TWO-SLIT MAPPINGS AND THE MARX CONJECTURE
Peter L. Duren and Renate McLaughlin

1. INTRODUCTION

Let S* denote the class of functions f(z) = z + a, z% + ++- that map the unit disk
|z| < 1 conformally onto a domain starlike with respect to the origin. Let
k(z) = z(1 - z)"¢ denote the Koebe function. In 1932, A. Marx [5] proved that for
each f € S*, the function f(z)/z is subordinate to k(z)/z, and he conjectured that
f'(z) is subordinate to k'(z). In other words, the Marx conjecture asserts that if

K, = {k'(z): |z| <r} (0<r<1)
and

M, = {f'(r):f e 8*},

then M, = K, for each r (0 <r <1).

Marx proved this conjecture for all r < sin 7/8 = 0.382 ---. R. M. Robinson [7],
[8] improved the constant to (5 - v 17)/2 = 0.438 -+, and later to 0.6. P. L. Duren
[1] made a further improvement to 0.736 -+-. R. McLaughlin [6] obtained the same

constant with a different method. However, J. A. Hummel [2] has recently con-
structed a counterexample, which shows that the Marx conjecture is false for all
sufficiently large r. Hummel’s example is a mapping

— Z .
(1) f(z) = TRPAT TP T (0<b<2;0<s,t<2n

of the disk onto the plane slit along two rays. The construction is based on a con-
tinuity argument that gives a counterexample for sufficiently small values of b. On
the other hand, Hummel shows that, for each r < 1, every point on the boundary of
the Marx region M, corresponds to a two-slit mapping of the form (1). Thus the
Marx problem is actually equivalent to an analogous question concerning two-slit
mappings.

We shall prove that for two-slit mappings with equal weights b and 2 - b, the
Marx conjecture is true. This result is stated more precisely below. Recall that if
F and G are analytic functions in the unit disk, then F is said to be subordinate to
G if F(z) = G(w(z)) for some analytic function w with |w(z)| < |z| .

THEOREM 1. If f is a function of the form (1) with b = 1, then ' is subordi-
nate to k'.

The proof depends on a study of the valence of the functions k' and f'. In par-
ticular, we find that v k' is univalent. In Section 4, we show that log k' is starlike.
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2. DERIVATIVE OF THE KOEBE FUNCTION

In preparation for the proof of Theorem 1, we study first the range of

. 1+
k'(z) _F_zz—)g (lz] <.

For each complex number «, k'(z) = o if and only if
(2) @z3 - 3az2+Ba+Uz+(1-a) = 0.

Hence the problem is to determine, for each a, how many roots equation (2) has in
the unit disk. For this, we shall use a theorem of M. Marden [4, p. 197].

For each polynomial p(z) = ag +ajz+ - +a,z", define
p*(z) = z2°p(1/z) = a, +a,_;z+ - +ipz".
Starting with a polynomial p(z) = py(z), construct the polynomials

pj(z) = af)j) +a.(1j)z + oo + a](nj_)j 72 (G=1, -, n)

by the relation

Pj+1(2) = igj)pj(z) - aff_)j p}((Z).
Let §; = ag) ,and let Py = 6; 65+ 8 (k=1, -»», n). Marden’s theorem asserts that

if q of the products P) are negative and the remaining n - q are positive, then p(z)
has q zeros in Iz] <1 and n - q zeros in |z| > 1.

Setting @ = u + iv, one computes for the polynomial (2) the values
6y = 1-2u, 6, =1-4u-12u%-16v%, 63 = 16(2u - 1) (u + 4u? + 4u> + 8v?).

Clearly, 6, is positive in the half-plane u < 1/2, and 6, is positive inside the
ellipse

(3) 9(u +1/6)% + 12v% = 1.

The expression 63 is positive in the half-plane u > 1/2 and in the two regions Gg

and G, (see Figure 1) containing an interval of the negative real axis and bounded
by the curve 8v% = -u(2u + 1)2.

The region Gg lies inside the ellipse (3). Applying Marden’s theorem, one ob-
tains the following result.

THEOREM 2. I the unit disk |z| <1, the function k'(z) omits all values in
the set

Go = {u+iv:-1/2 <u<0, v < -u(2u+1)%/8},
it assumes all values in the set
G, = {u+iviu<-1/2, v2 < -u(2u+ 1)%/8}

exactly twice, and it assumes all other values exactly once.
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Figure 1. The curve 8vZ = -u(2u + 1)2.

COROLLARY. The function Vk'(z) is analytic and univalent in lz| <1,

3. DERIVATIVE OF TWO-SLIT MAPPINGS
We wish to compare the range of k'(z) with that of f'(z), where
f(z) = z(1 - zels)-1(1 - zeit)-1,

We shall prove Theorem 1 by showing that the range of f' is contained in the range
of k', where both ranges are regarded as subsets of a two-sheeted Riemann surface.
This will imply that the range of the univalent function vK' contains the range of
VI'. An appeal to Schwarz’ lemma then shows that V' is subordinate to vk', and
this proves Theorem 1,

In calculating the range of f', we may assume without loss of generality that
s=0and 0<t <, sothat

(4) f'(z) = (B =elt).

If t=m, then f'(z) = (1 +22)(1 - z2)-2, But it is easy to see (by Marden’s theorem,
for instance) that the function

W=u+iv=—1—+(—
(1-¢r
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maps the disk |§‘| <1 conformally onto the parabolic region u + 2vZ > 0, which ex-
cludes the region G (see Figure 1). Hence f' is subordinate to k' if t = 7.

Assuming now that 0 <t < 7, we use the identity
1-el% = V2V1-cos 6ell0-1)/2  (0< 0 <27)

to express f’(eie) in polar form, and we obtain the relation

V2  (1-cos(26 +t)/2 elW(9)

1By _
(5) f'(e’”) = 4 (1-cos 6)(1 - cos(6 +1t))

where
-0 -(t+m)/2 if (i) 0<o<nm-1t/2,

-9 - (t-m/2 if (i) m-t/2<6<21-1t
(6) Y(0) =
or (iii) 27 -t < 8 < 27 - t/2,

-6 -(t+m/2 if (iv) 27 - t/2 < 6 < 27.

The function f'(z) has zeros at z = +e-1t/2 and polesat z=1 and z = e-it. The
polar representation (5) shows that f' maps the arcs (i), (ii), (iii), (iv) of the unit
circle, as defined in (6) and illustrated in Figure 2, onto curves of the type shown in
Figure 3. These curves bound regions Rg, R}, Ry, R3, and Ry, as indicated in

in Figure 3. A local inspection of f' near the poles 1 and e-it reveals that f'
carries small circular arcs centered at these points (as shown in Figure 2) onto
curves of the types indicated by dots in Figure 3.

A

e-it/2

Y

Figure 2. Subarcs of the unit circle.
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Figure 3. The range of f'.

A study of Figure 3 reveals that for sufficiently small circular arcs circum-
venting the poles, the image of the modified unit circle winds about each point in
Ry, R;,R,,R;, Ry exactly 0, 2,1, 1, 2 times, respectively. Thus, by the argu-
ment principle, ' maps the unit disk onto a domain that omits Ry, covers R, and
R3 once, and covers R; and R4 twice.

Therefore, in order to show that the range of vk’ contains that of V1" , it will
be enough to show that Gy € Rg and R; C G;. We can establish these inclusions by
showing that each ray from the origin meets the boundary of G, before it meets that
of Rp and meets the boundary of G; before it meets that of R;. For this purpose,

we c%mpare the polar representation of f'(eif), as given by (5) and (6), with that of
k'(et?):

oif) = Y2 (1 - cos 20)!/2 eid(8)

) k'
( ( 4 (1 - cos 9)2
where
—9-% if 0<0<m,
(8) $(6) =

-9+g if 1< 0 <2r.
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Since the curves f'(el?) and k'(elf) are both symmetric with respect to the real
axis, we may confine attention to the branch of (7) for which 0 < 6 < 7, and to the
corresponding branch of (5) for which 0 < § < 7 - t/2. For each 6 in the interval
(0, ) for which the ray from the origin with argument ¢(80) intersects the arc (i) of
the boundary curve of f', let 6* be determined so that ¢(6) = y(6*) and

0 < 6* <7 -t/2;that is, 6* = 6 - t/2 and t/2 < ¢ <7. Now we have only to show
that

(9) |k'(elf)| < |£(ei®™)] (t/2< 0 <.
But (9) is equivalent to the elementary inequality
[1- cos(8 - a)][1-cos(8+a)] <[1-cos6]?,

where ¢ < 6 <7 and 0 <« =t/2 <#/2. This completes the proof of Theorem 1,

4, STARLIKENESS OF log k'(z)

Although k'(z) is not univalent, it is interesting to observe that log k'(z) is uni-
valent and maps the unit disk onto a starlike domain. In other words,
log 4 k'(z) € S*. The starlikeness is an immediate consequence of the polar repre-
sentation (7), which gives the relation

log k'(el?) = log p(0) +i(6),
where p(0) = lk'(ei‘g)l . The appropriate form of ¢ is now

3r/2 -6 if 0<9<m,

¢(0) =
/2 - 8 if m< 6 <27.

In the interval (0, 7), log p(#) decreases from +« to -« , while ¢(8) decreases
from 37/2 to n/2. In the interval (m, 27), log p(#) increases from -« to 4+,
while ¢(6) decreases from -7/2 to -37/2. Hence these two curves bound a strip
that is starlike with respect to the origin. The actual domain is shown in Figure 4.

Professor M. S. Robertson has communicated to us the following proof that
w = log k'(z) is close-to-convex (see W. Kaplan [3]), and therefore univalent. Let

F(z) = logk'(z), G(z) = %bg i “_LZ.

Then w = G(z) is a normalized convex mapping, and the function

F'(z)

o) = 2(2 +z)

has positive real part.
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Figure 4. The images of the circles Izl =1 and Izl = 0.9
under the mapping w = log k'{z).
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