THE CYCLIC CONNECTIVITY OF PLANE CONTINUA

Charles L. Hagopian

Suppose that p and q are distinct points of a locally connected, compact, plane
continuum H. It is known that if no point separates p from q in H, then there exists
a simple closed curve in H that contains both p and q [5]. It is also known that H
is arcwise connected [4, Theorem 13, p. 91]. Recently, arcwise connectedness has
been established for certain plane continua that are not locally connected [1]. A con-
tinuum M is said to be aposyndetic at a point p of M with respect to a set N in
M - {p} if there exist an open set U and a continuum H in M such that
pe UCHCM - N. A continunum M is said to be aposyndetic at a point p if for
each point q in M - {p}, M is aposyndetic at p with respect to q. If M is aposyn-
detic at each of its points, then M is said to be aposyndetic. The arcwise connected
continua studied in [1] may be classified as follows:

A compact plane continuum M is said to be of {ype 1 if it is aposyndetic and
contains a finite set of points ¥ with the property that for each point x in M - F,
there exist points y and z in F such that M is not aposyndetic at x with respect to

{y, z}.

If M is semilocally connected at all except finitely many of its points and if at
none of its points it is both aposyndetic and semilocally connected, then M is said to
be of fype 2.

If M is a continuum of type 1, then it is the sum of a finite number of cyclicly
connected continua [1, Theorem 6]. Hence any two distinct points of M that are not
separated in M by a point lie inside a simple closed curve contained in M. How-
ever, if M is of type 2, then M may contain two points that are not separated in M
by a point and are not contained in a simple closed curve lying in M [1, Example 8].

A compact plane continuum H that does not separate the plane has another
cyclic property. A point r in H - {p, q} is said to cut p Sfrom q in H if each sub-
continuum of H that contains {p, q} also contains r. F. Burton Jones has shown
that if p and q are distinct points of H and no point cuts p from q in H, then some
simple closed curve in H contains p and q [3]. It is known that if a compact plane
continuum M contains a point y such that for each point x in M - {y}, M is semi-
locally connected at x and M is not aposyndetic at x with respect to y, then M has
Jones’s cyclic property [1, Theorem 12]. Note that M is a continuum of type 2. It
is the primary purpose of this paper to show that all continua of type 2 have Jones’s
cyclic property. To accomplish this, we first establish a theorem from which it
follows that all continua of type 1 or 2 are hereditarily arcwise connected. Also, we
give an example that rules out certain generalizations of this result.

Throughout this paper, S denotes the set of points of a simple closed surface
(that is, a 2-sphere). For definitions of unfamiliar terms and phrases, see [4].

Definition., Let F be a finite set of points {yl y Y2, %, ya} in a continnum M
(McCS). Foreachi (i=1, 2, -+, @), let {VL} be a properly nested sequence of
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circular reglons in S that are centered on y; and converge to y;. Suppose more-
over that if j=1,2, ---,@ and j #i, then CLVi N C1V] =@ (C1V} is the closure

of V'I) For each positive integer j, let Vi = U1 1 V For a point x in M - F, let
YJ be the x—component of M -'Vj. Let Hx be the 11m1t superior of the sequence
{Y:}. Note that Hy is a subcontmuum of M and that it meets F.

THEOREM 1. Suppose that M is a continuum in S and that F is a finite set of

points in M such that for each point x in M - F, M is not aposyndetic at x with
afespect to ¥ and M is aposyndetic at x with 'respect to each point of
- (Fu{x}). Then M is heveditarily avcwise connected, and for each point x in

M ¥, the continuum H’F‘:, is herveditarily locally connected.

Progf. Assume that there exists a point x in M - F such that HF contains a

continuum H that is not locally connected. We shall prove that this assumption im-
plies the existence of points p and w in M - F such that M is not aposyndetic at p
with respect to w; this will contradict the hypothesis of the theorem.

‘There exist two circular regions T and W in S with the properties that
(1) ToC1w,
(2) FNCIT=¢, and

(3) there exists a sequence {H,} of disjoint continua in H N (C1 T - W) such
that each continuum meets both Bd T (the boundary of T) and Bd W, and such that
the limit inferior Z of the sequence {H } is a continuum

[4, Theorem 66 (proof), p. 124]. Let q be a point of Z that is not in Bd T U Bd W.
Let {qn} be a sequence of points converging to g such that for each positive integer
n, q, € H, N (T - C1 W). Let {Qn} be a sequence of mutually disjoint circular re-
gions in S converging to q, such that for each positive integer n the region Q, is
centered on q, and Cl Q, is contained in T - C1 W. For each positive integer n,
there exists an integer i such that Y¥ N Q, # @. It follows that there exists a se-

quence {In} of disjoint continua in H’}i N (C1 T - W) such that to each n there cor-
responds an index i for which I N Y¥ is not empty, and such that the set
I=1lim inf (I;, I,, -+-) is a continuum that contains q and meets Bd(T - W). We
can find a point p and two circular regions R and E, centered at q, such that

(1) T-CIWDCIRDE,

(2) pe (R-CLE) NI,

(3) there exists a sequence {F,} of disjoint continua such that the set
lim inf (F;, F,, --+) is a continuum in H% and contains p, and such that for each

index n, F, meets both Bd R and Bd E, and there exists an integer j for which
I; N{CIR-E)D F,

Note that for each positive integer i, there exists an integer j such that
1
U n=1 Fp C Y3.

Concerning the sequence {Fn}, we may assume without loss of generality that
for each positive integer n, there exist two arc-segments R, and E, such that

(1) R, € BdR,
(2) E, C Bd E, and

(3) each arc-segment meets F;, Fp, F3, --- only in F,,, and it has one end-
point in F,,_; and the other endpoint in F,,,;.
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Let {pn} be a sequence of points converging to p, and such that
Pn € anﬂ(R- ClE)

for each n. The sequence {R,} converges to a point w; of M N Bd R, and {E,}
converges to a point wp, of M N Bd E.

Since M is aposyndetic at p with respect to each point of M - F, for n =1 and
2, there exist subcontinua M; and Mz of M and circular regions G; and G2 in T
such that C1 G; N Cl1 G, = @, and such that for n =1 and 2, the set G,, contains wy,
and meets only one component of Bd (R - E), the point p is in the interior of M,
relative to M, and C1 G, N M, = @. Let G denote a circular region in S containing
p, and such that

CIGNCI({GjUGy) =@

and G N M is contained in M; N M, . Assume without loss of generality that for
each positive integer i, R{ C G, E; C G2, and p; € G Let j be a positive 1nteger
such that C1V; N C1T = ¢ and the contmua Fi,F, -, Fpp 2y all liein YJ 1 (a
is the cardinality of F). Let P; be a circular region in G centered on p;, and
such that Cl P; does not meet F; U F3 UR; UE;. Since M is not aposyndetic at
p; with respect to F, the component of M - V; that contains p; is not open relative
to M at p; . Hence the boundary of Pl contains an arc-segment S; whose endpoints
a; and b; lie in different components of M - V , and such that M N §; = D.

There exists a simple closed curve C; that separates a; from b; in S and
contains no point of M - Vj, and such that C1 N S; is connected and C; intersects
Bd E U Bd R in only a finite number of points and crosses at each of these. In C;,
there exists an arc-segment T; that crosses S;, contains no point of M U C1 Vj,
and has its endpoints in Bd Vj. Let P, be a circular region in G, centered on p,,
and such that Cl P, does not meet F3 UF; UR, UE, UT;. The component of
(M U 8; UCLT,) - Vj containing p, is not open relativeto MU S; UCI T, at p,.
Hence the boundary of P, contains an arc-segment S, whose endpoints a, and b,
lie in different components of (M U 8; U C1 T}) - V; and whose intersection with M
is empty.

There exists a simple closed curve C, that separates a; from b, in S and
contains no point of (M U S; U C1 T;) - Vj, and such that C, N S, is connected and
C, intersects Bd E U Bd R in only a finite number of points and crosses at each of
these. In C,, there exists an arc-segment T, that crosses S;, contains no point of
M U C1Vj, and has its endpoints in Bd V.

Continue this process. For each k (k=1, 2, ---, ozz), there exist a circular re-
gion P, (centered on py) in G, arc-segments S, and T, and a simple closed curve
Cy such that

(1) Cl1 Py does not meet Fpi_; U Fprig URy UE, U lJ1 1 T,

(2) Sx has endpoints aj and by in M and is contained in (S - M) N Bd Py,

(3) Cy separates ay from by and contains no point of
k-1

(M v U (s;ucl Ti)) - vy,

i=1
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(4) Cy N Sy is connected and Cy intersects Bd E U Bd R in only a finite num-
ber of points and crosses at each of these, and

(5) Ty is contained in Cy - C1V;, meets Si, and has its endpoints in Bd V.

Statement C. For each k (k =1, 2, -, a?), no component of C1(G, U G,) con-
tains both a point of Ty that precedes and a point of Ty that follows Ty N Sy with
respect to the order of Ty . Note that if Statement C were false, then for some Kk,
the union of the arc-segment Ty and a component of Bd (G; U G,) would separate
aj from by in S, and this would contradict the existence of M; and M, [4, Theo-
rem 32, p. 181].

Since there are a? arc-segments Ty, there exist components V and Y of
Bd V; and integers r and s such that the endpoints of T, and T, are contained in
V U Y. We now have two cases to consider:

I. One of T, and Ty, say T, has both endpoints on the same component of

Bde.

II. Eachof T, and T has endpoints on different components of Bd V.

In case I, construct a simple closed curve J from T, and an arc on Bd VJ- ; in
case II, construct J from T,, Tg, and two arcs on Bd Vj.

Note that E, crosses J an even number of times, since its endpoints lie in the
connected set Y ; €S- J. Hence |E; N Ty| = |E; N Tg| (mod 2); that is, E; in-
tersects each of T, and T4 an even number of times, or each of T, and T4 an odd
number of times.

E, cannot cross T, an even number of times, for the subarcs of T, in the re-
gion bounded by F;,._; U F3.41 U E,. U R, have both endpoints on E,. or R,., except
for the one that meets S, (otherwise, Statement C would be contradicted). This
eliminates case I and reduces case II to the problem of showing that not both of
|[E, NT,| and |E. N Tg4| can be odd.

If lEr N Tsl is odd, then a component of T3 - Sg intersects both G; and G;,
contrary to Statement C. It follows that for each point x of M the continuum H’]_E. is
hereditarily locally connected.

Now, to prove that M is hereditarily arcwise connected, let K be a subcon-
tinuum of M. Assume that KN F is void. Let p be a point of K. The set K is

contained in the hereditarily locally connected continuum HE , and it is therefore
arcwise connected. Suppose that KN F is not empty. For each point p of K - F,
there exists a continunum L in K N Hg. that contains p and meets KN F. ¥ KN F

consists of one point, then K is arcwise connected. Assume that KN F contains
more than one point. Let A and B be nonempty disjoint subsets of F such that

AUB=KNF, Since K is a continuum in M, there exists a point p in K - F such
that K N HE. contains a continuum that meets both A and B. Therefore any two

distinct points of K N F are the endpoints of an arc contained in K. It follows that
K is arcwise connected. Hence M is hereditarily arcwise connected. - )

COROLLARY. If M is a compact plane continuum of type 1 ov type 2, then M
is heveditarily arcwise connecled.

Definitions. For a point y of a continuum M, Jones defines Ly to be the sub-
continuum of M consisting of y and all points x in M - {y} such that M is not
aposyndetic at x with respect to y [2]. Let x and y be distinct points of a compact
metric continuum M such that M is not aposyndetic at x with respect to y. Let
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{Vn} be a monotone descending sequence of circular open subsets of M that are
centered on y and converge to y. For each positive integer n, let Y be the x-
component of Ly - V,,. Define LY to be the limit superior of {Y%}. The set L3 is
a subcontinuum of M that contains x and y. The continuum M is not aposyndetic at
any point of L’; - {y} with respect to y.

THEOREM 2. Suppose that M is a compact plane continuum that is semilocally
connected at all except finitely many of its points, and is at none of its poinis both
aposyndetic and semilocally connected. If p and q ave distinct points of M and no
point cuts p from q in M, then theve exists a simple closed curve in M that con-
tains p and q.

Proof. Assume that no point cuts the point p from the point q in M. Since M
is hereditarily arcwise connected, it is sufficient to show that there exist simple
closed curves Jp and Jq with the property that p € Jp, q € Jq, and either
Jp N g # @ or there exists an arc-segment A in M - (Jp U Jq such that one end-
po1nt of A lies in J - {p} and the other endpomt of A 11es m J {q}

Case 1. Assume there exist points x and y in M such that {p, q} C L’;. The
continuum L is locally connected [1, Theorem 8]. If no point separates p from q
in L , then some simple closed curve in L contains p and q. Suppose that some
p01nt separates p from q in L’; There are only finitely many points that separate
L} [1, Theorem 10]. Hence there exists a point r of L}; that separates p from q
in Lx and such that no other point separates p from r in LX. There exists a point
s of L that separates p from q in Ly, and such that no other point separates q
from s in L’}E. There exist simple closed curves Jp and Jq in LY that contain
{p, r} and {q, s}, respectively. If r = s, the conclusion follows immediately. As-
sume that r # s. Since both r and s separate p from q in Lx there exists an arc
in L} from J, to Jq that does not meet {p, q}.

Case 2. Suppose there exists a point y in M such that {p, q} € Ly, p #y, and
q¢d Lp By the preceding argument, there exists a simple closed curve J, contain-
ing p 1n LY such that either y € J, or else the set Lp {p} contains an arc B
from J to y. Also, there exists a s1mp1e closed curve dgq in L;], such that either
y € Jdq or else there is an arc C in Lq {q} from Jq to y. If J, N Jg = @, there
ex1sts an arc in Ly - {p, q} from J, to Jq

Case 3. Suppose there exists no pomt y in M such that {p, q} C Ly. It fol-
lows that there exists a finite set of points { Vi, Y2, ™, yn} such that

(1) Ui=1 Ly, is a continuum,

n
(2) pe Lyl - Ui=2 L_ , and

¥i
Un-l
(3) q € Lyn - i=1 Ly.i.

Assume first that LY1 N LY contains a point w. Note that p#w and q #w. In
n

LY1 , there exists a simple closed curve J p» containing p, such that either w € Jp

or there is an arc B in LYl - {p} from Jp to w. There exists a simple closed

curve J q in LYn that contains q, and such that either w e J q Or there exists an arc
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C in LY - {q} from Jq to w. The conclusion follows immediately. If
n . . n-1 sy
LY1 n LYn =-¢, then there exists an arc in Ui=2 LYi that has one endpoint in LYl
and the other endpoint in Ly . Hence there exist simple closed curves J P in LYl
n

and J q in LY , containing p and ¢, respectively, and there exists an arc in
n

M - {p, q} from J’p to Jq.

Example. Suppose that M is a compact plane continuum that is not both apo-
syndetic and semilocally connected at any of its points. If M is semilocally con-
nected at all but countably many of its points, then M may fail to have Jones’s cy-
clic property. To see this, consider the compact plane continuum M in the figure.
M is the union of infinitely many Cantor suspensions, each suspension having its
endpoints identified. (A Cantor suspension is a continuum that is the upper-semi-
continuous decomposition of the topological product of the unit interval [0, 1] and the
Cantor discontinuum C in which the sets 0 X C and 1 X C are points. These sets
are called endpoints of the Cantor suspension.) No point cuts p from q in M, and
M does not contain an arc from p to q. Hence M does not have the cyclic property.
The suspensions in M are countable, and M is semilocally connected at each point
that is not an endpoint of some suspension. M is totally nonaposyndetic.
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