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THE SUM OF SOLID SPHERES
W. T. Eaton

1. INTRODUCTION

A crumpled cube or solid sphere K is a space homeomorphic to the union of a
2-sphere (topologically embedded in the 3-sphere S3) and one of its complementary
domains. The interior of K, denoted by Int K, is the set of points where K is a 3-
manifold (without boundary), and the boundary of K, denoted by Bd K, is the 2-
sphere K - Int K. With each pair of crumpled cubes K; and K; and each homeo-
morphism h: Bd K; — Bd K; we associate a space, denoted by K; Uy Ky and called
the sum of K; and K, by h. It is obtained from the disjoint union of K; and K;
by identification of each point p in Bd K; with its image h(p) in Bd K.

The space K; Uy K> may not be a 3-manifold; but its multiplication with E!l
always yields a manifold [11], namely S3 x E1; this indicates that each space
K] Un K> behaves much like S3. In fact, a result of S. Armentrout [2] says that if
K; Up K7 is a manifold, then it is S3. Many of the interesting upper-semicontinu-
ous decompositions of S3 may be viewed as the sum of two crumpled cubes [15], and
conversely, the sum of two crumpled cubes is always the decomposition space of
some u.s.c. decomposition of S3 [18].

In Theorem 3 we characterize the sums of crumpled cubes that are topologically
equivalent to S3. The theorem says that K; Uy K, is S3 if and only if h mis-
matches two special 0-dimensional F -sets in the boundaries of K; and K;. We
present some applications and corollaries to this mismatch theorem in Section 6,
and in Section 3 we reduce the sufficiency to the main lemma of Section 4. In Section
5, we reduce the necessity to the 2-sided approximation theorem. of [14], and in Sec-
tion 2 we give some preliminary information.

2. 0-DIMENSIONAL F;-SETS IN THE BOUNDARY
OF A CRUMPLED CUBE,

N. Hosay [17] and L. L. Lininger [18] have shown that each crumpled cube K can
be embedded in S3 so that C1(S3 - K) is a 3-cell. Consequently, the following defi-
nition has meaning in connection with all crumpled cubes.

Definition. A closed set X in the boundary of a crumpled cube K is fame, pro-
vided every embedding of K in S3 such that C1(S3 - K) is a 3-cell carries X into a
2-sphere in S3 that is tame in the usual sense.

Because of its importance to this work, we restate in modified form a theorem
due to R. H. Bing [7].

THEOREM 1. If K is a crumpled cube, then there exists a 0-dimensional F ;-
set F in Bd K such that F y Int K is 1-ULC. Fuvthermovre, if {Xl} iS a sequence

of tame arcs in Bd K, then F may be chosen so that it lies in (Bd K) - U X;.
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194 W. T. EATON

The theorem above establishes the existence of F and gives some indication
where F may lie in Bd K. It is important to note that F may not be unique.

Another important theorem for this work is the following, due to L.. D. Loveland
[20].

THEOREM 2. Suppose K is a cvumpled cube, F is a 0-dimensional F,-set in
Bd K such that F U Int K is 1-ULC, and A is a finite graph in (Bd K) - F. Thern A
is tame,

We conclude this section with a useful lemma from the topology of E2 .

LEMMA 1. Suppose S is a 2-spheve, F is a 0-dimensional F -setin S, C is
a closed set in S - F, A is a finite graph in S, and € > 0. Then there exists a ho-
meomorphism f on A such that f(A) C S - F, f| (CNnA)=1,and pf, 1)< &.

3. THE MISMATCH THEOREM

The main result of this paper is the following theorem.

THEOREM 3. Suppose K| and Ky are crumpled cubes and h is a homeomor-
phism from BAd K, to Bd K,. Then K| Uy K, = S3 if and only if theve exist disjoint
0-dimensional F -sets ¥, and F, in Bd K, such that ¥, U Int K| and
h(F,) U Int K, are 1-ULC.

Sufficiency. We assume that K; and K, are embedded in S3 so that S3 - Int K;
is a 3-cell [17], [18]. Using Lemma 1, we find disks D; and D, in Bd K; such that
BdK; =D;UD,, D;ND, =BdD; = BdD,, (FJUF,)NBdD; = ¢@.

By the hypothesis and Theorem 2, h(Bd D;) is tame. We push the interior of each
disk h(D;) slightly into S3 - K, to form a tame disk E; [13] such that

BAdE; = h(BdD;) and IntE;NIntE, = @.

The 2-sphere E; U E, is tame and thus bounds a cell C containing K, ; further-
more, E; U h(D;) (i =1, 2) bounds a cell C; in C. There exists a homeomorphism
g of C onto S3 - Int K; such that

gh|BdD, =1, gE))=D;, gE,) =D,.

Let U; (i =1, 2) be open sets such that g(C;) - Bd D; C U; and U; NU, = @. The
hypotheses of Theorem 4 are satisfied for the 3-cells g(C;) (i = 1, 2), the disks D;,
the homeomorphisms gh | D;, the O-dimensional, disjoint F;-sets D; N F; and

D; N F,, and the open sets U;. The sufficiency of the condition in Theorem 3 will
therefore be established when we have proved Theorem 4.

In the proof of the next theorem and of Lemma 2, we use the following concept.

Definition. A collection of 2-cells D, ---, D, in a disk D is a cellular sub-
division of D if It D; N Int D; = ¢ (i # j) and D = U D;. The mesh is the maxi-
mum of the numbers Diam D;, ---, Diam D,, .

THEOREM 4. Suppose C is a 3-cell in g3 , D isadiskin Bd C, h is a ho-
meomorphism of D onto CL((Bd C) - D) such that h| BdAD =1, F| and F, are dis-
joint O-dimensional Fy-sets in Int D such that F, U h(Fz) U Ext C is 1-ULC, and
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U is an open set containing C - Bd D. Then theve exists a map { of S3 onto S3
such that

(1) £|s? -u=1,
(2) £|S3 - C is a homeomorphism onto S3 - 1(C), and
(3) £ | D = th, and fh is a homeomorphism onto 1(C).

Pyroof. We apply Lemma 2 repeatedly. First, we squeeze the 3-cell C to a
finite collection of smaller 3-cell whose union is a disk with the 3-cells attached
along subdisks. Each of these 3-cells we squeeze similarly to still smaller 3-cells.
We continue the process, and in the limit C is entirely flattened to a disk. The de-
tails are as follows.

Let {U;, U,, -} be a sequence of open sets in S such that UD U ;D U,D
and n U;=C - Bd D, and let {g;,¢,, ***} be a sequence of positive numbers such
[>0]

that 21 €; <. The map f is the limit of a sequence of maps f; defined induc-

tively. Apply Lemma 2 to obtain a cellular subdivision {Dl} of D of mesh less
than ¢, and a map f; of S* onto S3 such that f;(D}) U f; h(Dl) bounds a 3-cell K}

in fl(C) of diameter less than €. Let {Vi } be a finite collection of disjoint open
sets in f 1(U l) such that

K{ - £,(BdD}) c v! and Diam V! < ¢,.

By induction, we can assume that {D]'} is a cellular subdivision of D of mesh less
than €, , f, is a map of S3 onto S*, K] is the 3-cell bounded by f,(D;) U f_ h(D}),
and {V{} is a finite collection of disjoint open sets in f,(U,) such that

K{'-f,(BdD]) c V! and Diam V] <¢

For each i, apply Lemma 2 to the 3-cell K , the disk f (Dn) the homeomorphism
f, hf'1 l f (Dn) the disjoint 0-dimensional F -sets f (D}' N Fl) and f (D N F,), the
open set V', and use a sufficiently small ¢ to obtain a map f},; of S3 and a cellu-
lar subd1v1smn {E}} of £,(D}) such that the mesh of {i-YE 1)} is less than €,

and the diameter of the 3-cell bounded by f1+1(E1) Ul f hf'l( 1) is less than

n+l n

€,+1- The mapping an consists of f, followed by the mapping obtalned by piecing
together the mappings f1+1 The colle{;tmn {Dp*1} is given by {f- 1(E )} o and
each 2-sphere f_, ,(DP*]) Uf_ . h(DP*!) bounds a 3-cell KP*! in £ +1(c) Choose a

finite collection {VP*1} of disjoint open sets in f_,,(U,,;) such that
t,BIDMY ¢ v plamvPl<e,,, ad Uvic UvD

1

Kp+1

1

It is easy to verify that the map f = lim f; satisfies conditions (1), (2), and (3).

4. THE MAIN LEMMA

Definition. The arc A is a spanning arc of the disk D if A CD and
A NBdD=BdA. The disk D is a spanning disk of the 3-cell C if D C C and
D N Bd C = Bd D. The arc A is a spanning avc of the annulus H if A C H,
ANBdH=BdA, and H - A is connected.
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Let C be a 3-cell and D a disk in Bd C. We say that the cross-sectional
diameter of C with respect to D is less than ¢ if there exists a homeomorphism g
of DX I onto C such that g(x, 0) = x for all x € D and Diam g(D x t) <& for all
t el

LEMMA 2. Suppose C is a 3-cell in S3, D isadiskin BAdC, h is a homeo-
movphism of D onto C1((Bd C) - D) such that h| BdD =1, F; and F, ave disjoint
0-dimensional Fy-sets in Int D such that F; U h(F,) U Ext C is 1-ULC, U is an
open set containing C - Bd D, and € > 0. Then therve exist a cellulay subdivision
{Dy, -+, Dn} of D with mesh less than ¢ and a map £ of S3 onto S3 such that

(1) f|s3-Uu =1,
(2) f| S3 - C is a homeomorphism onto 83 - £(C),
(3) botn £ I D and f| h(D) are homeomorphisms,

@ (Usap,) n(r, Uy =8,
f(UBdDi),

6 £|U Bap, = m|U BdD,, ana
(7) £(D;) U th(D;) bounds a 3-cell in 1(C) of diameter less than €.

Proof. The proof consists of two main steps. In Step 1, C is squeezed to a
finite collection of cross-sectionally small cells. In Step 2, each cell from Step 1 is
squeezed to a finite collection of small cells. Step 2 is divided into three parts. In
Part A, we use the 0-dimensional F;-set F; to obtain a special map that allows us
in Part C to shorten the cells from Step 1. In Part B, we use the 0-dimensional F -
set h(F,) to achieve a partial splitting of the cells created in Step 1. In Part C, we
shorten and split the cross-sectionally small cells, using the structures from Parts
A and B. Parts A, B, and C are repeated in sequence a finite number of times, until
the cells from Step 1 are sufficiently short.

Il

(5) £f(D) N th(D)

Step 1. By B2 we denote the standard unit square in E2, by a the geometric
center of B2, by b a point in E3 one unit below a, by B3 the 3-cell that is the join
of b and B2, and by p the projection map of B3 onto B2 that moves points verti-
cally. Let g be a homeomorphism of B3 onto C such that g-1(D) = B2 and
pg-1hg| B2 = 1. Using spanning arcs parallel to the edges of B2, we partition B2
into a finite collection {El} of small squares. By Lemma 1, we may assume that

g(G) U hg(G) € BA C - (F, U h(F,)),

where G = U Bd E; . It follows from Theorem 2 that the graph g(G) U hg(G) is
tame, and consequently, by [13], g(p-1(G)) is tame. Corresponding to a point t in
the line segment ab from a to b, let L(t) denote the join of t and Bd B%, and if s
and t are two points in ab, let L(s, t) denote the 3-cell in B3 bounded by

L(s) U L(t). We also assume that Diam E; is so small that Diam g(p-1(E;) N L(t))
is less than ¢ for all t in ab.

We complete Step 1 by pushing the tame graph hg(G) along g(p~1(G)) to the
graph g(G). Care must be taken, however, to insure that this squeezing of C pro-
duces cross-sectionally small cells. The required map is the composition of a finite
collection {a;} of maps of S3 onto S3, obtained as follows.

Let b=ty <t; <--- <t,=a be a partition of ab such that
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Diam g(p~!(E;) N L{t;, t;py) < €.

For i=1, ---, n, we let a; denote the projection map of T; = g(p~1(G) N L(t;_;, ty)
onto G; = g(p~1(G) N L(t;)) defined by the relation

a;i(x) = g(p~lpg~1(x)) N L(ty)) .

We extend the maps «; to S one at a time, as follows. Select a small regular
neighborhood V| of T; - G; such that V| N g(L(t;, ty)) = @. Extend the map «)] to
S3 so that a; | S3-V,=1, sothat a; l S3 - T; is a homeomorphism onto S° - Gy,
and so that p(a;, 1) <e. Let N; be a regular neighborhood of G in B2 | suffi-
ciently near G to ensure that o; hg(N,) lies in a thin tubular neighborhood of G; .
Let V, be a small regular neighborhood of T, - G, such that

v, N g(L(tz , tn)) =@ and Vo, N oy hg(B2 - Int Nl) = Q.

Now extend the map a, to S3 so that a, ] s3 - v, =1, so that a, [ s> - T, is a ho-

meomorphism onto S3 - G, , and so that pla,, 1) < €. Choose a regular neighbor-

hood N, C Int N; of G in B? sufficiently close to G to ensure that o, o) hg(Ny)

lies in a thin tubular neighborhood of G, . Continuing thus, we define

V3, (]!3,N3,V4, "',Oln.
The map squeezing C to a finite collection of cross-sectionally small cells is

the composition @ = @, *** @, and a typical cell is the 3-cell C! bounded by

g(E;) U ahg(E;). The cell C! is cross-sectionally small with respect to g(E;), since

for j=1,2, ---, n- 1 there exists a spanning disk of C! near the disk

g(L(tJ-) N p-1(E;)). Figure 1 represents a schematic diagram of the squeezing

process of Step 1.

Step 2. We squeeze the cross-sectionally small cells C! from Step 1 to small
cells. We find a finite collection {U*} of disjoint open sets in U such that
C! - Bd g(E;) c U', and we squeeze each of the cells C' individually, moving only
points in Ul. For convenience, we drop the superscripts, identify the disk g(E;)
with D, and use the notation and hypothesis of Lemma 2 with the additional require-
ment that the cross-sectional diameter of C with respect to D is less than ¢.

We write C as the union of a finite collection {Cy, C;, **+, C,} of 3-cells,each
with diameter less than €. We arrange the cells {C;} in a linear order such that
C; NC;=¢@ if |i-j| > 1, and such that the set C;.; N C;=Bd Cj_; N BdC; isa
disk H;. We select the cells Cy, C;, --*, C, so that the disks D, H;, ---, H,, are
disjoint and D C Bd C;. By Lemma 1, we may assume that

h'l(UBdHi) N(F,UF,) = &,

and since F, U h(FZ) U Ext C is 1-ULC, we may assume that H; and h“l(Bd Hi)
are tame, by Theorem 2 and results of [13].

Part A. Denote by A the annulus h~1(Bd Co), and by B the disk D - Int A.
Push the interior of A into Int Cg to form a tame annulus A' such that
Bd A' = Bd A. Since Bd B is tame, an improvement of the side-approximation
theorem [19, Theorem 21] implies that there exist a finite collection of disjoint disks
I;, -, 1. in Int B, a null sequence of disjoint disks I.;;,I.;2, - in In{ A, and a
homeomorphism B; of D into U U Bd D such that 8,(D) is tame, 8; ] BdD-=1,
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g(Ei)
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Figure 1.

Bl(IntD- ( U IntIi>) CExtC, p;(I)nBdC =p,I)NnI,,

and 8;(D) N A' = . We also have control over the size of the loops

B1(Bd I;) C Ext C and over the distance through which 8, moves points. Conse-
quently, since F, U h(Fz) U Ext C is 1-ULC, we may assume that the simple closed
curve ;91 (Bd I; ) 8 o, r) bounds a smgular disk B in the intersection of

F, UExt C and a small neighborhood of B. The set

(o Un)o(Un)

is the image of D under a map 8, into U+ Bd D. We constructed g, so that it
possesses the following properties: B, | Bd D =1, Diam 3,(D) U Cq < €, no singular
point of B, is near Bd D, and if C' is the 3-cell 1n C bounded by ((Bd C) - A)UA',
then g,(D) N C'=(Bd D) U K, where K is a compact 0-dimensional subset of

F, N B.
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In Part C, we apply Dehn’s lemma to the map B, and use the resulting disk to
achieve a partial collapse of the 3-cell Cy. Points near the set K can not be moved
very far; however, we have enough hypotheses to enable us to push the set h(K) to
the cell Cy. The construction of a map of S3 onto S3 that pushes h(K) to H;, and
splits each of the cells C,, C,, ---, C,, is the subject of Part B.

Part B. The compact 0-dimensional set K from Part A lies in F) N B, and
since F|; N F, = ¢, we can find arcs in h(B - F,) that contain h(K), by Lemma 1.
In particular, we find a spanning disk E of the 3-cell C;, U C, U --- U C_ such that
H;, N Bd E is a spanning arc A} of H;, h(B) N Bd E is a spanning arc A, of h(B),
and h(K) € A, C h(B - F,). Since Bd H; € h(B - (K U F,)), we may choose E so
that E N C; is a spanning disk of C; (i =1, 2, ---, n). Since F; U h(F;) UExt C is
1-ULC, Theorem 2 allows us to assume that E is tame. The simple closed curve
A, UA; = Bd E is the boundary of two disks R; and R; in the boundary of the cell
C; U --UC,. The disk E splits the cell C; U --- U C, into two cells Q; and Q;
such that Bd Q; =E UR; and Bd Q, = E UR, . The cross-sectional diameter of
Q; is less than €, and the length of Q; is less than the length of C, in the sense that
there are fewer terms in (Q; N C;) U --- U(Q; N C) thanin CLUC, U --- UC,,.

We now find a map k; of S3 onto S3 that squeezes the disk E to the arc A;.
The existence of the map with the properties described below follows from the tech-
niques of Step 1. Let V be a small regular neighborhood of E - A; such that
vn CO = ¢.

There exists a map k;: S3 — §3 such that k; | S3 - V =1, such that k, | 8° - E
is a homeomorphism onto s3 - A, , and such that k, I E is a projection onto A, .
Furthermore, using the techniques of Step 1, we may choose k; so that the two 3-

cells bounded by k;(R;) and k;(R,) are close approximations to the cells Q; and
Q> , respectively.

Using Lemma 1, we select a subdisk M of B such that (Bd M) N (F; U F,) = @,
the set h-1(A,) is a spanning arc of M, Bd M N Bd B = Bd h-1(A;), and k; h(M) lies
in a small tubular neighborhood W of A; . With a homeomorphism k,: S3 — S3 that
is the identity outside W, we push the boundary of k; h(M) to H; in such a way that
k, k; h(Bd M) bounds a disk M' in H;, so that A is a spanning arc of M', and so
that k, k; h(Bd M) N Bd H; = Bd A; . Furthermore, we select a map k, so that

k, |k, h(BAB) =1, IntCyNkyk,(B)=¢@, H, Nkyk; h(B)=k,k, h(Bd B U Bd M).

In Part C, we use the map B from Part A to achieve a partial collapse of the
cell C, into a small neighborhood of H; .

PartC. Let B; =h"!Y(R;) N (B-Int M) and B; =(R; N H;) - Int M' (i=1, 2).
Push the interiors of the disks B;, M, and B, slightly into the interior of Cg  to
form disks B}, M", and B} such that Bd B; = Bd B; and Bd M = Bd M". Since
BdD UBd BU Bd'M CD - F;, we may assume, by Theorem 2, that the disk
A'UBj UM" UBjS =D' is tame. We can now apply Dehn’s lemma [22] to the singu-
lar disk B8,(D) from Part A. Note that 8,(D) fails to intersect B, and B, , and that

B(D)N D' = B,(BAD) = BAD = BdD';
consequently, we may apply the lemma in a small enough neighborhood of BZ(D) to
ensure that the resulting disk H has the following properties: H U D' is the bound-

ary of a tame 3-cell X such that

B; CX (i=1,2), DiamXUCy<e, XCUUBID.
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We need the following notation, in order to describe a map q that partially col-
lapses Cp. Let H' be an annulus in the disk H such that Bd H C Bd H', and let A"
be the annulus obtained by pushing the interior of the annulus A' U H' slightly into
the interior of X. The annulus A" is constructed so that A' U A" U H' bounds a
solid torus Y C X in such a way that C(X - Y) is a 3-cell Z with B; C Z (i =1, 2).
Push the interior of the disk H; shghtly into Int Cy to form a disk Hl such that
H} U H; bounds a tame 3-cell Z' with the property that Diam Z'U C; <e&. Let Hj
be an annulus in H) such that Bd H} C Bd H}, and let H" be the annulus obtained
by pushing the interior of the annulus h(A) U H into the interior of the 3-cell
Co - Int Z'. The annulus H" is constructed so that h(A) U H] U H" bounds a solid
torus Y' C Cy.

8, (D)
T
f B, B, u R

BZ 1
- °1 \)
C
C(2) C(1)
C,
C3
After Part A After Part B After Part C
LJ
After two sequences After Step 2

of Parts A, B, C

Figure 2.
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Let U' be a thin shell neighborhood of Int H. A mapping q of S3 onto 83 may
now be described as follows: q | S3-(cuxuu')=1,q | X U U' is a homeomor-
phism into Co U X U U', q(Y)=Y'", q(Z) = Z', and

q|BADUBdBUBAM = kpk;h|Bd D UBd B UBd M.

We place no restriction on the extension of q to the remainder of S3.

We observe that the diameter of the 3-cell R bounded by q(M) U k,k; h(M) is
less than €, since Diam Cy U X < € and kkj h(M) lies in a small tubular neighbor-
hood of A; C Bd Cg; that the solid torus T bounded by q(A) U h(A) has diameter
less than €, since Diam Cg U X < ¢; and that for i =1, 2, the 3-cell C(i) bounded by
q(B;) U k,k; h(B;) has cross-sectional diameter no greater than that of C, but is
shorter in the sense that one fewer cell of diameter € is required to describe it
linearly.

Finally, let J; and J, be disjoint spanning arcs of A such that
J; CA - (Fy; UFp). We push the arcs g(J ;) and q(J2) to the arcs h(J;) and h(J;),
respectively, along disjoint tame meridional disks of T. The image of T consists
of two 3-cells, each with diameter less than €.

Let U; and U, be disjoint open sets containing C(1) - q(Bd B;) and
C(2) - q(Bd B,), respectively. We repeat Parts A, B, and C in sequence for each of
the pairs (C(1), U;) and (C(1), U,), and again for the four resulting pairs. The
process continues until all cross-sectionally small cells have been shortened to
size €. Figure 2 represents a schematic diagram of Parts A, B, and C.

9. NECESSITY

In this section we reduce the proof of the necessity in Theorem 3 to the follow-
ing two-sided-approximation theorem established in [14] (notation:
S =Bd K; =h(Bd K;) = Bd K,).

THEOREM 5. If S is a 2-spheve in E> and € > 0, then there exist a finite col-
lection {D1, ... Dn El ... En} of disjoint e-disks in S and g-homeomorphisms
f, g: S — E3 such that

(1) f(S— U IntDi) C Ints,

(2) £DY) N8 C It DI,

(3) g(S— U mt Ei) C Ext S, and

(4) g(E)N 8 C Int EY,
Furthermove, we may assume that i(S) and g(S) ave polyhedral and £(S) N g(S) = @.
We take the disjoint O-dimensional F,-sets required in Theorem 3 to be sums

of intersections of unions of disks obtalned by applying Theorem 5 repeatedly. Let
€] = 1, apply Theorem 5 with € =¢€; , and let D1 , El , g be the resulting dis- .

joint £) -disks and €; -homeomorphisms. Let D‘* and El* be subdisks of Int D1
and Int El , respectively, such that

DN (D)) € mtDY* and E} ng(E}) c mtEL*,
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Ppoceeding inductively, we assume that €, _;, DI1 15 En 15fn-158n-1> Dn 1 and
E; 1. have been defined. Let ¢, be a positive number less than each of the numbers

(1/8)e,_,, (1/4)p(S-DL_;,Di %), (1/4)p(s-EL_| B %),

*

p(s - DL ¥, £, /(DL ), p(S-EL_*, e, 1(EL ),

p(D, 1, (8- D} ), P(Ey, 1, 8,.1(S - EL ).

n-1

Apply Theorem 5 with € = £, and let D}l, E}l, f,, g, be the resulting disjoint €, -
disks and €,-homeomorphisms. As above, let Di* and EL* pe subdisks of Int D;
and Int El | respectively, such that

D, Nf,(Dh) € mtD.* and E.Ng (E)) c mtEL*,

- B(AUR)) = e D(R(Y))

The sets F and G are clearly O-dimensional F;-sets. They are disjoint, since

(UD) (UEn) ¢ for each n.

Before we show that F U Int S is 1-ULC, we establish the existence of a special
map f, taking the 3-cell B, = {,(S) U Int £ (S) to the 3-cell

Let

Let B; be the component of B - f.,(D.*) that contains £.(S - Dfl). By Tietze’s
extension theorem, there exists a map

B;: B, — B11f1 U i:‘nvl~l(D:1*)

such that ,81'1 | Bi =1 and [3;1( Bi) +1(Dlil*)' We obtain the map B, by piecing
together the f1n1te collection of maps B B -+« . The diameter of the set
(B - Bl) U DL* is less than 3¢, , and since 88n+1 < €, , the diameter of the set

Ul = N((B, - BY) U DL*, 4¢_,;) is less than 4e, . It is a simple exercise to verify
that the maps B,: B, — B, ;1 and the sets U}, have the properties

5) 6, B, - Ut =1,
1
6) g, (UL n B c UL,
() D), cD! and 0!, c UL if g (U NB)NU, # ¢, and
®) B, - Uul cmts.
1

By the argument in [7, Theorem 4.2], it will follow that F U Int S is 1-ULC
provided to each positive number & there corresponds an integer k with the
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property that for each n > k, there exists an €-map @, such that o, takes the 3-
cell B into FUIntS and @, | B, - N(Bd B,, &) = 1. For a fixed positive &, take
k so large that 4¢, <¢. If n>k,let o =B ., 8, Since

Diam U} < 4¢_ < 4g, < ¢,

it follows by (5), (6), and (7) that @, moves no points further than & and that o, is

the identity outside UJ, Ul c N(BA B_, €). Furthermore, by (5), (6), (7), and (8),
we see that for each x € B, the sequence {B,(x), B,+] Bn(X), ---} either eventually
has a constant value in Int S or eventually is in each set of a chain

i i i i
U o u ! o - for which D* 5 D! 5 -+ In either case, o (x) € F UInt S,
since
o0 N [>¢] .
13 13
Nuv/=MNpjecr.
j=n j=n

It now follows that ¥ U Int S is 1-ULC. Similarly, GU Ext S is 1-ULC.

6. SOME COROLLARIES

THEOREM 6. Suppose K, and K, are cvumpled cubes and h is a homeomor-
phism of Bd K| to Bd K, and choose € > 0. Then there exists a homeomorphism
g of Bd K; to Bd K, such that p(g, h) < ¢ and K, UgKZ ~ 83,

(This is the main result of [10].)

Proof. By Theorem 1, there exist 0-dimensional F,-sets F, and F, in Bd K,
and Bd K, respectively, such that F; U Int K; and F, U Int K, are 1-ULC. Let
{Al , Ao, .-} be a sequence of arcs in Bd K, covering F; . Using Lemma 1, we
can push the arcs h(A;) one at a time into (Bd K,) - F, (see [6, Theorem 17]);
hence, there exists a homeomorphism t of Bd K, to Bd K, such that p(t, 1) < ¢

and t (U h(Ai)) N Fp = @. The homeomorphism g =th mismatches F; and F,;
hence K U, K ~ 83, by Theorem 3.

J. R. Stallings [23] gives an example of a crumpled cube T in which there is a
Cantor set of nonpiercing points in Bd T.

THEOREM 7. Suppose T is the cvumpled cube given by Stallings [23], W is the
set of points in Bd T wheve T fails to be a 3-manifold with boundary, K is a
crumpled cube, and h is a homeomorphism from BA T {o Bd K. Then T Uy K = s3.
if and only if K - h(W) is 1-ULC.

Proof. Suppose T Uy, K = S3. By Theorem 3, there exist disjoint 0-dimen-
sional F;-sets F and G in Bd T such that F UInt T and h(G) U Int K are 1-ULC.
Since each point of W is a nonpiercing point, it follows by D. R. McMillan’s charac-
terization [21] of piercing points that W C F. Loops in K - h(W) can be pushed
slightly into Int K without intersecting h(W); hence, K - h(W) is 1-ULC, since
h(W) N (h(G) UInt K) = @ and h(G) U Int K is 1-ULC.

Conversely, if K - h(W) is 1-ULC, then there exists a 0-dimensional F;-set
G € (Bd T) - W such that h(G) U Int K is 1-ULC. Since W is the set of points in T
where T fails to be a 3-mainfold, W U Int T is 1-ULC. By Theorem 3,
T U, K = S3.
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Definition. A crumpled cube K is universal if for each crumpled cube K' and
each homeomorphism h of Bd K to Bd K', the space K Uy K' is homeomorphic to S3.

The concept of a universal crumpled cube was introduced and studied by R. J.
Daverman and W. T. Eaton [12] before the techniques of this paper were available.
The results of this section completely solve the research problems discussed near
the end of [12].

The following theorem characterizes universal crumpled cubes. C. D. Bass and
R. J. Daverman have used decomposition-space techniques to give an independent
proof of the necessity.

THEOREM 8. A crumpled cube K is universal if and only if for each Cantor
set C in BdK, the set K- C is 1-ULC.

Proof. Suppose K - C is 1-ULC for each Cantor set C € Bd K. Let K' be a
crumpled cube, and let h be a homeomorphism of Bd K to Bd K'. By Theorem 1,
there exists a 0-dimensional F -set F' in K' such that F'U Int K' is 1-ULC. Let
F'=C; UC, U, where C; is compact and 0-dimensional. Since the set
K - h-1(C;) is 1-ULC, compact, and 0-dimensional, it follows from the techniques
of [7] or [8] that h~1(C;) lies on a tame arc A;. By Theorem 1, there exists a 0-

dimensional F;-set F in (Bd K) - ( U A; ) suchthat F U Int K is 1-ULC. The
homeomorphism h mismatches the sets F and F'; hence K U, K' = g3 , by Theo-
rem 3.

Conversely, if there exists a Cantor set C C Bd K such that K - C is not
1-ULC, then by Theorem 7 the sum T U, K is not s3 , where T is the crumpled
cube of Stallings [23] and h is a homeomorphism of Bd T to Bd K sending the non-
manifold points W of Bd T onto C.

COROLLARY 1. A crumpled cube K is universal if each avc in Bd K is tame.

It is known that the arcs in the boundaries of the crumpled cubes described by
R. H. Bing [5] and D. S. Gillman [15] are tame.

COROLLARY 2. The cvumpled cubes of Bing [5] and Gillman [15] are univer-
sal.

The crumpled cubes described by W. R. Alford [1] may have wild arcs in their
boundaries; however, the Cantor sets in their boundaries satisfy the condition in
Theorem 8.

COROLLARY 3. The crumpled cubes of Alford [1] ave universal.

The following theorem characterizes the sums of crumpled cubes that are topo-
logically equivalent to S3, provided one of the crumpled cubes is the solid Alexander
horned sphere in [4] or in Figure 3.

THEOREM 9. Suppose H is the solid Alexander horned sphere, W is the set of
points in BA H where H fails to be a 3- manifold with boundary, K is a cvumpled
cube, and h is a homeomorphism from Bd H to Bd K. Ther HU, K » S3 if and
only if theve exists a countable dense subset ¥ of W such that h(p) is a pievcing
point of K for each p € F.

Proof. Suppose H Uy K = s3. Then, by Theorem 3, there exist disjoint 0-
dimensional F -sets D and E in Bd H such that D U Int H and h(E) U Int K are
1-ULC. The set D must be dense in W; hence there exists a countable set F C D
that is also dense in W. For p € F, h(p) belongs to (Bd K) - h(E), and we can push
loops in (Bd K) - h(p) to Int K without intersecting h(p). Hence K - h(p) is 1-ULC,
since h(E) U Int K is 1-ULC. By [21], h(p) is a piercing point.
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Int H

Figure 3.

Conversely, let F be a countable dense subset of W. In Figure 3, loop J is
shrunk to a point in {q} U Int H, where q € W. The reader may easily extend the
illustrated horn-switching technique to show that ¥ U Int H is 1-ULC; the result
also follows by the techniques of [15]. If h(p) is a piercing point of K for each
p € F, then, since F is countable, it follows from techniques of [7] or [8] that there
exists a 0-dimensional F;-set G C (Bd K) - h(F) such that G U Int K is 1-ULC.
By Theorem 3, H U, K = S3.

Definition. A crumpled cube H is self-universal if H Uy H = S3 for each ho-
meomorphism h of Bd H to itself.

By using decomposition-space techniques, B. G. Casler [9] has shown that the
solid Alexander horned sphere H is self-universal. Bass and Daverman [3] have
shown that H is not universal, by exhibiting a special upper-semicontinuous decom-
position of S3 that is not S3. These results also follow from Theorem 7 and Theo-
rem 9, since each point in Bd H is a piercing point of H. Some of the other theo-
reIEns ]about decomposition spaces that are corollaries to Theorem 3 are presented
in |15].
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