THE SUM OF SOLID SPHERES

W. T. Eaton

1. INTRODUCTION

A crumpled cube or solid sphere K is a space homeomorphic to the union of a 2-sphere (topologically embedded in the 3-sphere S^3) and one of its complementary domains. The interior of K, denoted by Int K, is the set of points where K is a 3-manifold (without boundary), and the boundary of K, denoted by Bd K, is the 2-sphere K - Int K. With each pair of crumpled cubes K_1 and K_2 and each homeomorphism h: Bd $K_1 \to Bd$ K_2 we associate a space, denoted by $K_1 \cup_h K_2$ and called the sum of K_1 and K_2 by h. It is obtained from the disjoint union of K_1 and K_2 by identification of each point p in Bd K_1 with its image h(p) in Bd K_2 .

The space $K_1 \cup_h K_2$ may not be a 3-manifold; but its multiplication with E^1 always yields a manifold [11], namely $S^3 \times E^1$; this indicates that each space $K_1 \cup_h K_2$ behaves much like S^3 . In fact, a result of S. Armentrout [2] says that if $K_1 \cup_h K_2$ is a manifold, then it is S^3 . Many of the interesting upper-semicontinuous decompositions of S^3 may be viewed as the sum of two crumpled cubes [15], and conversely, the sum of two crumpled cubes is always the decomposition space of some u.s.c. decomposition of S^3 [18].

In Theorem 3 we characterize the sums of crumpled cubes that are topologically equivalent to S^3 . The theorem says that $K_1 \cup_h K_2$ is S^3 if and only if h mismatches two special 0-dimensional F_σ -sets in the boundaries of K_1 and K_2 . We present some applications and corollaries to this mismatch theorem in Section 6, and in Section 3 we reduce the sufficiency to the main lemma of Section 4. In Section 5, we reduce the necessity to the 2-sided approximation theorem of [14], and in Section 2 we give some preliminary information.

2. 0-DIMENSIONAL F_{σ} -SETS IN THE BOUNDARY OF A CRUMPLED CUBE

N. Hosay [17] and L. L. Lininger [18] have shown that each crumpled cube K can be embedded in S^3 so that $Cl(S^3 - K)$ is a 3-cell. Consequently, the following definition has meaning in connection with all crumpled cubes.

Definition. A closed set X in the boundary of a crumpled cube K is tame, provided every embedding of K in S^3 such that $Cl(S^3 - K)$ is a 3-cell carries X into a 2-sphere in S^3 that is tame in the usual sense.

Because of its importance to this work, we restate in modified form a theorem due to R. H. Bing [7].

THEOREM 1. If K is a crumpled cube, then there exists a 0-dimensional F_{σ} -set F in Bd K such that $F \cup Int K$ is 1-ULC. Furthermore, if $\{X_i\}$ is a sequence of tame arcs in Bd K, then F may be chosen so that it lies in (Bd K) - $\bigcup X_i$.

Received October 9, 1971.

The author is an Alfred P. Sloan Fellow.

Michigan Math. J. 19 (1972).

The theorem above establishes the existence of F and gives some indication where F may lie in Bd K. It is important to note that F may not be unique.

Another important theorem for this work is the following, due to L. D. Loveland [20].

THEOREM 2. Suppose K is a crumpled cube, F is a 0-dimensional F_{σ} -set in Bd K such that $F \cup Int K$ is 1-ULC, and A is a finite graph in (Bd K) - F. Then A is tame.

We conclude this section with a useful lemma from the topology of $\,\mathbf{E}^2\,.$

LEMMA 1. Suppose S is a 2-sphere, F is a 0-dimensional F_{σ} -set in S, C is a closed set in S - F, A is a finite graph in S, and $\varepsilon > 0$. Then there exists a homeomorphism f on A such that $f(A) \subset S$ - F, $f \mid (C \cap A) = 1$, and $\rho(f, 1) < \varepsilon$.

3. THE MISMATCH THEOREM

The main result of this paper is the following theorem.

THEOREM 3. Suppose K_1 and K_2 are crumpled cubes and h is a homeomorphism from Bd K_1 to Bd K_2 . Then $K_1 \cup_h K_2 \approx S^3$ if and only if there exist disjoint 0-dimensional F_{σ} -sets F_1 and F_2 in Bd K_1 such that $F_1 \cup$ Int K_1 and $h(F_2) \cup$ Int K_2 are 1-ULC.

Sufficiency. We assume that K_1 and K_2 are embedded in S^3 so that S^3 - Int K_i is a 3-cell [17], [18]. Using Lemma 1, we find disks D_1 and D_2 in Bd K_1 such that

$$\text{Bd } K_1 = D_1 \cup D_2 \,, \qquad D_1 \cap D_2 = \text{Bd } D_1 = \text{Bd } D_2 \,, \qquad (\textbf{F}_1 \cup \textbf{F}_2) \cap \text{Bd } D_i = \emptyset \,.$$

By the hypothesis and Theorem 2, $h(Bd\ D_1)$ is tame. We push the interior of each disk $h(D_i)$ slightly into S^3 - K_2 to form a tame disk E_i [13] such that

Bd
$$E_i = h(Bd D_i)$$
 and Int $E_1 \cap Int E_2 = \emptyset$.

The 2-sphere $E_1 \cup E_2$ is tame and thus bounds a cell C containing K_2 ; furthermore, $E_i \cup h(D_i)$ (i = 1, 2) bounds a cell C_i in C. There exists a homeomorphism g of C onto S^3 - Int K_1 such that

$$gh \mid Bd D_1 = 1$$
, $g(E_1) = D_1$, $g(E_2) = D_2$.

Let U_i (i = 1, 2) be open sets such that $g(C_i)$ - Bd $D_i \subset U_i$ and $U_1 \cap U_2 = \emptyset$. The hypotheses of Theorem 4 are satisfied for the 3-cells $g(C_i)$ (i = 1, 2), the disks D_i , the homeomorphisms $gh \mid D_i$, the 0-dimensional, disjoint F_σ -sets $D_i \cap F_1$ and $D_i \cap F_2$, and the open sets U_i . The sufficiency of the condition in Theorem 3 will therefore be established when we have proved Theorem 4.

In the proof of the next theorem and of Lemma 2, we use the following concept.

Definition. A collection of 2-cells D_1 , ..., D_n in a disk D is a cellular subdivision of D if Int $D_i\cap \text{Int }D_j=\emptyset$ (i \neq j) and D = $\bigcup D_i$. The mesh is the maximum of the numbers Diam D_1 , ..., Diam D_n .

THEOREM 4. Suppose C is a 3-cell in S^3 , D is a disk in Bd C, h is a homeomorphism of D onto Cl((Bd C) - D) such that h | Bd D = 1, F_1 and F_2 are disjoint 0-dimensional F_{σ} -sets in Int D such that $F_1 \cup h(F_2) \cup Ext$ C is 1-ULC, and

U is an open set containing C - Bd D. Then there exists a map f of \mathbb{S}^3 onto \mathbb{S}^3 such that

- (1) $f \mid S^3 U = 1$,
- (2) $f \mid S^3 C$ is a homeomorphism onto $S^3 f(C)$, and
- (3) $f \mid D = fh$, and fh is a homeomorphism onto f(C).

Proof. We apply Lemma 2 repeatedly. First, we squeeze the 3-cell C to a finite collection of smaller 3-cell whose union is a disk with the 3-cells attached along subdisks. Each of these 3-cells we squeeze similarly to still smaller 3-cells. We continue the process, and in the limit C is entirely flattened to a disk. The details are as follows.

Let $\{U_1,U_2,\cdots\}$ be a sequence of open sets in S^3 such that $U\supset U_1\supset U_2\supset\cdots$ and $\bigcap_i U_i=C$ - Bd D, and let $\{\epsilon_1,\epsilon_2,\cdots\}$ be a sequence of positive numbers such that $\sum_i^\infty \epsilon_i<\infty$. The map f is the limit of a sequence of maps f_i defined inductively. Apply Lemma 2 to obtain a cellular subdivision $\{D_i^1\}$ of D of mesh less than ϵ_1 and a map f_1 of S^3 onto S^3 such that $f_1(D_i^1)\cup f_1\,h(D_i^1)$ bounds a 3-cell K_i^1 in $f_1(C)$ of diameter less than ϵ_1 . Let $\{V_i^1\}$ be a finite collection of disjoint open sets in $f_1(U_1)$ such that

$$\label{eq:Killing} \textbf{K}_i^l \text{ - } \textbf{f}_l(\text{Bd } \textbf{D}_i^l) \, \subset \, \textbf{V}_i^l \quad \text{and} \quad \text{Diam } \textbf{V}_i^l \, < \, \epsilon_l \, .$$

By induction, we can assume that $\left\{D_i^n\right\}$ is a cellular subdivision of D of mesh less than ϵ_n , f_n is a map of S^3 onto S^3 , K_i^n is the 3-cell bounded by $f_n(D_i^n) \cup f_n h(D_i^n)$, and $\left\{V_i^n\right\}$ is a finite collection of disjoint open sets in $f_n(U_n)$ such that

$$\label{eq:Kinder} K_i^n \text{ - } f_n(Bd\ D_i^n)\ \subset\ V_i^n \qquad \text{and} \qquad \text{Diam }\ V_i^n < \epsilon_n\,.$$

For each i, apply Lemma 2 to the 3-cell K_i^n , the disk $f_n(D_i^n)$, the homeomorphism $f_n \, h f_n^{-1} \, \big| \, f_n(D_i^n)$, the disjoint 0-dimensional F_σ -sets $f_n(D_i^n \cap F_1)$ and $f_n(D_i^n \cap F_2)$, the open set V_i^n , and use a sufficiently small ϵ to obtain a map f_{n+1}^i of S^3 and a cellular subdivision $\left\{E_j^i\right\}$ of $f_n(D_i^n)$ such that the mesh of $\left\{f_n^{-1}(E_j^i)\right\}$ is less than ϵ_{n+1} and the diameter of the 3-cell bounded by $f_{n+1}^i(E_j^i) \cup f_{n+1}^i f_n \, h \, f_n^{-1}(E_j^i)$ is less than ϵ_{n+1} . The mapping f_{n+1} consists of f_n followed by the mapping obtained by piecing together the mappings f_{n+1}^i . The collection $\left\{D_i^{n+1}\right\}$ is given by $\left\{f_n^{-1}(E_j^i)\right\}_{i,j}$, and each 2-sphere $f_{n+1}(D_i^{n+1}) \cup f_{n+1} \, h(D_i^{n+1})$ bounds a 3-cell K_i^{n+1} in $f_{n+1}(C)$. Choose a finite collection $\left\{V_i^{n+1}\right\}$ of disjoint open sets in $f_{n+1}(U_{n+1})$ such that

$$\mathtt{K}_{i}^{n+1} \text{ - } \mathtt{f}_{n+1}(\mathtt{Bd}\ \mathtt{D}_{i}^{n+1}) \ \subset \ \mathtt{V}_{i}^{n+1} \text{ , } \quad \mathtt{Diam}\ \mathtt{V}_{i}^{n+1} < \epsilon_{n+1} \text{ , } \quad \mathtt{and} \quad \overset{\boldsymbol{U}}{\underset{i}{\mathsf{U}}} \ \mathtt{V}_{i}^{n+1} \subset \ \overset{\boldsymbol{U}}{\underset{i}{\mathsf{U}}} \ \mathtt{V}_{i}^{n}.$$

It is easy to verify that the map $f = \lim_{i \to \infty} f_i$ satisfies conditions (1), (2), and (3).

4. THE MAIN LEMMA

Definition. The arc A is a spanning arc of the disk D if $A \subseteq D$ and $A \cap Bd D = Bd A$. The disk D is a spanning disk of the 3-cell C if $D \subseteq C$ and $D \cap Bd C = Bd D$. The arc A is a spanning arc of the annulus H if $A \subseteq H$, $A \cap Bd H = Bd A$, and H - A is connected.

Let C be a 3-cell and D a disk in Bd C. We say that the cross-sectional diameter of C with respect to D is less than ϵ if there exists a homeomorphism g of D×I onto C such that g(x, 0) = x for all $x \in D$ and Diam $g(D \times t) < \epsilon$ for all $t \in I$.

LEMMA 2. Suppose C is a 3-cell in S^3 , D is a disk in Bd C, h is a homeomorphism of D onto Cl((Bd C) - D) such that h | Bd D = 1, F_1 and F_2 are disjoint 0-dimensional F_0 -sets in Int D such that $F_1 \cup h(F_2) \cup Ext$ C is 1-ULC, U is an open set containing C - Bd D, and $\epsilon > 0$. Then there exist a cellular subdivision $\{D_1, \cdots, D_n\}$ of D with mesh less than ϵ and a map f of S^3 onto S^3 such that

- (1) $f \mid S^3 U = 1$,
- (2) $f \mid S^3 C$ is a homeomorphism onto $S^3 f(C)$,
- (3) both f | D and f | h(D) are homeomorphisms,
- (4) $\left(\bigcup_{i} \operatorname{Bd} D_{i}\right) \cap \left(\mathbb{F}_{1} \cup \mathbb{F}_{2}\right) = \emptyset$,
- (5) $f(D) \cap fh(D) = f(\bigcup Bd D_i),$
- (6) $f \mid U$ Bd $D_i = fh \mid U$ Bd D_i , and
- (7) $f(D_i) \cup fh(D_i)$ bounds a 3-cell in f(C) of diameter less than ϵ .

Proof. The proof consists of two main steps. In Step 1, C is squeezed to a finite collection of cross-sectionally small cells. In Step 2, each cell from Step 1 is squeezed to a finite collection of small cells. Step 2 is divided into three parts. In Part A, we use the 0-dimensional F_σ -set F_1 to obtain a special map that allows us in Part C to shorten the cells from Step 1. In Part B, we use the 0-dimensional F_σ -set $h(F_2)$ to achieve a partial splitting of the cells created in Step 1. In Part C, we shorten and split the cross-sectionally small cells, using the structures from Parts A and B. Parts A, B, and C are repeated in sequence a finite number of times, until the cells from Step 1 are sufficiently short.

Step 1. By B^2 we denote the standard unit square in E^2 , by a the geometric center of B^2 , by b a point in E^3 one unit below a, by B^3 the 3-cell that is the join of b and B^2 , and by p the projection map of B^3 onto B^2 that moves points vertically. Let g be a homeomorphism of B^3 onto C such that $g^{-1}(D) = B^2$ and $pg^{-1} hg \mid B^2 = 1$. Using spanning arcs parallel to the edges of B^2 , we partition B^2 into a finite collection $\{E_i\}$ of small squares. By Lemma 1, we may assume that

$$g(G) \, \cup \, hg(G) \, \subset \, Bd \, \, C \, - \, (F_1 \, \cup \, h(F_2))$$
 ,

where $G = \bigcup$ Bd E_i . It follows from Theorem 2 that the graph $g(G) \cup hg(G)$ is tame, and consequently, by [13], $g(p^{-1}(G))$ is tame. Corresponding to a point t in the line segment ab from a to b, let L(t) denote the join of t and Bd B^2 , and if s and t are two points in ab, let L(s,t) denote the 3-cell in B^3 bounded by $L(s) \cup L(t)$. We also assume that Diam E_i is so small that Diam $g(p^{-1}(E_i) \cap L(t))$ is less than ϵ for all t in ab.

We complete Step 1 by pushing the tame graph hg(G) along g(p⁻¹(G)) to the graph g(G). Care must be taken, however, to insure that this squeezing of C produces cross-sectionally small cells. The required map is the composition of a finite collection $\{\alpha_i\}$ of maps of S^3 onto S^3 , obtained as follows.

Let $\mathbf{b} = \mathbf{t_0} < \mathbf{t_1} < \dots < \mathbf{t_n} = \mathbf{a}$ be a partition of ab such that

Diam
$$g(p^{-1}(E_i) \cap L(t_j, t_{j+1})) < \epsilon$$
.

For $i=1, \dots, n$, we let α_i denote the projection map of $T_i=g(p^{-1}(G)\cap L(t_{i-1},t_i))$ onto $G_i=g(p^{-1}(G)\cap L(t_i))$ defined by the relation

$$\alpha_i(x) = g(p^{-1}(pg^{-1}(x)) \cap L(t_i)) .$$

We extend the maps α_i to S^3 one at a time, as follows. Select a small regular neighborhood V_1 of T_1 - G_1 such that $V_1 \cap g(L(t_1,t_n)) = \emptyset$. Extend the map α_1 to S^3 so that $\alpha_1 \mid S^3$ - V_1 = 1, so that $\alpha_1 \mid S^3$ - T_1 is a homeomorphism onto S^3 - G_1 , and so that $\rho(\alpha_1,1) < \epsilon$. Let N_1 be a regular neighborhood of G in G_1 in G_2 . Let G_2 be a small regular neighborhood of G_1 .

$$V_2 \cap g(L(t_2, t_n)) = \emptyset$$
 and $V_2 \cap \alpha_1 hg(B^2 - Int N_1) = \emptyset$.

Now extend the map α_2 to S^3 so that $\alpha_2 \mid S^3$ - V_2 = 1, so that $\alpha_2 \mid S^3$ - T_2 is a homeomorphism onto S^3 - G_2 , and so that $\rho(\alpha_2,1) < \epsilon$. Choose a regular neighborhood $N_2 \subseteq \text{Int } N_1$ of G in B^2 sufficiently close to G to ensure that $\alpha_2 \alpha_1 \log(N_2)$ lies in a thin tubular neighborhood of G_2 . Continuing thus, we define V_3 , α_3 , N_3 , V_4 , \cdots , α_n .

The map squeezing C to a finite collection of cross-sectionally small cells is the composition $\alpha=\alpha_n\cdots\alpha_l$, and a typical cell is the 3-cell C^i bounded by $g(E_i)\cup\alpha hg(E_i).$ The cell C^i is cross-sectionally small with respect to $g(E_i),$ since for $j=1,2,\cdots,$ n-1 there exists a spanning disk of C^i near the disk $g(L(t_j)\cap p^{-1}(E_i)).$ Figure 1 represents a schematic diagram of the squeezing process of Step 1.

Step 2. We squeeze the cross-sectionally small cells C^i from Step 1 to small cells. We find a finite collection $\{U^i\}$ of disjoint open sets in U such that C^i - Bd $g(E_i) \subset U^i$, and we squeeze each of the cells C^i individually, moving only points in U^i . For convenience, we drop the superscripts, identify the disk $g(E_i)$ with D, and use the notation and hypothesis of Lemma 2 with the additional requirement that the cross-sectional diameter of C with respect to D is less than ϵ .

We write C as the union of a finite collection $\{C_0\,,\,C_1\,,\,\cdots\,,\,C_n\}$ of 3-cells, each with diameter less than $\epsilon.$ We arrange the cells $\{C_i\}$ in a linear order such that $C_i\cap C_j=\emptyset$ if $\left|i-j\right|>1$, and such that the set $C_{i-1}\cap C_i=Bd$ $C_{i-1}\cap Bd$ C_i is a disk H_i . We select the cells $C_0\,,\,C_1\,,\,\cdots\,,\,C_n$ so that the disks $D,\,H_1\,,\,\cdots\,,\,H_n$ are disjoint and $D\subset Bd$ C_0 . By Lemma 1, we may assume that

$$h^{-1}(\bigcup Bd H_i) \cap (F_1 \cup F_2) = \emptyset$$
,

and since $F_1 \cup h(F_2) \cup Ext C$ is 1-ULC, we may assume that H_i and $h^{-1}(Bd H_i)$ are tame, by Theorem 2 and results of [13].

Part A. Denote by A the annulus $h^{-1}(Bd\ C_0)$, and by B the disk D - Int A. Push the interior of A into Int C_0 to form a tame annulus A' such that Bd A' = Bd A. Since Bd B is tame, an improvement of the side-approximation theorem [19, Theorem 21] implies that there exist a finite collection of disjoint disks I_1 , ..., I_r in Int B, a null sequence of disjoint disks I_{r+1} , I_{r+2} , ... in Int A, and a homeomorphism β_1 of D into U \cup Bd D such that $\beta_1(D)$ is tame, β_1 Bd D = 1,

Figure 1.

$$\beta_1$$
 (Int D - (U Int I_i)) \subset Ext C, β_1 (I_i) \cap Bd C = β_1 (I_i) \cap I_i,

and $\beta_1(D) \cap A' = \emptyset$. We also have control over the size of the loops $\beta_1(Bd\ I_i) \subset Ext\ C$ and over the distance through which β_1 moves points. Consequently, since $F_1 \cup h(F_2) \cup Ext\ C$ is 1-ULC, we may assume that the simple closed curve $\beta_1(Bd\ I_i)$ (i = 1, ..., r) bounds a singular disk B_i in the intersection of $F_1 \cup Ext\ C$ and a small neighborhood of B. The set

$$\beta_1 \left(\mathbf{D} - \bigcup_{\mathbf{i}=1}^r \mathbf{I_i} \right) \cup \left(\bigcup_{\mathbf{i}=1}^r \mathbf{B_i} \right)$$

is the image of D under a map β_2 into U + Bd D. We constructed β_2 so that it possesses the following properties: $\beta_2 \mid \text{Bd D} = 1$, Diam $\beta_2(D) \cup C_0 < \epsilon$, no singular point of β_2 is near Bd D, and if C' is the 3-cell in C bounded by ((Bd C) - A) \cup A', then $\beta_2(D) \cap C' = (\text{Bd D}) \cup K$, where K is a compact 0-dimensional subset of $F_1 \cap B$.

In Part C, we apply Dehn's lemma to the map β_2 and use the resulting disk to achieve a partial collapse of the 3-cell C_0 . Points near the set K can not be moved very far; however, we have enough hypotheses to enable us to push the set h(K) to the cell C_0 . The construction of a map of S^3 onto S^3 that pushes h(K) to H_1 and splits each of the cells C_1 , C_2 , \cdots , C_n is the subject of Part B.

Part B. The compact 0-dimensional set K from Part A lies in $F_1\cap B$, and since $F_1\cap F_2=\emptyset$, we can find arcs in $h(B-F_2)$ that contain h(K), by Lemma 1. In particular, we find a spanning disk E of the 3-cell $C_1\cup C_2\cup\cdots\cup C_n$ such that $H_1\cap Bd$ E is a spanning arc A_1 of H_1 , $h(B)\cap Bd$ E is a spanning arc A_2 of h(B), and $h(K)\subset A_2\subset h(B-F_2).$ Since Bd $H_i\subset h(B-(K\cup F_2)),$ we may choose E so that $E\cap C_i$ is a spanning disk of C_i (i = 1, 2, ..., n). Since $F_1\cup h(F_2)\cup Ext$ C is 1-ULC, Theorem 2 allows us to assume that E is tame. The simple closed curve $A_1\cup A_2=Bd$ E is the boundary of two disks R_1 and R_2 in the boundary of the cell $C_1\cup\cdots\cup C_n$. The disk E splits the cell $C_1\cup\cdots\cup C_n$ into two cells Q_1 and Q_2 such that Bd $Q_1=E\cup R_1$ and Bd $Q_2=E\cup R_2$. The cross-sectional diameter of Q_i is less than ϵ , and the length of Q_i is less than the length of C, in the sense that there are fewer terms in $(Q_i\cap C_1)\cup\cdots\cup (Q_i\cap C_n)$ than in $C_0\cup C_1\cup\cdots\cup C_n$.

We now find a map k_1 of S^3 onto S^3 that squeezes the disk E to the arc A_1 . The existence of the map with the properties described below follows from the techniques of Step 1. Let V be a small regular neighborhood of E - A_1 such that $V \cap C_0 = \emptyset$.

There exists a map $k_1\colon S^3\to S^3$ such that $k_1\mid S^3$ - V = 1, such that $k_1\mid S^3$ - E is a homeomorphism onto S^3 - A_1 , and such that $k_1\mid E$ is a projection onto A_1 . Furthermore, using the techniques of Step 1, we may choose k_1 so that the two 3-cells bounded by $k_1(R_1)$ and $k_1(R_2)$ are close approximations to the cells Q_1 and Q_2 , respectively.

Using Lemma 1, we select a subdisk M of B such that $(Bd\ M)\cap (F_1\cup F_2)=\emptyset$, the set $h^{-1}(A_2)$ is a spanning arc of M, Bd M \cap Bd B = Bd $h^{-1}(A_2)$, and k_1 h(M) lies in a small tubular neighborhood W of A_1 . With a homeomorphism $k_2\colon S^3\to S^3$ that is the identity outside W, we push the boundary of k_1 h(M) to H_1 in such a way that k_2 k_1 $h(Bd\ M)$ bounds a disk M' in H_1 , so that A_1 is a spanning arc of M', and so that k_2 k_1 $h(Bd\ M)\cap Bd\ H_1=Bd\ A_1$. Furthermore, we select a map k_2 so that

$$k_2 \mid k_1 \text{ h(Bd B)} = 1$$
, Int $C_0 \cap k_2 k_1(B) = \emptyset$, $H_1 \cap k_2 k_1 \text{ h(B)} = k_2 k_1 \text{ h(Bd B)} \cup \text{Bd M}$.

In Part C, we use the map β_2 from Part A to achieve a partial collapse of the cell C_0 into a small neighborhood of H_1 .

Part C. Let $B_i = h^{-1}(R_i) \cap (B - Int \ M)$ and $B_i' = (R_i \cap H_1)$ - Int M' (i = 1, 2). Push the interiors of the disks B_1 , M, and B_2 slightly into the interior of C_0 to form disks B_1'' , M'', and B_2'' such that $Bd \ B_i = Bd \ B_i''$ and $Bd \ M = Bd \ M''$. Since $Bd \ D \cup Bd \ B \cup Bd \ M \subset D - F_1$, we may assume, by Theorem 2, that the disk $A' \cup B_1'' \cup M'' \cup B_2'' = D'$ is tame. We can now apply Dehn's lemma [22] to the singular disk $\beta_2(D)$ from Part A. Note that $\beta_2(D)$ fails to intersect B_1 and B_2 , and that

$$\beta_2(D) \cap D' = \beta_2(Bd D) = Bd D = Bd D'$$
;

consequently, we may apply the lemma in a small enough neighborhood of $\beta_2(D)$ to ensure that the resulting disk H has the following properties: $H \cup D'$ is the boundary of a tame 3-cell X such that

$$B_i \subset X \quad (i = 1, 2), \quad Diam \ X \cup C_0 < \epsilon, \quad X \subset U \cup Bd \ D.$$

We need the following notation, in order to describe a map q that partially collapses C_0 . Let H' be an annulus in the disk H such that $Bd\ H \subset Bd\ H'$, and let A" be the annulus obtained by pushing the interior of the annulus $A' \cup H'$ slightly into the interior of X. The annulus A" is constructed so that $A' \cup A" \cup H'$ bounds a solid torus $Y \subset X$ in such a way that C(X-Y) is a 3-cell Z with $B_i \subset Z$ (i = 1, 2). Push the interior of the disk H_1 slightly into Int C_0 to form a disk H'_1 such that $H'_1 \cup H_1$ bounds a tame 3-cell Z' with the property that Diam $Z' \cup C_1 < \epsilon$. Let H''_1 be an annulus in H'_1 such that $Bd\ H'_1 \subset Bd\ H''_1$, and let H'' be the annulus obtained by pushing the interior of the annulus $h(A) \cup H''_1$ into the interior of the 3-cell C_0 - Int Z'. The annulus H'' is constructed so that $h(A) \cup H''_1 \cup H''$ bounds a solid torus $Y' \subset C_0$.

Figure 2.

Let U' be a thin shell neighborhood of Int H. A mapping q of S^3 onto S^3 may now be described as follows: q | S³ - (C \cup X \cup U') = 1, q | X \cup U' is a homeomorphism into C_0 \cup X \cup U', q(Y) = Y', q(Z) = Z', and

$$q \mid Bd \ D \ \cup \ Bd \ B \ \cup \ Bd \ M \ = \ k_2 \, k_1 \, h \mid Bd \ D \ \cup \ Bd \ B \ \cup \ Bd \ M$$
 .

We place no restriction on the extension of q to the remainder of S^3 .

We observe that the diameter of the 3-cell R bounded by $q(M) \cup k_2 k_1 h(M)$ is less than ϵ , since Diam $C_0 \cup X < \epsilon$ and $k_2 k_1 h(M)$ lies in a small tubular neighborhood of $A_1 \subset Bd$ C_0 ; that the solid torus T bounded by $q(A) \cup h(A)$ has diameter less than ϵ , since Diam $C_0 \cup X < \epsilon$; and that for i=1,2, the 3-cell C(i) bounded by $q(B_i) \cup k_2 k_1 h(B_i)$ has cross-sectional diameter no greater than that of C, but is shorter in the sense that one fewer cell of diameter ϵ is required to describe it linearly.

Finally, let J_1 and J_2 be disjoint spanning arcs of A such that $J_i \subset A$ - $(F_1 \cup F_2)$. We push the arcs $q(J_1)$ and $q(J_2)$ to the arcs $h(J_1)$ and $h(J_2)$, respectively, along disjoint tame meridional disks of T. The image of T consists of two 3-cells, each with diameter less than ϵ .

Let U_1 and U_2 be disjoint open sets containing C(1) - $q(Bd\ B_1)$ and C(2) - $q(Bd\ B_2)$, respectively. We repeat Parts A, B, and C in sequence for each of the pairs $(C(1),\ U_1)$ and $(C(1),\ U_2)$, and again for the four resulting pairs. The process continues until all cross-sectionally small cells have been shortened to size ϵ . Figure 2 represents a schematic diagram of Parts A, B, and C.

5. NECESSITY

In this section we reduce the proof of the necessity in Theorem 3 to the following two-sided-approximation theorem established in [14] (notation: $S = Bd K_1 = h(Bd K_1) = Bd K_2$).

THEOREM 5. If S is a 2-sphere in E^3 and $\epsilon>0$, then there exist a finite collection $\left\{D^1,\cdots,D^n,E^1,\cdots,E^n\right\}$ of disjoint ϵ -disks in S and ϵ -homeomorphisms $f,g\colon S\to E^3$ such that

(1)
$$f(S - \bigcup Int D^i) \subset Int S$$
,

(2)
$$f(D^i)\,\cap\,S\,\subset\, Int\,\,D^i$$
 ,

(3)
$$g(S - \bigcup Int E^i) \subset Ext S$$
, and

(4)
$$g(E_i) \cap S \subset Int E^i$$
.

Furthermore, we may assume that f(S) and g(S) are polyhedral and $f(S) \cap g(S) = \emptyset$.

We take the disjoint 0-dimensional F_{σ} -sets required in Theorem 3 to be sums of intersections of unions of disks obtained by applying Theorem 5 repeatedly. Let ϵ_1 = 1, apply Theorem 5 with ϵ = ϵ_1 , and let D_1^i , E_1^i , f_1 , g_1 be the resulting disjoint ϵ_1 -disks and ϵ_1 -homeomorphisms. Let D_1^{i*} and E_1^{i*} be subdisks of Int D_1^i and Int E_1^i , respectively, such that

$$D_1^i \cap \ f_1\!(D_1^i) \subset \ Int \ D_1^{i\, *} \quad \ \ and \quad \ \ E_1^i \cap g_1\!(E_1^i) \subset \ Int \ E_1^{i\, *} \ .$$

Proceeding inductively, we assume that ϵ_{n-1} , D_{n-1}^i , E_{n-1}^i , f_{n-1} , g_{n-1} , D_{n-1}^i and E_{n-1}^i have been defined. Let ϵ_n be a positive number less than each of the numbers

$$\begin{split} &(1/8)\epsilon_{n-1}\,,\quad (1/4)\,\rho(S-D_{n-1}^i\,,\,D_{n-1}^{i}^*)\,,\quad (1/4)\,\rho(S-E_{n-1}^i\,,\,E_{n-1}^{i}^*)\,,\\ &\rho(S-D_{n-1}^i{}^*\,,\,f_{n-1}(D_{n-1}^i))\,,\quad \rho(S-E_{n-1}^i{}^*\,,\,g_{n-1}(E_{n-1}^i))\,,\\ &\rho(D_{n-1}^i\,,\,f_{n-1}(S-D_{n-1}^i))\,,\quad \rho(E_{n-1}^i\,,\,g_{n-1}(S-E_{n-1}^i))\,. \end{split}$$

Apply Theorem 5 with $\epsilon = \epsilon_n$, and let D_n^i , E_n^i , f_n , g_n be the resulting disjoint ϵ_n -disks and ϵ_n -homeomorphisms. As above, let D_n^{i*} and E_n^{i*} be subdisks of Int D_n^i and Int E_n^i , respectively, such that

$$D_n^i \cap f_n(D_n^i) \subset \operatorname{Int} D_n^{i*}$$
 and $E_n^i \cap g_n(E_n^i) \subset \operatorname{Int} E_n^{i*}$.

Let

$$\mathbf{F} = \bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} \left(\bigcup_{i} D_{n}^{i} \right) \right) \quad \text{and} \quad \mathbf{G} = \bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} \left(\bigcup_{i} E_{n}^{i} \right) \right).$$

The sets F and G are clearly 0-dimensional F_{σ} -sets. They are disjoint, since $\left(\bigcup_{i} D_{n}^{i} \right) \cap \left(\bigcup_{i} E_{n}^{i} \right) = \emptyset$ for each n.

Before we show that $F \cup Int S$ is 1-ULC, we establish the existence of a special map β_n taking the 3-cell $B_n = f_n(S) \cup Int f_n(S)$ to the 3-cell

$$\mathtt{B}_{\mathsf{n}+1} \ = \ \mathtt{f}_{\mathsf{n}+1}(\mathtt{S}) \ \cup \ \mathrm{Int} \ \mathtt{f}_{\mathsf{n}+1}(\mathtt{S}) \ .$$

Let B_n^i be the component of B_n - $f_{n+1}(D_n^{i*})$ that contains $f_n(S - D_n^i)$. By Tietze's extension theorem, there exists a map

$$\beta_n^i \colon B_n \to B_n^i \cup f_{n+1}(D_n^{i*})$$

such that $\beta_n^i \bigm| B_n^i = 1$ and $\beta_n^i(B_n - B_n^i) \subset f_{n+1}(D_n^{i\,*}).$ We obtain the map β_n by piecing together the finite collection of maps β_n^l , β_n^2 , \cdots . The diameter of the set $(B_n - B_n^i) \cup D_n^{i\,*}$ is less than $3\epsilon_n$, and since $8\epsilon_{n+1} < \epsilon_n$, the diameter of the set $U_n^i = N((B_n - B_n^i) \cup D_n^{i\,*}$, $4\epsilon_{n+1})$ is less than $4\epsilon_n$. It is a simple exercise to verify that the maps $\beta_n\colon B_n \to B_{n+1}$ and the sets U_n^i have the properties

(5)
$$\beta_{n} \mid B_{n} - \bigcup_{i} U_{n}^{i} = 1$$
,

(6)
$$\beta_n(U_n^i \cap B_n) \subset U_n^i$$
,

(7)
$$D_{n+1}^{j} \subset D_{n}^{i}$$
 and $U_{n+1}^{j} \subset U_{n}^{i}$ if $\beta_{n}(U_{n}^{i} \cap B_{n}) \cap U_{n+1}^{j} \neq \emptyset$, and

(8)
$$B_n - \bigcup_i U_n^i \subset Int S$$
.

By the argument in [7, Theorem 4.2], it will follow that $F \cup Int \ S$ is 1-ULC provided to each positive number ϵ there corresponds an integer k with the

property that for each $n \ge k$, there exists an ϵ -map α_n such that α_n takes the 3-cell B_n into $F \cup$ Int S and $\alpha_n \mid B_n$ - $N(Bd \ B_n \ , \ \epsilon) = 1$. For a fixed positive ϵ , take k so large that $4\epsilon_k < \epsilon$. If $n \ge k$, let $\alpha_n = \cdots \beta_{n+1} \ \beta_n$. Since

Diam
$$\textbf{U}_{n}^{i} \leq 4\epsilon_{n} \leq 4\epsilon_{k} \leq \epsilon$$
 ,

it follows by (5), (6), and (7) that α_n moves no points further than ϵ and that α_n is the identity outside $\bigcup_i U_n^i \subset N(Bd \ B_n, \epsilon)$. Furthermore, by (5), (6), (7), and (8), we see that for each $x \in B_n$ the sequence $\{\beta_n(x), \beta_{n+1} \beta_n(x), \cdots\}$ either eventually has a constant value in Int S or eventually is in each set of a chain $U_n^{i_n} \supset U_{n+1}^{i_{n+1}} \supset \cdots$ for which $D_n^{i_n} \supset D_{n+1}^{i_{n+1}} \supset \cdots$. In either case, $\alpha_n(x) \in F \cup Int S$, since

$$\bigcap_{j=n}^{\infty} U_j^{ij} = \bigcap_{j=n}^{\infty} D_j^{ij} \in F.$$

It now follows that $F \cup Int S$ is 1-ULC. Similarly, $G \cup Ext S$ is 1-ULC.

6. SOME COROLLARIES

THEOREM 6. Suppose K_1 and K_2 are crumpled cubes and h is a homeomorphism of Bd K_1 to Bd K_2 , and choose $\epsilon>0$. Then there exists a homeomorphism g of Bd K_1 to Bd K_2 such that $\rho(g,h)<\epsilon$ and $K_1\cup_g K_2\approx S^3$.

(This is the main result of [10].)

Proof. By Theorem 1, there exist 0-dimensional F_{σ} -sets F_1 and F_2 in Bd K_1 and Bd K_2 , respectively, such that $F_1 \cup \operatorname{Int} K_1$ and $F_2 \cup \operatorname{Int} K_2$ are 1-ULC. Let $\{A_1, A_2, \cdots\}$ be a sequence of arcs in Bd K_1 covering F_1 . Using Lemma 1, we can push the arcs $h(A_i)$ one at a time into (Bd K_2) - F_2 (see [6, Theorem 7]); hence, there exists a homeomorphism t of Bd K_2 to Bd K_2 such that $\rho(t,1) < \epsilon$ and $t\left(\bigcup h(A_i)\right) \cap F_2 = \emptyset$. The homeomorphism g = th mismatches F_1 and F_2 ; hence $K_1 \cup_g K_2 \approx S^3$, by Theorem 3.

J. R. Stallings [23] gives an example of a crumpled cube T in which there is a Cantor set of nonpiercing points in Bd T.

THEOREM 7. Suppose T is the crumpled cube given by Stallings [23], W is the set of points in Bd T where T fails to be a 3-manifold with boundary, K is a crumpled cube, and h is a homeomorphism from Bd T to Bd K. Then $T \cup_h K \approx S^3$ if and only if K - h(W) is 1-ULC.

Proof. Suppose $T \cup_h K \approx S^3$. By Theorem 3, there exist disjoint 0-dimensional F_σ -sets F and G in Bd T such that $F \cup Int T$ and $h(G) \cup Int K$ are 1-ULC. Since each point of W is a nonpiercing point, it follows by D. R. McMillan's characterization [21] of piercing points that $W \subset F$. Loops in K - h(W) can be pushed slightly into Int K without intersecting h(W); hence, K - h(W) is 1-ULC, since $h(W) \cap (h(G) \cup Int K) = \emptyset$ and $h(G) \cup Int K$ is 1-ULC.

Conversely, if K - h(W) is 1-ULC, then there exists a 0-dimensional F_{σ} -set $G \subseteq (Bd\ T)$ - W such that h(G) \cup Int K is 1-ULC. Since W is the set of points in T where T fails to be a 3-mainfold, W \cup Int T is 1-ULC. By Theorem 3, $T \cup_b K \approx S^3$.

Definition. A crumpled cube K is *universal* if for each crumpled cube K' and each homeomorphism h of Bd K to Bd K', the space $K \cup_h K'$ is homeomorphic to S^3 .

The concept of a universal crumpled cube was introduced and studied by R. J. Daverman and W. T. Eaton [12] before the techniques of this paper were available. The results of this section completely solve the research problems discussed near the end of [12].

The following theorem characterizes universal crumpled cubes. C. D. Bass and R. J. Daverman have used decomposition-space techniques to give an independent proof of the necessity.

THEOREM 8. A crumpled cube K is universal if and only if for each Cantor set C in Bd K, the set K - C is 1-ULC.

Proof. Suppose K - C is 1-ULC for each Cantor set C \subset Bd K. Let K' be a crumpled cube, and let h be a homeomorphism of Bd K to Bd K'. By Theorem 1, there exists a 0-dimensional F_{σ} -set F' in K' such that F' \cup Int K' is 1-ULC. Let F' = C₁ \cup C₂ \cup ···, where C_i is compact and 0-dimensional. Since the set K - h⁻¹(C_i) is 1-ULC, compact, and 0-dimensional, it follows from the techniques of [7] or [8] that h⁻¹(C_i) lies on a tame arc A_i. By Theorem 1, there exists a 0-dimensional F_{\sigma}-set F in (Bd K) - (UA_i) such that F \cup Int K is 1-ULC. The homeomorphism h mismatches the sets F and F'; hence K \cup _h K' ≈ S³, by Theorem 3.

Conversely, if there exists a Cantor set $C \subset Bd\ K$ such that K - C is not 1-ULC, then by Theorem 7 the sum $T \cup_h K$ is not S^3 , where T is the crumpled cube of Stallings [23] and h is a homeomorphism of $Bd\ T$ to $Bd\ K$ sending the non-manifold points W of $Bd\ T$ onto C.

COROLLARY 1. A crumpled cube K is universal if each arc in Bd K is tame.

It is known that the arcs in the boundaries of the crumpled cubes described by R. H. Bing [5] and D. S. Gillman [15] are tame.

COROLLARY 2. The crumpled cubes of Bing [5] and Gillman [15] are universal.

The crumpled cubes described by W. R. Alford [1] may have wild arcs in their boundaries; however, the Cantor sets in their boundaries satisfy the condition in Theorem 8.

COROLLARY 3. The crumpled cubes of Alford [1] are universal.

The following theorem characterizes the sums of crumpled cubes that are topologically equivalent to S^3 , provided one of the crumpled cubes is the solid Alexander horned sphere in [4] or in Figure 3.

THEOREM 9. Suppose H is the solid Alexander horned sphere, W is the set of points in Bd H where H fails to be a 3-manifold with boundary, K is a crumpled cube, and h is a homeomorphism from Bd H to Bd K. Then H \cup_h K \approx S³ if and only if there exists a countable dense subset F of W such that h(p) is a piercing point of K for each p \in F.

Proof. Suppose $H \cup_h K \approx S^3$. Then, by Theorem 3, there exist disjoint 0-dimensional F_σ -sets D and E in Bd H such that $D \cup Int H$ and $h(E) \cup Int K$ are 1-ULC. The set D must be dense in W; hence there exists a countable set $F \subset D$ that is also dense in W. For $p \in F$, h(p) belongs to (Bd K) - h(E), and we can push loops in (Bd K) - h(p) to Int K without intersecting h(p). Hence K - h(p) is 1-ULC, since $h(E) \cup Int K$ is 1-ULC. By [21], h(p) is a piercing point.

Figure 3.

Conversely, let F be a countable dense subset of W. In Figure 3, loop J is shrunk to a point in $\{q\} \cup Int$ H, where $q \in W$. The reader may easily extend the illustrated horn-switching technique to show that F \cup Int H is 1-ULC; the result also follows by the techniques of [15]. If h(p) is a piercing point of K for each p \in F, then, since F is countable, it follows from techniques of [7] or [8] that there exists a 0-dimensional F_{σ} -set $G \subset (Bd\ K)$ - h(F) such that $G \cup Int\ K$ is 1-ULC. By Theorem 3, H \cup_h K \approx S³.

Definition. A crumpled cube H is *self-universal* if $H \cup_h H \approx S^3$ for each homeomorphism h of Bd H to itself.

By using decomposition-space techniques, B. G. Casler [9] has shown that the solid Alexander horned sphere H is self-universal. Bass and Daverman [3] have shown that H is not universal, by exhibiting a special upper-semicontinuous decomposition of S^3 that is not S^3 . These results also follow from Theorem 7 and Theorem 9, since each point in Bd H is a piercing point of H. Some of the other theorems about decomposition spaces that are corollaries to Theorem 3 are presented in [15].

REFERENCES

- 1. W. R. Alford, *Some 'inice'' wild 2-spheres in* E³. Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), pp. 29-33. Prentice Hall, Englewood Cliffs, N. J., 1962.
- 2. S. Armentrout, Concerning cellular decompositions of 3-manifolds that yield 3-manifolds. Trans. Amer. Math. Soc. 133 (1968), 307-332.
- 3. C. D. Bass and R. J. Daverman, A self-universal crumpled cube which is not universal. Bull. Amer. Math. Soc. 76 (1970), 740-742.
- 4. R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. of Math. (2) 56 (1952), 354-362.
- 5. ——, A wild surface each of whose arcs is tame. Duke Math. J. 28 (1961), 1-15.
- 6. ——, Each disk in E^3 contains a tame arc. Amer. J. Math. 84 (1962), 583-590.
- 7. $\frac{1}{33-45}$, Pushing a 2-sphere into its complement. Michigan Math. J. 11 (1964),
- 8. J. W. Cannon, Sets which can be missed by side approximations to spheres. Pacific J. Math. 34 (1970), 321-334.
- 9. B. G. Casler, On the sum of two solid Alexander horned spheres. Trans. Amer. Math. Soc. 116 (1965), 135-150.
- 10. R. J. Daverman and W. T. Eaton, A dense set of sewings of two crumpled cubes yields S^3 . Fund. Math. 65 (1969), 51-60.
- 11. ——, The Cartesian product of a line with the union of two crumpled cubes. Notices Amer. Math. Soc. 15 (1968), 542, #68T-349.
- 12. ——, Universal crumpled cubes. Topology (to appear).
- 13. P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in E³. Proc. Amer. Math. Soc. 11 (1960), 832-836.
- 14. W. T. Eaton, A 2-sided approximation theorem for 2-spheres (to appear).
- 15. ——, Applications of a mismatch theorem to decomposition spaces (to appear).
- 16. D. S. Gillman, Note concerning a wild sphere of Bing. Duke Math. J. 31 (1964), 247-254.
- 17. N. Hosay, *The sum of a cube and a crumpled cube is* S³. Notices Amer. Math. Soc. 11 (1964), Errata for Volume 10, 152.
- 18. L. L. Lininger, Some results on crumpled cubes. Trans. Amer. Math. Soc. 118 (1965), 534-549.
- 19. F. M. Lister, Simplifying intersections of disks in Bing's side approximation theorem. Pacific J. Math. 22 (1967), 281-295.
- 20. L. D. Loveland, Tame subsets of spheres in E³. Pacific J. Math. 19 (1966), 489-517.
- 21. D. R. McMillan, Jr., Some topological properties of piercing points. Pacific J. Math. 22 (1967), 313-322.

- 22. Ch. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots. Ann. of Math. (2) 66 (1957), 1-26.
- 23. J. R. Stallings, *Uncountably many wild disks*. Ann. of Math. (2) 71 (1960), 185-186.

The Institute for Advanced Study Princeton, New Jersey 08540 and The University of Texas Austin, Texas 78712