PAIRS OF ADDITIVE EQUATIONS
R. J. Cook

1. INTRODUCTION

Let

n n
(1) F= 2 ax’ and = 21D

i=1 i=1

r—*w

where the coefficients are integers. We consider the equations
(2) F=G=0.

H. Davenport and D. J. Lewis [2] proved that if n > 16, there exists a nontrivial
solution of (2) in every p-adic field, and that if n > 18 there exists a nontrivial
solution of (2) in rational integers. By applying an appropriate form of Hua’s
Lemma, we simplify the analytic part of the argument (particularly the treatment of
the minor intervals), and we obtain the following stronger result.

THEOREM 1. If n > 117, then the equations (2) have a nontrivial solution in
rational integers.

More generally, we can consider pairs of additive equations

I

(3) = 2a : - Zpxk=0

i=1 i=1

"‘?T'

’

where k > 3 and the coefficients are integers.
THEOREM 2. If

(i) the equations (3) have a nonsingular solution in every p-adic field and in
the veal field, if

(ii) n > 2K+l
and if, in case the degree k of the equations (3) is even,

(iii) every member of the pencil {\f + ug} [\, u) # (0, 0)] contains at least
2k + 1 variables with nonzevo coefficients,

then the equations (3) have a nontrivial solution in vational integers.

Theorem 2 will not be proved; it can be proved in precisely the same way as
Theorem 1. From the p-adic results of Davenport and Lewis [3], we shall deduce
the following result, which is new for k < 12 but inferior to results of Davenport
and Lewis [4] for large k.
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THEOREM 3. If k is odd, k > 5, and n > 25" | then the equations (3) have a
nontrvivial solution in rvational integers.

The substance of this paper forms part of my dissertation at the University of
London. I am grateful to Professor G. L. Watson for his advice, and to the Science
Research Council for a grant.

2. DEDUCTION OF THEOREM 3 FROM THEOREM 2

For odd k, the equations (3) have a nonsingular real solution. We may suppose
that every member of the pencil {Af + ug} [(A, 1) # (0, 0)] contains at least 2k + 1
variables with nonzero coefficients; for otherwise, we could transform the equations
(3) into

n
f=21ax =0, g= 2 bxf=0,

i=1 i=v+l
where v = 2K + 1. We take x; =0 for i=v+1, -+, n and solve the equation
a) xlf-l— +avx5 =0

in integers x,, ***, x,, not all zero, to obtain a nontrivial solution of (3).

Since 2K > k% for k > 4, Theorem 3 now follows from Theorem 2 and the fol-
lowing two p-adic results of Davenport and Lewis [3].

If k is odd and n > 2k% + 1, then, for each prime p, the equations (3) have a
nontvivial p-adic solution.

If every form Af + pg [(X, p) # (0, 0)] in the pencil of £ and g has at least
k? + 1 vaviables with nonzero coefficients and the equations (3) have a nontrivial p-
adic solution, then they have a nonsingular p-adic solution.

3. PRELIMINARIES TO THE PROOF OF THEOREM 1

In proving Theorem 1, we may suppose that n = 17, since the remaining vari-
ables can be taken as zero. We may also suppose that every member of the pencil
{rt+ug} [(x, ) # (0, 0)] contains at least 9 variables explicitly, so that no ratio
occurs more than 8 times among the a;/b; in (1).

Since the ratios a; /by, ***, a17/b17 are not all equal, there exists a real solu-
tion of the pair of equations

0,

a;xpt-ertajgxae

0,

by Xyt +bi7X17

where each X; is different from zero. We may also suppose that each of the x; is
positive. Multiplying the solution by a suitable factor, we can choose an integer C
and a real solution such that

1<x;<C3 fori=1,-,17.
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For i=1, ---, 17, we take
(4) Yi = a;a + by
and
CP
(5) T(yy) = 27 ely; x3),
x=P

where P is a large integer. We take B to be the box defined by the inequalities
1<{x;<C (i=1, --,17).

Then the number of simultaneous integer solutions of (2) in PB is given by the ex-
pression
17

1 1
(6) N(P) = S S I T(y)deds.

0 Y0 i=1

We take the major interval Mm(A, B, R) to consist of the (a, 8) with rational ap-
proximations
|a - A/R| < P%3, |g-B/R| < PO-3,

where (A, B,R)=1; 1 <A, B<R;and 1 <R < P%. We denote the union of the
major intervals by $®. The minor intervals m consist of the remainder of the
square 0 < a <1, 0 << 1. Here 0§ is a small positive constant independent of P.

Where we use Vinogradov’s <-notation, the implied constants may depend on F and
G as well as on €.

The following lemma is the corollary to Theorem 1 of Davenport and Lewis [2].
LEMMA 1. If n > 16 and every member of the pencil

A+ gl [(x, ) = (0,0)]

contains at least T variables explicitly, then ¥ and G have a nonsingular simuliane-
ous zevo in every p-adic field.

4, THE MINOR INTERVALS

LEMMA 2. If a;b;- a;b; # 0, then
1 1
(7) ({10 TP dads < pIO*E,
0 0

Proof. For 0 < a <1 and 0 < g < 1, we have the estimates
max (| 3], [7]) <1

and
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A = |ajbs - ajbs| = |aly;, v9)/a(e, B)] <1

Since A # 0, we can change the variables of integration from « and g to y;
and y;. Using the periodicity of the integrand and applying Hua’s Lemma (see [1,
Lemma 2], for example), we obtain the estimates

1 1 1 1
[ Ir9re)Paeas < ({11010 asar,
0 %0 0 0 .

1 2
< 4 {S |T(yh)|8 dyh} < plotze
h=i,j (Yo

LEMMA 3. For each ¢ > 0,

17
< plote
(8) 5 SO 1IIllT(y)| dadg < P

wheve ' indicates the omission of one factov from the product.

Proof. Since we may assume that at most 8 ratios a; /b; are equal, the forms
y; can be arranged into 8 pairs vy, y; such that ajb; - a; b, # 0. Then, by (7),

1 1
S S H | T(v))| dadp < ES S |T) T(r))|® dadp < PO,
k,1 Y0 YO

0 i=1

For estimating the contribution of the minor intervals, it is now sufficient to
show that on m at least one of the T(y;) is small compared with P.

LEMMA 4. Suppose that (a, p) € m and ajb; - ajb; # 0. Then
(9) min (| T(yy)|, |T(r)]) < P1-0/7.
Proof, Suppose the result is false. Let
|T(rp| = P19, |T@y| = PI7,

where max (o, 7) < 6/7. Then, by Lemma 29 of Davenport and Lewis [2], there
exist rational approximations A;/Q; and A;/Q; to y; and v;j, respectively, such
that

1< Qi <P¥, |y;-A/Q < (@Q/2p30)!
1< Q; < P37, |y;-A3/Q) < @}/3p3-7) L.

Now (a b - aj :b )a b; 3% " and a similar equation holds for 8. Thus a and B
have rat1onal approx1mat10ns A)R and B/R such that (A, B, R) =1 and
R | (a;b; - a;b;)Q;Q;. Thus

R < p3(0+7T) < po,

Also,
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la - A/R| < v - A /@] + | - A5/Q;] < pItT3,
and a similar relation holds for |8 - B/R|. Thus, if ¢ < 6/7 and 7 < 6/7, then

(a, B) € M(A, B, R); this gives a contradiction.

LEMMA 5. The contribution of the minoy intevvals to the integral (6) is
< pll+e-8/7

Proof. Without loss of generality, we may suppose that a; b, - a,b; # 0. Then,
by (8) and (9), the contribution of the minor intervals is

B

]' '
(10) < max min (| T(y,)|, | T(x,)|) S II' |T(y)| dadg < pI1tE-0/7,
m 0 Y0 i=1

5. THE MAJOR INTERVALS

We shall give no detailed proofs here, because the treatment of the major inter-
vals is essentially the same as in [2]. By (6) and (10), we see that

17
(11) N(P) = SS IT T(y,)dadp +0(p11+€-0/7)
i=1

m
For (o, B) € M(A, B, R), we put

d; = g.c.d. (Aa; +Bb;, R), R = R;id;,
and

¢ =a-A/R, ¢=8-B/R, B;=a;6+by.
We choose Cj; so that (C;, R;) =1 and
(12) C;/R; = (Aa; + Bb;)/R.

The following four lemmas are essentially Lemmas 33, 35, 36, and 39 of Daven-
port and Lewis [2].
LEMMA 6. If (a, 8) € M(A, B, R), then for i=1, -+, 11,
|T()| < RiY2 min(p, P2 || 71).

LEMMA 1. EA’B (R, ---R17)'1/3 < RE2, where the summation is over
1<A<R, 1<B<R, (A,B,R) = 1.

LEMMA 8. S S IT, | min(P, P72 |8;| Ndgpay < P'! ana
-0 =00

o w 17,
5 S II min(p, P2|g,| Hdpay < PO,

~00 “-o00 i=1
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wheve ' indicates the omission of one factov from the product.
q
We take S(a, q) = Ele eq(ax3) and
CP s 1 clcp)? 2/3
1) = { elgeDae =3 [ n2elpn)an.
P p3
LEMMA 9. For (a, B) € M(A, B, R),
T(y;) = Ry S(C;, R)I(B,) + ORI/ ).
LEMMA 10. The contribution of the major intevvals to the integral (6) is
(13) G(P%) J(P) +O(P21/2),
where
17 17
apd) = 2 2 II r}' s(C,,R;) and J(P) = SS IT 1) dody,
R<PO A,B i=1 i=1
the integration being over max(|¢|, |¢|) < po-3 .

Lemma 10 follows from Lemmas 40 and 41 of Davenport and Lewis [2]. The
next can be proved in the same way as Lemma 42 in [2].

LEMMA 11. As P —
(14) J(P) ~ KP1l

wheve K is a positive constant depending on C.

6. COMPLETION OF THE PROOF OF THEOREM 1
If any ratio occurs more than eight times among the a; /b; , Theorem 1 follows

from the remarks in Section 2. Otherwise, by (11), (13), and (14), we have the esti-
mate

N(P) = KP!1G(P% + o(P!l) as P— .
Continuing the series for G(Pﬁ) to infinity, we obtain the formula

co 17
¢c= 2 2 Il r'sc,,R).
R=1 A,B i=1

Thus

i 17 oo
G< 2 2 Il R{'/3 < 2 RrE-2,
R=1 A,B i=1 R=1

Hence the series is absolutely convergent and |G - G(PY| < P-%/2  Now, by (12),
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R:!s(C;, R;) = R"15(Aa; +Bb;, R),

so that
co 17
G= 2 22 R' II s(Aa; +Bb;, R).

R=1 A,B i=1
Writing

00 P Pv 17

Xp=1+ 2 22 22 (e 7 II S(Aa; + Bby, p¥),
v=1 A=1 B=1 i=1
(A,B,pY)=1

we have the relation G = Hp Xp-

From Lemma 7 it follows that |x, - 1| < p®-2 for large p. Hence there exists
Py such that sz Po Xp >1/2. For each p <pg, there exists a nonsingular p-adic
solution of (2), by Lemma 1. Hence Xp > 0 for such p. Thus G > 0, and therefore

11)

N(P) = KGP!! + o(P as P— o,

and KG > 0. Thus N(P) > 0 for large P, and the proof of Theorem 1 is complete.
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