HYPERINVARIANT SUBSPACES AND TRANSITIVE ALGEBRAS
R. G. Douglas and Carl Pearcy

0. INTRODUCTION

All Hilbert spaces to be discussed in this paper will be complex, and all opera-
tors to be considered will be linear. Moreover, unless we specifically state the
contrary, an operator under discussion will be assumed to be everywhere defined
and bounded. If o¢ is a Hilbert space, we denote by Z() the algebra of all
bounded operators on . All subalgebras « of Z(.¢) will be assumed to contain
the identity operator 1. ; the commutant of . will be denoted by #'. If T is an
operator in Z (o), then the weakly closed subalgebra generated by T (that is, the
weak closure of the set of all polynomials in T) will be denoted by « 1. Clearly,
the algebra consisting of all operators that commute with T is exactly (. 1)'. We
say that a subspace .« of & is a hyperinvariant subspace for T if ./ is invariant
under each operator in (/ 3)’, and if in addition .# is different from (0) and <.

Thus far, most attempts to obtain structure theorems for classes of operators
on Hilbert space have depended on the exhibition of a sufficiently large supply of in-
variant subspaces for the operator. However, a careful scrutiny of the situation in
finite-dimensional spaces shows that the determination of the hyperinvariant sub-
spaces of an operator is likely to be more worthwhile., Thus, the problem of deter-
mining whether every operator on Hilbert space has a hyperinvariant subspace may
be of more importance than the corresponding problem for invariant subspaces.

The study of hyperinvariant subspaces for certain classes of operators was be-
gun in [7] and [20], and continued in [5], [8], [9], and [16]. In particular, complete in
formation concerning hyperinvariant subspaces has been obtained for normal opera-
tors [7], finite-rank operators [8], and isometries [5]. Furthermore, hyperinvariant
subspaces have been shown to exist for operators that are quasi-similar to normal
operators [20], and also for operators that generate a finite von Neumann algebra of
type I[9]. In Section 2 of this paper we introduce the concept of a disjoint ordered
pair of operators, and we exhibit an interesting connection between disjoint pairs of
operators and hyperinvariant subspaces.

There is another problem, closely related to that of the existence of hyperin-
variant subspaces, to which this paper makes a contribution. A subalgebra  of
Z() is said to be framsitive if the only subspaces invariant for all operators in
« are (0) and . Hence, an operator T fails to have a hyperinvariant subspace if
and only if (aflT)' is transitive. If o is finite-dimensional, then it follows from a
well-known theorem of Burnside [10, p. 276] that the only transitive subalgebra of
Z(x) is Z(o¢) itself. The difficult and still open corresponding question for an
infinite-dimensional Hilbert space & is whether every transitive subalgebra .« of
Z(or) is strongly dense (equivalently, weakly dense) in 2 (o). In [1], W. B. Arve-
son introduced a technique for studying this question, and he succeeded in giving an
affirmative answer in case < contains a maximal abelian von Neumann algebra or
a pure isometry of multiplicity one. Further results along these lines have been
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given in [11], [14], and [15]. In Section 1, we discuss the relation between the ques-
tion whether every transitive algebra is strongly dense and the question whether
every operator has invariant and hyperinvariant subspaces. We also introduce an
elementary localization principle that yields immediate generalizations of previous
results in these directions. Finally, in Section 3 we generalize Arveson’s funda-
mental result by proving that if a transitive algebra # acts on a separable Hilbert
space o and contains a Hermitian operator that is not of uniform infinite multiplic-
ity, then  is strongly dense in Z ().

1. OPEN QUESTIONS AND LOCALIZATION

A subalgebra .« of Z(o¢) is said to be n-{vansitive if for every linearly inde-
pendent set {Xl , Tt xn} in & and for every set {Yl , ***, ¥ut in J#, there exists
a sequence {A, }_; in « such that limg [|Ayx; - y;]| =0 for 1 <i<n. It is easy
to see that an algebra « is transitive if and only if it is 1-transitive. Consider now
the following sequence of propositions, each of which represents an important open
question in operator theory.

(P,) Every transitive subalgebra of £ () is strongly dense in Z(x).

Arveson observed in [1] that an algebra is strongly dense in Z(&¢) if and only if it
is n-transitive for every positive integer n. Thus, this proposition implies the fol-
lowing proposition.

(P,) Every transitive subalgebra of Z(x) is 2-transitive.
2

Another observation made in [1] is that a transitive algebra « is 2-transitive if and
only if every closed, densely defined linear transformation that commutes with .« is
a scalar multiple of the identity operator. Hence, (P;) implies the following.

(P3) Every transitive subalgebra . of Z(x) satisfies the relation «'= {x1}.

Observe that if there exists a transitive algebra whose commutant contains a non-
scalar operator T, then T cannot have a hyperinvariant subspace. Furthermore, if
there exists a nonscalar operator T with no hyperinvariant subspace, then (. T)' i
a transitive algebra such that (& )" # {x1}. Hence this last proposition is equi Z—
lent to the following. /

(P4) Every nonscalar operator on Hilbert space has a hyperinvariant sub/épace.

Since every operator T satisfies the condition T € (. |)', it is obvious that (P,)
implies the following proposition.

(P5) Every operator on Hilbert space has a nontrivial invariant subspace.
The following theorem summarizes the relations between these propositions.

THEOREM 1.1. The propositions above ave velated in the following way:
(P)) = (Py), (P) => (P3), (P3) == (Py), (PyY = (Py).

Two additional remarks concerning these propositions are worth making. First,
while (P5) is of interest only for separable, infinite-dimensional Hilbert spaces, the
other four propositions are of interest for all infinite-dimensional Hilbert spaces.
The second remark concerns (P3). It is not hard to construct nontransitive algebras
«Z (even on finite-dimensional spaces) such that ' = {11}.
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We now turn to the question of localization. If « is a subalgebra of () and
E is a projection in «, then EAE = {ETE: T € &} is a subalgebra of « , and
E«E may also be viewed as a subalgebra of Q(JJ’E), where .WE denotes the range
of E. We show that questions concerning  can sometimes be localized so as to
become questions about algebras of the form E.E,

LEMMA 1.2. If &« is an n-transitive subalgebra of (H) and E is a nonzero
projection in A , then EAE is an n-transitive subalgebra of Z(Hg).

Pyoof. If dim #'r < n, the result is automatic. Therefore, let {xy, -, xn}
be any linearly independent set in &g, and let {Yl , *tt, yn} be a set in H'g.
Since « is n-transitive, there exists a sequence {Ak} in « such that
lim “Akxi - yi|| =0 for 1 <i<n., Thus

IEALER; - yif = |B(Akx; - y) | < [|Agx; - vsll

and it follows easily that E./E is n-transitive.
The next two theorems constitute our principal localization results.

THEOREM 1.3, If A is a transitive subalgebva of L(H) and E is a projec-
tion in «, then A is strongly dense in L(A) if and only if EAE is strongly dense
in L(Hg).

Proof. If A is strongly dense in Z(¢), it is obvious that E«E is strongly
dense in Q(JKE). To argue the other way, suppose that E&E is strongly dense in
Z(# ), and suppose, without loss of generality, that ¢ is strongly closed. Then
EAE = (A ), and it follows that  contains finite-rank operators. Thus from
Corollary 2 of [11] we may conclude that « = Z(¢), as desired.

THEOREM 1.4. Suppose that T is an opevator in Z(HK'), and suppose that .M
is a nontrivial reducing subspace for T such that T | A has a hypervinvarviant sub-
space. Then T has a hypervinvaviant subspace.

Proof. If E denotes the projection in Z(#’) with range ../, then E € (& 7)'.
Furthermore, an easy computation shows that E( 1)'E = (& prg)'. Since ETE
has a hyperinvariant subspace, E (. T)I E is not transitive, and thus by Lemma 1.2,
(o T)' is not transitive. Thus T has a hyperinvariant subspace.

Theorems 1.3 and 1.4 furnish immediate generalizations of previous results
concerning the strong density of transitive algebras and the existence of hyperin-
variant subspaces. Two corollaries of particular interest are the following.

COROLLARY 1.5. Suppose that A € L(H), that A is not a scalay, and that the
von Neumann algebra generated by A has a divect summand that is finite and of
type 1. Then A has a hyperinvarviant subspace.

Proof. This is an immediate consequence of Theorem 1.4 and the result of
Hoover [9] mentioned above.

COROLLARY 1.6. If « is a transitive subalgebva of () and A contains a
von Neumann algebra that has a maximal abelian divect summand, then A is
strvongly dense in L(H).

Pyoof. This is an immediate consequence of Theorem 1.3 and Arveson’s theo-
rem [1].

To continue our study of hyperinvariant subspaces, we introduce the concept of a
disjoint ordered pair of operators.
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2. DISJOINT ORDERED PAIRS OF OPERATORS

Let A and B be operators on Hilbert spaces < and s, respectively. We shall
say that the ordered pair (A, B) of operators is disjoint if the only bounded opera-
tor X mapping & into # and satisfying the equation AX = XB is X = 0. [To see
that a pair (A, B) may be disjoint while (B, A) is not disjoint, consider the pair
(0, U*), where U is any non-unitary isometry in 2(s#). In view of this, it is neces-
sary to consider ordered pairs.] We begin our discussion with some elementary
propositions concerning disjoint pairs of operators.

PROPOSITION 2.1. A pair (A, B) of opevators is disjoint if and only if the paiv
(B*, A*) is also disjoint.

PROPOSITION 2.2, If A and B are operators whose spectva ave disjoint, then
both pairs (A, B) and (B, A) ave disjoint.

Pyoof. This follows immediately from the fact that under the hypothesis, the
operator X — AX - XB is invertible [18].

PROPOSITION 2.3. If A and B arve normal operators, then the pair (A, B) is
disjoint if and only if the paiv (B, A) is disjoint.

Proof. This is an immediate consequence of the Fuglede-Putnam theorem [13].

The next result requires some additional terminology. Suppose that M and N
are normal operators on Hilbert spaces -# and &, respectively, and let Ep; and
En be their respective spectral measures. We say that the normal operators M
and N are mulually singulay if for every vector x in < and for every vector y in
A, the scalar measures p,(-) = (Ey(+)x, x) and uy( -) = (En(-)y, y) are singular.

PROPOSITION 2.4. If M and N are normal opevators, then the paiv (M, N)
[and hence the pair (N, M)] is disjoint if and only if M and N arve mutually singular.

Proof. This is a restatement of Lemma 4.1 of [6].

This theorem about normal operators represents a considerable improvement
over Proposition 2.2, which is valid for an arbitrary pair of operators. To see this,
note first that if M and N are normal operators such that the spectrum of M is
disjoint from the spectrum of N, then clearly M and N are mutually singular. On
the other hand, let s be the Hilbert space Lj[0, 1], where the measure on the inter-
val [0, 1] is understood to be Lebesgue measure, and let M denote multiplication by
the coordinate function f(x) = x. Furthermore, let N be a diagonal matrix relative
to some orthonormal basis for &# whose diagonal entries are exactly the rational
numbers between 0 and 1. Easy spectral theory shows that the operators M and N
are mutually singular, but that M and N have exactly the same spectrum-—namely,
the interval [0, 1]. This example shows that Proposition 2.4 is a refinement for
normal operators of Proposition 2.2,

We consider now the connection between disjoint pairs of operators and hyper-
invariant subspaces, which motivated this discussion of disjoint pairs. If .# is any
subspace of o, we denote by P_j the projection in Z(#) whose range is .#. The
basic rfew idea in the following theorem is due to H. Radjavi and P. Rosenthal [16].

THEOREM 2.5. Let A be an operator on K  and suppose that theve exist non-
zero subspaces M and N such that A is invaviant for A, N is invaviant for A*,
and the paiv (P 4 A |4, A| ) is disjoint. Then A has a hypevinvariant subspace.

Proof. We show first that P.#BP 4 = 0 for every operator B in (« ,)'. This
follows immediately from the equation
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(P yA|4)(PyBP ,)x = (PyAP ) (BP ,)x = (P

N

A)(BP ;)x
= (P B)(AP ,)x = (P4BP y)(Al.i)x (x€.)

and the fact that the pair (P_yA | N, A |.//{ ) is disjoint. (Notice, in particular, that
since 14 belongs to (. »)', the subspaces .# and .4 are orthogonal.) Thus, if x
and y are nonzero vectors in .# and .4, respectively, and B is any operator in
(o ,)', then

IBx -yl = B ,x- Byl > |PyBRPux-RBuy| = [vl.

It follows that (.« A)' is not l-transitive, and thus that A has a hyperinvariant sub-
space.

Theorem 2.5 may be useful in establishing the existence of hyperinvariant sub-
spaces for operators that are known to have invariant subspaces (for example, com-
pact operators). At present, the difficulty that one encounters when trying to apply
the theorem is the lack of useful criteria for the disjointness of a pair of operators.
Thus the search for theorems better than Propositions 2.1 to 2.4 would be a worth-
while endeavor.

The following corollary shows how Theorem 2.5 can be applied to operators that
are 2-by-2 matrices.

COROLLARY 2.6. Suppose that A and B ave opevators on Hilbevt spaces H
and K, rvespectively. Suppose also that M C H and N C K ave nonzero invaviant
subspaces for A and B*, vespectively, such that the pair (P, B I,/I’, A IV/!) is dis-
joint, Then every operator of the form

(A * )
0 B
acting on o @ A has a hyperinvariant subspace.

Some additional results along these lines are the following.

THEOREM 2.7, Suppose that A and B ave operators on Hilbevt spaces H and
H , vespectively., Suppose also that eithev A ov B has a hypevinvariant subspace,
and that theve exists a quasi-invertible opevator J: A — H such that AJ = JB.

Then evevy opevator of the form
( )
‘ 0 B

acting on H @ A has a hyperinvariant subspace.
Proof. Let T be the operator

A C
o (* ).
0 B
where C is an arbitrary operator mapping < into &#. We give the proof in the case

where A has a hyperinvariant subspace .#; the other argument is similar. It suf-
fices to prove that the algebra (.« )" is not transitive. Thus, let
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W X
Y Z
be an arbitrary element of (.« T)'. An easy matricial calculation shows that
BY = YA, and thus that AJY = JBY = JYA. Hence JY commutes with A, and thus

JY(.«) C 4. Since J is quasi-invertible (that is, since J has dense range and no
null space), it follows that the subspace

N = \/ Y(.A)
T'e(JIT)'

cannot be all of o. Thus, if x € ./, we see that for every T' € (& 1)',

T'(x D O0) =y @Dz, where z € ., and it follows immediately that the algebra (. 1)
is not 1-transitive.

COROLLARY 2.8. If A is an opevator on A that has a hyperinvariant sub-
space, then every opevator on H &) H of the form

G )

COROLLARY 2.9. If V is any operatov on o whose lattice of invariant sub-
spaces is linearly ovdeved (for example, if V is the Volterva opevator), then every

0

has a hypevinvariant subspace.

has a hypervinvariant subspace.

3. A GENERALIZATION OF ARVESON’S THEOREM

The main purpose of this section is to generalize the fundamental theorem of
Arveson [1, Theorem 3.3] concerning the strong density of transitive operator alge-
bras. We shall eventually prove the following theorem.

THEOREM 3.1. Suppose that A is a transitive algebra acling on a sepavable
Hilbert space <, and suppose that A contains a von Neumann algebra that has an
abelian divect summand of finite multiplicity. Then A is strvongly dense in ¥(.x).

A less technical but equivalent statement of this theorem is as follows.

THEOREM 3.1'. Suppose that A is a transitive algedbra acting on a sepavable
Hilbevt space , and suppose that « contains a Hevmitian operatoy that is not of
uniform multiplicity 8, . Then A is strongly dense in Z(x).

To prove the theorem, we shall need some additional notation and two funda-
mental lemmas,
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We denote by C, the n-dimensional Hilbert space of n-tuples of complex num-
bers, and by {el R en} the canonical orthonormal basis for €. We remind the
reader that a Sfonian space X is an extremely disconnected, compact Hausdorff
space. We shall say that a measure p on X is pevfect if p is a finite, regular
Borel measure on X with the property that a measurable set E has positive meas-
ure if and only if E has nonvoid interior. In particular, if p is perfect, then every
set of the first category in X has measure zero, and thus, corresponding to every
function f in L (X, u), there exists a unique continuous function in C(X) that differs
from f on a set of measure zero.

If X is a Stonian space and p is a perfect measure on X, we denote by
L,(X, €C,) the Hilbert space consisting of all weakly p-measurable, square-
integrable functions from X to C,. The inner product of two functions f and g in
L,(X, €,) is given by the equation

e = | W, e0) .
X n

Let M,, denote the von Neumann algebra of all n-by-n complex matrices, and
observe that M, = Z(C,). Denote by M, (X) the C*-algebra of all continuous func-
tions from X to M, , and note that M_(X) may be identified with a von Neumann
subalgebra of £(L,(X, €C,))), where the operator on L,(X, C,) corresponding to an
element A in M_(X) is defined by the equation .

(Af) (t) = A(t) £(t) (fe LyX,C), teX).

Henceforth, we shall assume that this identification has been made.

We shall make special use of D,(X), the abelian von Neumann subalgebra of
M, (X) consisting of all operators A in M, {(X) such that A(t) is a scalar matrix for
each t in X. For each ¢ € C(X), let M, denote the operator in D, (X) defined by
the equation

(MgD) (1) = $(OKL) (£ € Ly(X, C,), teX).

Clearly, the correspondence ¢ <> Mq_,) is a C*-isomorphism between C(X) and
D _(X).
n

The terminology above will remain fixed in what follows. Furthermore, the fol-
lowing well-known characterization of normal operators of uniform finite multiplic-
ity will be needed (see [12], [19]).

PROPOSITION 3.2. Let N be a novmal operatov of uniform multiplicity n < 8
acting on a sepavable Hilbert space K, Then there exist a Stonian space X and a
pevfect measure | on X such that A is isomovphic to L (X, C,) and such that,
under this isomovphism, the von Neumann algebva v genevated by N is carried
onto the algebra Dy(X).

The first of our fundamental lemmas is the following.

LEMMA 3.3. Suppose, with the notation as above, that @ is a dense linear
manifold in the Hilbevt space # = Lp(X, C,), and suppose that 9D is invariant undey
all multiplications by opevators in D,(X). Then theve exists a nonvoid compact open
set U C X such that the vectors f,, -~ f in A defined by the equation

b
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ej (t € U) s

0 (t ¢ U)

belong to 9D,

Proof. 1t follows from an easy continuity argument that there exists a positive
number € with the property that if {hl , v, hn} is any set of vectors in C,, satis-
fying the condition |h; - ;|| <& for 1 < i < n, then the vectors hy, -, h, “form a
linearly independent set in C,,. Now, for 1 <j < n, let g. be the constant function
in < defined by the equatmn gJ(t) =e;. Since @ is dense in #, there exist vectors

X1, ", X, in @ such that &

S ( 22 ”xj(t) - gj(t)uz)du = 2 ”xj - gj"‘z <6,
X j=1

j=1

where 0§ is any preassigned positive number. In particular, 6 may be chosen small
enough to ensure that there exists a set U C X with positive measure such that

” x;(t) - g;(t) || < ¢ almost everywhere on U for 1 < j <n. Moreover, since (X, p)
is regular, we may take U to be compact, and since in a perfect measure space a
measurable set has positive measure if and only if it has nonvoid interior, we may
also suppose that U is compact and open. Furthermore, by multiplying each Xj

by MX , we may assume that the X; vanish on X\ U. By modifying the X; ona set

of the first category (which necessarily has measure zero), we may suppose that the
x; are continuous on U. Thus for 1 <j < n, we have the inequality ||x (t) - e; ” <eg

on U\ W, where u(W) =0, Since U\ W is dense in U, the continuity of the x on
U implies that HxJ(t) - €j " <& for 1 <j<n andfor all t € U. Define the operator
A in M,(X) to be that matrix-valued function that has the vector X; for its jth

column (1 <j < n). By our choice of ¢, it follows that the matrix A(t) is nonsingu-
lar for each t € U. Thus, there exists an element B in M_(X) such that
Ayl (te U,

0 (t ¢ U).

B(t) =

It follows that the columns of the product AB, being sums of continuous multiplies of
the columns of A, also lie in @. Since AB(t) =1 on U, the proof is complete.

The second fundamental lemma is a slight generalization of the theorem in Sec-
tion 2 of [11].

LEMMA 3.4. Suppose that A is a transitive subalgebra of Z(s¢’) and that for
every paiv (D, T) with the three properties

1) @ is a dense lineayr manifold in o,
2) T is a linear transformation whose domain contains P, and

3) T commules with & on @ (thatis, AD C D and AT =TA on D, for each
A€ A),

there exist a nonzero vectov X =x(D, T) in D and a scalar » = ND, T) such that
Tx = AX. Then & is strvongly dense in £ ().
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Proof. Let T be a closed linear transformation with dense domain & C & such
that T commutes with «/ on &. According to Corollary 2.5 of [1], to prove that &
is 2-transitive it suffices to prove that T is a scalar. By hypothesis, there exist a
nonzero vector x in & and a scalar A such that Tx = Ax. It follows that every non-
zero vector in the dense linear manifold #/x C & is also an eigenvector for T cor-
responding to A. Since T is closed, a simple calculation shows that T is every-
where defined and that T = A, Thus « is 2-transitive, and by induction, we may
assume that ¢ is n-transitive. To show that « is (n + 1)-transitive, let
Ty, +-+, T, be linear transformations with common dense domain & C #, each com-
muting with « on &, and suppose that {(x, Tx, =, T X):x € &} is closed in the
direct sum of n + 1 copies of o#. By Corollary 2.5 of [1], to prove that « is
(n + 1)-transitive it suffices to show that some T; is closable. By hypothesis, there
exist a vector x; in & and a scalar A} suchthat T;x; =x; x;. Let

éal = '{X-€ &: Tlx = )\lX}.

Then &; is a dense linear manifold containing x; , and &; is invariant under .
Furthermore, T, commutes with «« on &;. Therefore, by hypothesis, there exist a
nonzero vector x, in &; and a scalar A, such that T, x, =2A,Xx,. Let

&2 = {x € &: Trx =Nx}.

By the same reasoning as above, &, contains X, and is thus a dense linear mani-
fold in o, and in addition, &, is invariant under .«#. Thus we may apply the hypoth-
esis to the pair (T3, &2). By an obvious finite-induction argument, we obtain a
linear manifold &, that is dense in & and invariant under ., and that satisfies the
condition T; X = A;x for each x € &,. From the fact that

{, T;x, =+, T x):x € &}

is closed it now follows easily that &= & and that T; =X; (1 <1i<n). This shows
that each T; is closed, and thus that « is (n + 1)-transitive. By induction, . is
k-transitive for every positive integer k, and hence ¢ is strongly dense in Z(¢).

Our program to prove Theorem 3.1' is now fairly transparent. We shall show
that every transitive algebra satisfying the hypotheses of Theorem 3.1' also satisfies
the hypothesis of Lemma 3.4, and hence must be strongly dense.

Pyoof of Theorvem 3.1'. Let H be a Hermitian operator in « such that H is
not of uniform multiplicity 8;. We may suppose that  is strongly closed, and
therefore that # contains the von Neumann algebra ¥ generated by H. By ele-
mentary multiplicity theory, » contains a central (in 7) projection E such that
EHE is of uniform multiplicity n for some positive integer n. By virtue of Theo-
rem 1.3, it suffices to prove that E«E is strongly dense in £ (). To say the
same thing slightly differently: by a change of notation, we may assume that
contains the abelian von Neumann algebra 7 generated by a Hermitian operator H
of uniform multiplicity n, and also that the identity of ¥ is 1 4.

By Proposition 3.2, there exist a Stonian space X and a perfect measure u on
X such that 2# is isomorphic to L,(X, C,) and such that ¥ is unitarily equivalent
under this isomorphism to Dn(X). We henceforth assume that the identifications
H = Ly(X, C,) and ¥ = D,(X) have been made, and thus that « D D, (X). We wish
to apply Lemma 3.4; therefore, let T be a linear transformation on & whose do-
main contains a dense linear manifold &, and suppose that T commutes with £ on
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@, We proceed to show that there exists a nonzero vector xg in @ that is an eigen-
vector for T. This will complete the proof, by virtue of Lemma 3.4,

By hypothesis, the domain ¢ is invariant under the algebra . In particular,
since « is strongly closed and ¥ = D,(X) C &, the domain % is invariant under
multiplication by every operator in D,(X). Thus, by Lemma 3.3, there exists a non-
void compact open subset U; of X such that the functions f;, -+, f, in # defined
by the equations

e; (teUyp,
£;(t) =
0 (t¢ Uy

belong to 9. By virtue of the definition of the vectors f;, we may write, for each
teU
1>

(T (t) = a1 (1) + - + a0 T <j<n).

It follows easily from the definition of the inner product on & that each of the
scalar-valued functions Qi is integrable [,u] over the set U;. Since p is a perfect
measure, one sees without difficulty that there exists a nonvoid compact open set

U C U; such that on U each of the functions o;; (1 <i, j < n) is bounded, and hence
may be assumed to be in C(U). For 1< i< n, let g; be the vector in ¥ defined by

the equation g; = MXUfi . Since T commutes with MXU on 9, we see that

(Tg;)(t) =0 for t € X\ U and

(Tg;) (1) [MXU(TfJ-)] (t) = xut) (T (t) = (TH) (1) = og5(6) £1(8) + -+ + o;5(6) £4(8)

= O!lj(t)gl(t)-l- ---+Olnj(t)gn(t) (]-S_Jﬁn) s

for t € U,

We write F for the projection F =M U in D (X), and & for the range of F,

X
so that each vector g. belongs to € N ¥, Furthermore, since F € &, we have the
relations FY C & and FT =TF on Z. It follows easily that & N & is dense in ¥,

that (9 NF) C P N &, andthat T=FT on 9 N &, In particular, observe that T
commutes with the algebra FAF on 9 N &.

We shall complete the proof by showing that the linear transformation T has an
eigenvector in @ N &. To accomplish this, let T be the element of the von Neumann
algebra 7' = M,_(X) defined by T(t) =0 for t € X\ U and

ap(t) e agu(t)

a (B - o ()

for t € U. We wish to show that Tw = Tw for every vector w in & N . Suppose
first that w has the form

(1) w = M¢lg1+---+M¢ng1,
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where Gy, 0, ¢, are functions in C(U). Then, since both T and T commute with
the multiplications M¢, on &, and since by construction T agrees with T on the
1

vectors g;, we see that Tw = Tw for all vectors w in @ N F of the form (1). Now
suppose that w is an arbitrary nonzero vector in &4 N #. Then the best that can be

said about the function t — | w(t) ”C is that it is square-integrable. However, the
n

function p defined by the equation
/1 +wl) (e,
0 (t ¢ U)

p(t) =

belongs to L. (X, ), and the vector M/, w belongs to P N F and is of the form (1).
Hence

MpTw = TMpW = TMpw = MpTW .
Since Mp | # has no null space (by inspection), we obtain the desired conclusion that
Tw=Tw forall we 9 N F.

Now where are we? We have found a nonzero projection F in D (X) and a
bounded operator T in M, (X) such that on the set @ N &, the operator T agrees
with T. But we observed earlier that T commutes with the algebra ¥« F on
PN &, and since 9 N & is invariant under FAF, it follows that T commutes with
the algebra F&F on & N &, Since T is bounded, T commutes with the algebra
FAF onall of . In particular, T# C #, and inspection shows that T | # is an n-
normal operator. Now suppose that T |# is not a scalar multiple of 14 . Then
T | # has a nontrivial hyperinvariant subspace &, by Hoover’s theorem [9] (see
also [16]). This means that # is invariant for the commutant of T | #, and in par-
ticular, & is invariant for the transitive algebra F .#F. This is a contradiction,

which establishes that T |# is a scalar, and hence that T is a scalar on @ N &,
This completes the proof via Lemma 3.4.

Note. The reader interested in the circle of ideas concerning transitive alge-
bras should consult the recent article [17], which was written concurrently with this
paper.
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