HYPERINVARIANT SUBSPACES FOR OPERATORS ON
THE SPACE OF COMPLEX SEQUENCES

B. E. Johnson and A. L. Shields

Let (s) denote the space of all complex sequences (functions on the positive
integers) with the seminorms

I|f”n= max | £(j)] (n=1,2, ).
1<ji<n

By an operator on (s) we mean a continuous linear transformation of (s) into itself;
by a subspace of (s) we mean a closed vector subspace. A subspace is said to be
invariant for an operator if it is mapped into itself by the operator, and Zryperin-
vaviant (see [1]) if it is invariant for every operator commuting with the given oper-
ator. In this note we show that to each operator on (s) that is not a scalar multiple
of the identity operator, there corresponds a proper hyperinvariant subspace. This
answers a question raised in [3].

Notation. By C we denote the complex field, and by (sg) the space of all se-
quences of complex numbers that have only finitely many nonzero elements. Thus
(so) is a vector space of dimension R, over C.

There is a duality between (s) and (s):

(1) (f, p) = 22fn)p(n) (i e (s), p € (sg)).

Each p induces a continuous linear functional on (s), and every continuous linear
functional has this form. Further, each f induces an algebraic linear functional on
(sg), and every algebraic linear functional has this form. The space (s) and the
space (sg) with its strong dual topology, that is, the topology of uniform convergence
on bounded subsets of (s), are dual spaces. Every linear transformation on (sg) is
continuous, and every linear subspace in (so) is closed.

If S is a vector subspace of (sg), then S denotes the annihilator of S in (s).
This is always a closed subspace, and it is proper if and only if S is proper.

THEOREM 1. Every opevator on (8) that is not a scalar multiple of the identity
has a proper hyperinvariant subspace.

Proof. Let U be an operator on (s). Because of the duality between (s) and
(sg), it will be sufficient to show that the adjoint transformation U* on (sg) has a
proper hyperinvariant subspace; the annihilator of this subspace will be the desired
subspace for U. The following lemma and its corollary will complete the proof.

LEMMA 1. Every algebraic linear transformation on (sg) has nonempty spec-
trum.
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(The spectrum of an operator on (sy) is understood in the purely algebraic
sense: A is inthe spectrum of T if no algebraic linear transformation on (sj) in-
verts T - A.)

Proof of Lemma 1. Let T be a linear transformation on (sg). We must show
that there exists a complex number A such that T - A (we write T - A in place of
T - Al) is not invertible.

Assume that no such A exists, so that T - A is always invertible. Then every
nonzero polynomial

p(T) = (T - A) === (T - Ay,)

is invertible. Hence all nonzero rational functions p(T) [q(T)]-! are invertible.

Let R denote the field of all rational functions, regarded as a vector space over
C, and choose any vector f in (sg) (not the zero vector). We define a map from R
to (sy) by the formula

r— r(T)f (reR).

This is a linear transformation, and it is one-to-one. Indeed, if r(T)f were 0, then
r(T) would not be invertible, which is impossible {unless r = 0). But now we have a
contradiction, since dim (sy) = 8y, whereas dim R > 8 (for example, the functions
{r)(z) =(z - )71: A € C} are linearly independent). This completes the proof.

COROLLARY. Every linear transformation on (sy) that is not a scalar multiple
of the identily has a hypervinvariant subspace.

Proof. Let T be a linear transformation. By the lemma, there exists a com-
plex number A such that T - A is not invertible. Then either T - A fails to be one-
to-one, or it is not surjective. In the first case, the kernel of T - A is a proper
subspace (it cannot be all of (s;), since T #AI) which is easily seen to be hyperin-
variant for T. In the second case, the range of T is a proper hyperinvariant sub-
space. H

The assertion of Lemma 1 is not valid for all vector spaces over C, nor is it
valid for vector spaces of dimension &g over arbitrary algebraically closed fields.
The latter fact was pointed out to us by J. E. McLaughlin. We require a lemma.

LEMMA 2. If F is a field and E a subfield, and if f ¢ F \ E, then the linear
transformation Mg of multiplication by f on F (wheve F is vegavded as a vector
space over E) has emply spectrum.

Proof. We must show that the operator My - el is invertible, for each e € E.

The operator represents multiplication by f - e, and this is invertible since F is a
field and f - e # 0.

COROLLARY 1. There exist a vector space V ovey C and a linear transfor-
mation on V with emply spectvum.

COROLLARY 2. If A is the field of algebraic numbers and AT is the vector
space of dimension 8, over A, then theve exists a linear transformation on ACS’
with empty spectvum.

Proof. Let R, denote the field of rational functions over A. By considering

the partial-fractions decomposition, we see that R 5, regarded as a vector space
over A, has dimension 8;. The result now follows from Lemma 2.
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THEOREM 2. Every opevator on (s) has closed range.

Proof. 1If we give (sg) the weak™ topology resulting from the pairing (1), then
every subspace is closed. Thus, if T is an operator on (s), then its adjoint has
weak™ closed range. But by a general theorem on F-spaces, this implies that T has
closed range (see [2, Chapter IV, Theorem 7.7, p. 160]). m

Every linear transformation on (sg) can be represented by a column-finite in-
finite matrix T = (t,,,) (n, m =1, 2, ---) (that is, by a matrix each of whose columns
has only finitely many nonzero elements). If all the elements t,,, are algebraic
numbers, then T is also a linear transformation on Ay .

COROLLARY. There exists a column-finite matvix whose elements ave alge-
braic numbers but whose spectrum is nonvoid and contains only transcendental
numbers.

Proof. Choose the matrix representing the linear transformation T of Corol-
lary 2 to Lemma 2. This matrix has empty spectrum as an operator on A?)o ; but by
Lemma 1, the spectrum as an operator on (sg) is nonempty. We claim that if A is
in the spectrum, then A is transcendental.

Indeed, let A be an algebraic number, and let S =T - A. Then S is invertible
as an operator on Ay . Hence its range is all of Ay . Hence its range, as an opera-
tor on (sgy), must contain the vector subspace of (s;) spanned by Ay . Since Ay
contains the standard basis vectors, this subspace is all of (sg), that is, S is sur-
jective.

Since by formula (1) the algebraic dual of A7 can be identified with A% and the
algebraic adjoint of the restriction of S to Ay is the restriction of S* to A™, the
transformation S* is invertible as an operator on A®. Hence the range of S* is all
of A*. Its range, as an operator on (s), is closed (Theorem 2) and contains the
dense subset A ; therefore, S* is surjective. Hence S (as an operator on (sg)) is
one-to-one. Thus S is invertible, and therefore A is not in the spectrum of T. ®
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