A UNIFORM-BOUNDEDNESS THEOREM FOR MEASURES

J. D. Stein, Jr.

The following theorem is due to J. Dieudonné [1].

THEOREM 1. Let X be a compact Hausdorff space, and let $\mathscr U$ be a collection of regular Borel measures on X such that for each open subset U of X, $\sup\{|\mu(U)|: \mu \in \mathscr U\}$ is finite. Then $\sup\{|\mu|(X): \mu \in \mathscr U\}$ is finite, where $|\mu|$ is the total variation of μ .

Recently, B. B. Wells [3] has strengthened this theorem by showing that it is sufficient that $\sup \{ \mid \mu(V) \mid : \mu \in \mathscr{U} \}$ is finite for regular open sets V (V is regular if $V = \operatorname{Int}(\overline{V})$). The purpose of this paper is to prove Dieudonné's theorem for the case where X is a regular (T_3) topological space and \mathscr{U} is a collection of Borel measures on X with the following property: if E is a Borel subset of X, $\varepsilon > 0$, and $\mu \in \mathscr{U}$, there exists a compact subset $K \subseteq E$ with $|\mu(E \sim K)| < \varepsilon$. We shall call such measures weakly regular; clearly, regular measures (a complex measure μ is regular if $|\mu|$ is regular) are weakly regular.

LEMMA 1. Let U be an open subset of X, and let μ be a nonzero weakly regular measure on X. Then there exists an open set V with $V \subseteq U$ and

$$|\mu(V)| > |\mu|(U)/7$$
.

Proof. First we show the following: corresponding to each Borel set $E\subseteq U$ and each $\epsilon>0$, there is an open set V such that $E\subseteq V\subseteq U$ and $\big|\mu(V\sim E)\big|<\epsilon$. Since $U\sim E$ is a Borel set, there exists a compact set $K\subseteq U\sim E$ with

$$|\mu((U \sim E) \sim K)| < \varepsilon$$
.

But $V = U \sim K \supseteq E$, and

$$|\mu(V \sim E)| = |\mu((U \sim K) \sim E)| = |\mu((U \sim E) \sim K)| < \varepsilon.$$

Now choose a partition E_1 , \cdots , E_n of U such that

$$\sum_{k=1}^{n} |\mu(E_k)| > \frac{6}{7} |\mu|(U).$$

By [2, p. 119], there exists a subset $\{j_1, \cdots, j_p\}$ of $\{1, \cdots, n\}$ such that $|\sum_{i=1}^p \mu(E_{j_i})| \geq \frac{1}{6} \sum_{k=1}^n |\mu(E_k)|$. Let $F = \bigcup_{i=1}^p E_{j_i}$; then

$$|\mu(\mathbf{F})| = \left| \sum_{i=1}^{p} \mu(\mathbf{E}_{j_i}) \right| \ge \frac{1}{6} \sum_{k=1}^{n} |\mu(\mathbf{E}_k)| > \frac{1}{7} |\mu|(\mathbf{U}).$$

Received April 5, 1971.

This work is partially supported by NSF Grant No. GP-11475.

Michigan Math. J. 19 (1972).

Now let $\varepsilon = [|\mu(F)| - |\mu|(U)/7]/2$ and choose V so that $F \subseteq V \subseteq U$ and $|\mu(V \sim F)| < \varepsilon$; then $|\mu(V)| > |\mu|(U)/7$.

LEMMA 2. Let $\mathscr U$ be a collection of Borel measures on a topological space X. Suppose that corresponding to each finite set $\{\mu_1, \cdots, \mu_n\}$ of measures in $\mathscr U$, each positive number M, and each collection of disjoint open sets U_1, \cdots, U_n such that $\bigcup_{k=1}^n U_k \neq X$, there exist an open set U_{n+1} and a measure $\mu_{n+1} \in \mathscr U$ such that

$$\bigcup_{k=1}^{n+1} U_k \neq X, \quad U_{n+1} \cap \left(\bigcup_{k=1}^{n} U_k\right) = \emptyset, \quad |\mu_{n+1}(U_{n+1})| > M,$$

and

$$|\mu_{k}(U_{n+1})| < 1/2^{n+1}$$

for $1 \le k \le n$. Then there exists an open set $U \subseteq X$ with $\sup \{ |\mu(U)| : \mu \in \mathcal{U} \} = \infty$.

Proof. Assume that the number $S(V) = \sup \{ |\mu(V)| : \mu \in \mathcal{U} \}$ is finite for each open set V. Choose $\mu_1 \in \mathcal{U}$, and let U_1 be an open set such that $U_1 \neq X$ and $|\mu_1(U_1)| > 2$. Having chosen $\mu_1, \dots, \mu_n \in \mathcal{U}$ and a collection $\{U_1, \dots, U_n\}$ of disjoint open sets with $X \neq \bigcup_{k=1}^n U_k$, choose $\mu_{n+1} \in \mathcal{U}$ and an open set U_{n+1} such that

$$U_{n+1} \cap \left(\bigcup_{k=1}^{n} U_{k}\right) = \emptyset, \quad \bigcup_{k=1}^{n+1} U_{k} \neq X, \quad |\mu_{n+1}(U_{n+1})| > \sum_{k=1}^{n} S(U_{k}) + n + 2,$$

and

$$|\mu_{k}(U_{n+1})| < 1/2^{n+1}$$

for $1 \le k \le n$. The set $U = \bigcup_{n=1}^{\infty} U_n$ is open, and since the sets U_n are disjoint, $\mu_n(U) = \sum_{k=1}^{\infty} \mu_n(U_k)$; consequently,

$$\begin{split} \left| \, \mu_{n}(U_{n}) \right| \, & \leq \, \left| \, \mu_{n}(U) \, \right| \, + \sum_{k=1}^{n-1} \, \left| \, \mu_{n}(U_{k}) \, \right| \, + \sum_{k=n+1}^{\infty} \, \left| \, \mu_{n}(U_{k}) \, \right| \\ & < \left| \, \mu_{n}(U) \, \right| \, + \sum_{k=1}^{n-1} \, S(U_{k}) \, + \sum_{k=n+1}^{\infty} \, 1/2^{k} \\ & < \, \left| \, \mu_{n}(U) \, \right| \, + \sum_{k=1}^{n-1} \, S(U_{k}) \, + 1. \end{split}$$

Therefore, $\sum_{k=1}^{n-1} S(U_k) + n + 1 < |\mu_n(U_n)| < |\mu_n(U)| + \sum_{k=1}^{n-1} S(U_k) + 1$, and hence $|\mu_n(U)| > n$.

LEMMA 3. Let X be a regular (T_3) topological space, and let $\mathscr U$ be a collection of weakly regular Borel measures on X such that $\sup \{ |\mu(U)| : \mu \in \mathscr U \}$ is finite for every open subset U of X. Then each $x \in X$ lies in an open neighborhood U_x such that $\sup \{ |\mu|(U_x) : \mu \in \mathscr U \}$ is finite.

Proof. Assume that this is false, and let x be a point such that

$$\sup\{|\mu|(\mathbf{U}):\mu\in\mathscr{U}\}=\infty$$

for every open set U containing x. First we show that

$$\sup \{ |\mu| (U \setminus \{x\}) : \mu \in \mathcal{U} \} = \infty .$$

To see this, fix an open set V containing x; then $V \setminus \{x\}$ is also open, and

$$\{x\} = V \setminus (V \setminus \{x\}) \implies \mu(\{x\}) = \mu(V) - \mu(V \setminus \{x\}),$$

and hence

$$\sup \big\{ \big| \mu(\{x\}) \big| \colon \mu \in \mathscr{U} \big\} \le \sup \big\{ \big| \mu(V) \big| \colon \mu \in \mathscr{U} \big\} + \sup \big\{ \big| \mu(V \setminus \{x\}) \big| \colon \mu \in \mathscr{U} \big\} < \infty.$$

Let $S(x) = \sup \{ |\mu(\{x\})| : \mu \in \mathcal{U} \}$. Then $|\mu|(\{x\}) = |\mu(\{x\})| \leq S(x)$, and if $\mu \in \mathcal{U}$ and U is an open neighborhood of x, we have the relations

$$|\mu|(U \setminus \{x\}) = |\mu|(U) - |\mu|(\{x\}) \ge |\mu|(U) - S(x)$$
.

The last member can be made arbitrarily large.

We recall the following property of a regular space: if K is compact, C is closed, and $K \cap C = \emptyset$, then we can find an open set U such that $U \supseteq K$ and $\overline{U} \cap C = \emptyset$.

Choose a neighborhood U_1 of x, and let M>0. Pick $\mu_1\in \mathscr{U}$ so that $|\mu_1|(U_1\setminus \{x\})>7M$. By Lemma 1, we can find an open set $W_1\subseteq U_1\setminus \{x\}$ with $|\mu_1(W_1)|>M$. Since μ_1 is weakly regular, there exists a compact set $K_1\subseteq W_1$ such that $|\mu_1(K_1)|>M$. Choose an open set O_1 with $K_1\subseteq O_1$ and $O_1\cap W_1^c=\emptyset$, and apply the first part of the proof of Lemma 1 to obtain an open set V_1 such that $|\mu_1(V_1)|>M$ and $K_1\subseteq V_1\subseteq O_1$.

Now assume that we have found open sets V_1 , \cdots , V_n such that the closures \overline{V}_n are disjoint and the set $\bigcup_{k=1}^n \overline{V}_k$ contains neither $\{x\}$ nor $X \setminus \{x\}$. Suppose that μ_1 , \cdots , $\mu_n \in \mathscr{U}$ and that M>0. We shall show the existence of an open set V_{n+1} and a measure $\mu_{n+1} \in \mathscr{U}$ such that $\overline{V}_{n+1} \cap \left(\bigcup_{k=1}^n \overline{V}_k\right) = \emptyset$, the set $\bigcup_{k=1}^{n+1} \overline{V}_k$ contains neither $\{x\}$ nor $X \setminus \{x\}$, $|\mu_{n+1}(V_{n+1})| > M$, and $|\mu_k(V_{n+1})| < 1/2^{n+1}$ for $1 \le k \le n$; by Lemma 2, this will complete the proof of Lemma 3.

The set $U=X\sim \left(\bigcup_{k=1}^n\overline{V}_k\right)$ is a neighborhood of x. As above, we can find an open set Q_1 and a measure $\nu_1\in\mathscr{U}$ such that

$$x \notin \overline{Q}_1$$
, $\overline{Q}_1 \cap \left(\bigcup_{k=1}^n \overline{V}_k\right) = \emptyset$, and $|\nu_1(Q_1)| > M$.

Repeat this procedure to find an open set Q_2 and a measure ν_2 ϵ $\mathscr U$ such that

$$x \notin \overline{\mathbb{Q}}_2$$
, $\overline{\mathbb{Q}}_2 \cap \left[\overline{\mathbb{Q}}_1 \cup \left(\bigcup_{k=1}^n \overline{\mathbb{V}}_k \right) \right] = \emptyset$, and $|\nu_2(\mathbb{Q}_2)| > M$.

Let N be an integer greater than $n+2^{n+1}\sum_{k=1}^n |\mu_k|(X)$, and go through the procedure N times; this leads to a collection of open sets Q_1, \dots, Q_N and measures $\nu_1, \dots, \nu_N \in \mathcal{U}$ such that

- 1) $x \notin \overline{Q}_k$ for $1 \le k \le N$,
- 2) $|\nu_{k}(Q_{k})| > M$,

3)
$$\overline{Q}_k \cap \left[\left(\bigcup_{j=1}^{k-1} \overline{Q}_j \right) \cup \left(\bigcup_{i=1}^n \overline{V}_i \right) \right] = \emptyset \text{ for } 2 \leq k \leq N.$$

For $1 \le k \le n$, the inequality $|\mu_k(Q_j)| \ge 2^{-n-1}$ cannot hold for more than $2^{n+1} |\mu_k(X)|$ of the indices $j=1,2,\cdots,N$. Otherwise, the μ_k -variation for some partition of X would be greater than $|\mu_k|(X)$. Since N has been chosen sufficiently large, at least one of the Q_1,\cdots,Q_N , which we denote by Q_p , satisfies the condition $|\mu_k(Q_p)| < 2^{-n-1}$ for $1 \le k \le n$. We complete the induction by choosing $V_{n+1} = Q_p$ and $\mu_{n+1} = \nu_p$. By Lemma 2, $\sup\{|\mu(X \setminus \{x\})|: \mu \in \mathcal{M}\} = \infty$, and this contradicts our hypothesis.

THEOREM 2. Suppose that $\mathscr U$ is a collection of weakly regular Borel measures on a T₃-topological space X and that $\sup \{ |\mu(U)| : \mu \in \mathscr U \} < \infty$ for each open $U \subseteq X$. Then $\sup \{ |\mu|(X) : \mu \in \mathscr U \} < \infty$.

Proof. By Lemma 3, each $x \in X$ lies in a neighborhood U_x of x such that $\sup \{ |\mu|(U_x): \mu \in \mathscr{U} \} = M_x$ is finite. Suppose that V is an open set such that $\sup \{ |\mu|(V): \mu \in \mathscr{U} \} = \infty$, and let U be an open set such that $\overline{U} \subseteq \bigcup_{k=1}^n U_{x_k}$ for some $x_1, \dots, x_n \in X$. To see that $\sup \{ |\mu|(V \sim \overline{U}): \mu \in \mathscr{U} \} = \infty$, suppose this supremum were M. Then, for each $\mu \in \mathscr{U}$, we would have the contradictory relations

$$|\mu|(\mathbf{V}) \leq |\mu|(\mathbf{V} \sim \overline{\mathbf{U}}) + |\mu|(\overline{\mathbf{U}}) \leq M + |\mu|\left(\bigcup_{k=1}^{n} \mathbf{U}_{\mathbf{x}_{k}}\right) \leq M + \sum_{k=1}^{n} M_{\mathbf{x}_{k}}.$$

Assume that $\sup \big\{ \big| \mu \big| (X) \colon \mu \in \mathscr{U} \big\} = \infty;$ we go through a construction similar to the one in the proof of Lemma 3. For each positive M, we can find a compact subset K_1 and a measure $\mu_1 \in \mathscr{U}$ such that $\big| \mu_1(K_1) \big| > M$. Since K_1 is compact, there exists a finite set $\big\{ x_1 \,, \, \cdots \,, \, x_n \big\}$ such that $K_1 \subseteq \bigcup_{k=1}^n U_{x_k}$. Choose an open set V_1 with $K_1 \subseteq V_1 \subseteq \overline{V}_1 \subseteq \bigcup_{k=1}^n U_{x_k}$. By the first part of Lemma 1, we can choose an open set U_1 such that $K_1 \subseteq U_1 \subseteq V_1$ and $\big| \mu_1(U_1) \big| > M$. Now

$$\sup \left\{ \left| \mu \right| (X \sim \overline{U}_1) : \mu \in \mathcal{U} \right\} = \infty,$$

and we can continue the induction.

At the nth step, suppose we have open sets U_1 , \cdots , U_n with disjoint closures, that $\bigcup_{k=1}^n \overline{U}_k$ is contained in the union of finitely many of the sets U_x ($x \in X$), that μ_1 , \cdots , $\mu_n \in \mathscr{U}$, and that $\left|\mu_k(U_n)\right| < 2^{-n}$ for $1 \le k \le n-1$. Note that

$$\sup \left\{ \left| \mu \right| \left(X \sim \left(\bigcup_{k=1}^{n} \overline{U}_{k} \right) \right) : \mu \in \mathcal{U} \right\} = \infty.$$

As in Lemma 3, choose a large number N, and then choose compact sets $\underline{F}_1,\,\cdots,\,F_N,$ measures $\nu_1,\,\cdots,\,\nu_N\in\mathscr{U},$ and open sets $Q_1,\,\cdots,\,Q_n$ such that each \overline{Q}_k $(1\leq k\leq N)$ is contained in a finite union of finitely many $U_x,$ the closures $\overline{Q}_1,\,\cdots,\,\overline{Q}_N,\,\overline{U}_1,\,\cdots,\,\overline{U}_N$ are disjoint, and $\big|\nu_k(F_k)\big|>M.$ Use the first part of Lemma 1 to find open sets $G_k\subseteq Q_k$ $(1\leq k\leq N)$ such that $\big|\nu_k(G_k)\big|>M;$ as in Lemma 3, if N is sufficiently large, then for some G_p the inequality $\big|\mu_k(G_p)\big|<1/2^{n+1}$ holds for $1\leq k\leq n.$ We have thus established the necessary induction machinery to apply Lemma 2 and complete the proof. \blacksquare

REFERENCES

- 1. J. Dieudonné, Sur la convergence des suites de measures de Radon. Anais Acad. Brasil. Ci. 23 (1951), 21-38 and 277-282.
- 2. W. Rudin, Real and complex analysis. McGraw-Hill, New York, 1966.
- 3. B. B. Wells, Jr., Weak compactness of measures. Proc. Amer. Math. Soc. 20 (1969), 124-130.

University of California Los Angeles, California 90024