they must be constant on {(7, z): z € A}. Let
f* = f(n, - ) and g* = g2(n, - ). The functions f* and g* commute on A and are
holomorphic on A, since functions in A(A%) are holomorphic on the “undistinguished”
boundary of A2 [6, page 3]. Applying the result of Shields to f* and g*, we conclude
that if 7 is a common fixed point for f* and g*, then (5, 7) is a common fixed point
for £ and g.

In what follows, we can assume that neither of the commuting functions f and g
maps points of AZ to the boundary of Az, since we have already discussed the case
where T(f) ¢ H(A2) (or, by symmetrical argument, where I'(g) ¢ H(A2)).

Case II. If I'(f) is a subset of H(AZ2), then I'(f) is a compact semigroup. Let F
be the holomorphic idempotent in I'(f). If L is a holomorphic bijection of A2 onto
A2 | then the transformation h — L~! hL preserves commutativity and the common-
fixed-point property between pairs of mappings. Therefore, we may assume that
F(0, 0) = (0, 0), and then, from Theorem 1, we conclude that either F is the zero
mapping or the identity mapping, or F has one-dimensional range.

If F is the zero mapping, then (0, 0) is the common fixed point for f and g.

If F is the identity mapping, then I'(f) is a group, and f has a holomorphic in-
verse. The holomorphic bijections of A% onto A2 are mappings such that

(z1,25) = (Ly(z)), Lyz,))  or (z),z,) — (Ly(z,), L,(z)),

where Lj; and L, are Mobius transformations of A onto A [2, page 312]. If M isa
Mobius transformation of A onto A that is not the identity and does not have exactly
one fixed point in A, then the iterates of M converge uniformly on compact subsets
of A to a fixed point of M on the boundary of A [7, page 705].

We shall consider separately the mappings f = (L, Lp) and f=(L,, L,).

If f=(L;, Lp), then, since the identity mapping is in I(f), neither L; nor L,
can be a Mobius transformation with a fixed point on the boundary of A. If both L;
and L, have a single fixed point in A, then f has a single fixed point in A2 and it
is a common fixed point with g. If f is the identity mapping, then each fixed point of
g is a common fixed point with f. Finally, with no loss of generality, we can assume
that L, is the identity on A and that L, has a single fixed point wg in A. Then,
taking z, as a fixed point of the function g} = g,( -, wg), we see that (zp, wg) is a
common fixed point of £ and g.

If £=(Lz, Ly), then £2 = (L, L;, LjLy). Since (%) c I(f) H(AZ), neither
L, L nor Lj L, can be a Mobius transformation with a fixed point on the boundary
of A2, If f2 has a single fixed point in A2, then it is the only fixed point of f and
the common fixed point for f and g. Finally, if either L L; or L; L) is the iden-
tity mapping on A, then they both are. Then, if zy is a fixed point of the function

gt =g,(+, Li(+)), (zg, L;(zy)) is a common fixed point for £ and g.
The final possibility for the idempotent F is that the range of F is one-dimen-

sional. There is no loss of generality in assuming that F(A%) = {(z, h(z)): z € A},
where h is a holomorphic function mapping A into A with h(0) = 0.
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If the function £} =£;( -, h( - )) has a single fixed point zg, then the commuta-~
tivity of f, g, and F implies that (zg, h(zg)) is a common fixed point for f and g.

If f’f does not have a unique fixed point in A, then consider the mapping

f*=1( -, h(-)) from A to A2, With f* = (f}, 3), we see from the commutativity
of F and f that (f’f)n is the first-coordinate function of (f*). By the theorem of
Denjoy and Wolff, (f’i‘)n converges uniformly on compact subsets of A to a point zg,
in A. However, zg must lie in A, since I'(f) contains no functions that map points
of A2 to the boundary of A%, Therefore (zg, h(zg)) is in A% and (zg, h(zg)) is a
fixed point of f. It follows that (f*)" converges uniformly to (zg, h(zg)), in every
compact subset of A. The commutativity of f and g implies that g(f*)® converges
to both glzo, h(zg)) and (zg, h(zg)). The point (zg, h(zg)) is a common fixed point
for £ and g. This completes the proof of the theorem.

4. COMMUTING FAMILIES

In [7], Shields considered families of commuting, continuous functions on the
closed disk. He showed that if # is such a family, then there exists a common fixed
point for the family, provided that the range of each function contains points of A
and that the intersection # N A(A2) contains a function different from the identity.
For the 2-disk, the corresponding result fails, in a somewhat trivial manner. To
see this, we take g and h to be continuous, commuting functions on A that fail to
have a common fixed point (the existence of such follows from Huneke’s example).
Let

G(z;, zp) = (g(zy), 0), H(z, z;) = (h(z}), 0), Flzy, z,) = (21, ¥(z5),

where 7y is holomorphic and y(0) = 0. Then {G, H, F} is a commuting family, with
F holomorphic, and without a common fixed point.

However, with minor modifications in the proof of Theorem 3, we can prove the
following result for commuting families of functions.

THEOREM 4. Let & be a family of continuous, commuting mappings of A2
onto A2 such that the range of each mapping in F contains points of A%. Then
there exists a common fixed point for F provided one of the following conditions is
satisfied:

(i) All but one of the mappings are holomorphic on AZ.

(ii) There exists a holomovphic mapping in F such that neither of its coordi-
nate functions is the identity when vestricted to any disk in AZ,
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