HYPERINVARIANT SUBSPACES FOR OPERATORS ON THE SPACE OF COMPLEX SEQUENCES

B. E. Johnson and A. L. Shields

Let (s) denote the space of all complex sequences (functions on the positive integers) with the seminorms

$$\|f\|_{n} = \max_{1 \leq j \leq n} |f(j)|$$
 (n = 1, 2, ...).

By an operator on (s) we mean a continuous linear transformation of (s) into itself; by a subspace of (s) we mean a closed vector subspace. A subspace is said to be *invariant* for an operator if it is mapped into itself by the operator, and *hyperin-variant* (see [1]) if it is invariant for every operator commuting with the given operator. In this note we show that to each operator on (s) that is not a scalar multiple of the identity operator, there corresponds a proper hyperinvariant subspace. This answers a question raised in [3].

Notation. By \mathbb{C} we denote the complex field, and by (s_0) the space of all sequences of complex numbers that have only finitely many nonzero elements. Thus (s_0) is a vector space of dimension \aleph_0 over \mathbb{C} .

There is a duality between (s) and (s_0) :

(1)
$$(f, p) = \sum f(n) p(n) \quad (f \in (s), p \in (s_0)).$$

Each p induces a continuous linear functional on (s), and every continuous linear functional has this form. Further, each f induces an algebraic linear functional on (s_0) , and every algebraic linear functional has this form. The space (s) and the space (s_0) with its strong dual topology, that is, the topology of uniform convergence on bounded subsets of (s), are dual spaces. Every linear transformation on (s_0) is continuous, and every linear subspace in (s_0) is closed.

If S is a vector subspace of (s_0) , then S^{\perp} denotes the annihilator of S in (s). This is always a closed subspace, and it is proper if and only if S is proper.

THEOREM 1. Every operator on (s) that is not a scalar multiple of the identity has a proper hyperinvariant subspace.

Proof. Let U be an operator on (s). Because of the duality between (s) and (s_0) , it will be sufficient to show that the adjoint transformation U^* on (s_0) has a proper hyperinvariant subspace; the annihilator of this subspace will be the desired subspace for U. The following lemma and its corollary will complete the proof.

LEMMA 1. Every algebraic linear transformation on (s_0) has nonempty spectrum.

Received August 10, 1971.

The authors acknowledge partial support from the National Science Foundation.

Michigan Math. J. 19 (1972).

(The spectrum of an operator on (s_0) is understood in the purely algebraic sense: λ is in the spectrum of T if no algebraic linear transformation on (s_0) inverts $T - \lambda$.)

Proof of Lemma 1. Let T be a linear transformation on (s_0) . We must show that there exists a complex number λ such that $T - \lambda$ (we write $T - \lambda$ in place of $T - \lambda I$) is not invertible.

Assume that no such λ exists, so that T - λ is always invertible. Then every nonzero polynomial

$$p(T) = c(T - \lambda_1) \cdots (T - \lambda_n)$$

is invertible. Hence all nonzero rational functions $p(T)[q(T)]^{-1}$ are invertible.

Let R denote the field of all rational functions, regarded as a vector space over C, and choose any vector f in (s_0) (not the zero vector). We define a map from R to (s_0) by the formula

$$r \mapsto r(T)f \quad (r \in R).$$

This is a linear transformation, and it is one-to-one. Indeed, if r(T) f were 0, then r(T) would not be invertible, which is impossible (unless r=0). But now we have a contradiction, since dim $(s_0)=\aleph_0$, whereas dim $R>\aleph_0$ (for example, the functions $\{r_\lambda(z)=(z-\lambda)^{-1}\colon \lambda\in \mathbb{C}\}$ are linearly independent). This completes the proof.

COROLLARY. Every linear transformation on (s_0) that is not a scalar multiple of the identity has a hyperinvariant subspace.

Proof. Let T be a linear transformation. By the lemma, there exists a complex number λ such that T - λ is not invertible. Then either T - λ fails to be one-to-one, or it is not surjective. In the first case, the kernel of T - λ is a proper subspace (it cannot be all of (s_0) , since T $\neq \lambda I$) which is easily seen to be hyperinvariant for T. In the second case, the range of T is a proper hyperinvariant subspace.

The assertion of Lemma 1 is not valid for all vector spaces over \mathbb{C} , nor is it valid for vector spaces of dimension \aleph_0 over arbitrary algebraically closed fields. The latter fact was pointed out to us by J. E. McLaughlin. We require a lemma.

LEMMA 2. If F is a field and E a subfield, and if $f \in F \setminus E$, then the linear transformation M_f of multiplication by f on F (where F is regarded as a vector space over E) has empty spectrum.

Proof. We must show that the operator M_f - eI is invertible, for each e ϵ E. The operator represents multiplication by f - e, and this is invertible since F is a field and f - e \neq 0.

COROLLARY 1. There exist a vector space V over \mathbb{C} and a linear transformation on V with empty spectrum.

COROLLARY 2. If A is the field of algebraic numbers and A_0^{∞} is the vector space of dimension \aleph_0 over A, then there exists a linear transformation on A_0^{∞} with empty spectrum.

Proof. Let R_A denote the field of rational functions over A. By considering the partial-fractions decomposition, we see that R_A , regarded as a vector space over A, has dimension \aleph_0 . The result now follows from Lemma 2.

THEOREM 2. Every operator on (s) has closed range.

Proof. If we give (s₀) the weak* topology resulting from the pairing (1), then every subspace is closed. Thus, if T is an operator on (s), then its adjoint has weak* closed range. But by a general theorem on F-spaces, this implies that T has closed range (see [2, Chapter IV, Theorem 7.7, p. 160]). ■

Every linear transformation on (s_0) can be represented by a *column-finite* infinite matrix $T=(t_{nm})$ $(n,\,m=1,\,2,\,\cdots)$ (that is, by a matrix each of whose columns has only finitely many nonzero elements). If all the elements t_{nm} are algebraic numbers, then T is also a linear transformation on A_0^∞ .

COROLLARY. There exists a column-finite matrix whose elements are algebraic numbers but whose spectrum is nonvoid and contains only transcendental numbers.

Proof. Choose the matrix representing the linear transformation T of Corollary 2 to Lemma 2. This matrix has empty spectrum as an operator on A_0^{∞} ; but by Lemma 1, the spectrum as an operator on (s_0) is nonempty. We claim that if λ is in the spectrum, then λ is transcendental.

Indeed, let λ be an algebraic number, and let $S=T-\lambda$. Then S is invertible as an operator on A_0^∞ . Hence its range is all of A_0^∞ . Hence its range, as an operator on (s_0) , must contain the vector subspace of (s_0) spanned by A_0^∞ . Since A_0^∞ contains the standard basis vectors, this subspace is all of (s_0) , that is, S is surjective.

Since by formula (1) the algebraic dual of A_0^{∞} can be identified with A^{∞} and the algebraic adjoint of the restriction of S to A_0^{∞} is the restriction of S* to A^{∞} , the transformation S* is invertible as an operator on A^{∞} . Hence the range of S* is all of A^{∞} . Its range, as an operator on (s), is closed (Theorem 2) and contains the dense subset A^{∞} ; therefore, S* is surjective. Hence S (as an operator on (s_0)) is one-to-one. Thus S is invertible, and therefore λ is not in the spectrum of T.

REFERENCES

- 1. R. G. Douglas and C. Pearcy, On a topology for invariant subspaces. J. Functional Analysis 2 (1968), 323-341.
- 2. H. H. Schaefer, Topological vector spaces. Macmillan Co., New York, 1966.
- 3. A. L. Shields, A note on invariant subspaces. Michigan Math. J. 17 (1970), 231-233.

The University
Newcastle-upon-Tyne, England
and
University of Michigan
Ann Arbor, Michigan 48104
U.S.A.