FINITE-DIFFERENCE INEQUALITIES AND AN
EXTENSION OF LYAPUNOV’S METHOD

B. G. Pachpatte

1. INTRODUCTION

Many authors have investigated the boundedness and stability properties of dif-
ferential equations by considering one-sided estimates of solutions. It is natural to
expect that an estimate of the lower bound for the rate at which the solutions ap-
proach the origin or the invariant set would yield interesting refinements of stability
notions. V. I. Zubov’s notion of a uniform attractor (see [6] and [7]) is a refinement
of such a nature.

The purpose of this paper is to prove some finite-difference inequalities that
have a wide range of applications in the study of finite-difference equations. Incor-
porating an idea used by Zubov in stability theorems [6], [7], we introduce the con-
cepts of mutual stability and boundedness; our two-sided estimates ensure that the
motion remains in tube-like domains.

2. DEFINITIONS AND BASIC THEOREMS

Let G be an open set in an n-dimensional vector space R™ with norm |x||, let
I denote the set of nonnegative integers, and let the function h(k, x): I X G — R™ be
continuous in x, for each k. Consider the finite-difference equation

(2.0) ax(k) = h(k, x(k)),

where x and h can be scalars or vectors, h(k, 0) = 0, and Ax(k) = x(k + 1) - x(k).

A function x(k) = x(k; kg, Xq) is called a solution of the difference equation (2.0)
if it satisfies the three conditions:

(a) x(k; kg, Xg) is defined for kg < k < kg + B, for some positive integer 8 or
for all k > ko,

(b) x(kq; kg, Xg) = X9 (we call this the initial vector),
(c) ax(k; kg, Xg) = h(k, x(k; kg, xg)) for kg <k <kg+p -1 or for all k> kg.

Hereafter, we assume that a solution to (2.0) exists and is uniquely defined for
all k > kg by the initial vector xg, and that this solution is continuous with respect
to the initial vector x,. More specifically, we assume that if {x,} is a sequence of
vectors with x, — xy as n — <, then the solutions through x, converge to the solu-
tion through x;:

x(k; kg, x,) — x(k; kg, Xg) as n— .
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On each finite interval J, this convergence is then uniform with respect to k, since
at most finitely many k belong to J.

The following fundamental theorem on finite-difference inequalities is useful for
our subsequent discussion.

J THEOREM 1. Let the scalar function h(k, x): IX G — R! be continuous and
monotone incveasing in x. Let x(k) and y(k) be real-valued continuous functions de-
fined on 1 such that (k, x(k)), (k, y(k)) € I X G, and x(0) < y(0). Assume fuvther that
(2.1) Ax(k) < h(k, x(k)) and  Ay(k) > h(k, y(k))

for all k € 1. Then

(2.2) x(k) < y(k) kel.

Proof. If the assertion (2.2) is false, let 8 denote the least nonnegative integer
k for which x(k) > y(k). Then x(k) < y(k) for 0 < k < B, and this implies that

(2.3) x@-1) <y@B-1)
and
(2.4) x(B) > y(B).

Using (2.3) and (2.4), we obtain the inequality
(2.5) Ax(B - 1) > Ay(B - 1).
The relations (2.1) and (2.5) yield the further inequality
h(B-1,x(B-1)) >h(B-1,yB-1)).
This is a contradiction, in view of (2.3) and the monotoneity of h(k, x), and the result

follows.

The following theorem is an extension to finite-difference equations of Theorem
1in [5], which in turn is a generalization of a lemma due to R. Bellman [2].

THEOREM 2. Suppose that the scalar functions Wi(k, r) and W(k, r) arve de-
fined, continuous, and nonnegative on I X G (G C R!) and monotone increasing in r,
and that

(2.6) _ Wa(k, m(k)) < Am(k) < Wy, m(K).

For k >0, let u(k) =u(k; 0, ug) and v(k) = v(k; 0, vo) be the solutions of the sys-
tems

(2.7) Au(k) Wik, uk)), u(0) = up,

(2.8) Av(k) = W,(k, v(k)), v(0) = vq,
and suppose vg < m(0) <ug. Then

(2.9) v(k) < m(k) < ufk)
for all k > 0.
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Proof. Applying Theorem 1 to the second part of (2.6) and to (2.7), we obtain the
right half of (2.9). A similar argument yields the left half.

The following comparison theorem is useful in the study of solutions of the finite-
difference equations

(2.10) Ax(k) = f(k, x(k)), x(0) = xgq,

(2.11) Ay(k) = gk, yk)), vy(0) = yq,

where x, y, f, and g can be scalars or vectors and f(k, x), g(k, y) are continuous
functions defined on I X G.

THEOREM 3. Let the functions Wi(k, r) and Wy(k, r) be defined as in Theo-
vem 2. Suppose fuvther that the functions f(k, x) and g(k, y) of (2.10) and (2.11)
satisfy the condition

(2.12) Wok, % - ) < ik, ) - g, y)|| < Wik, |x - y])

for all k > 0. Let u(k) and v(k) be solutions of (2.7) and (2.8). Let x(k) and y(k)
be solutions of the equations (2.10) and (2.11), and assume that vo < ||x0 - vo| < ug.
Then

(2.13) v(k) < [x(k) - y&k)| < ulk) for k>0.

Proof. Let m(k) = ||x(k) - y(k) ||, then m(k + 1) = ||x(k +1) - y(k + 1)||. By
(2.12),
Am(k) < |1k, x(K) - gk, yR)| < Wk, [xk) - y&)]),
that is,

(2.14) Am(k) < W(k, m(k)).

Applying Theorem 1 to (2.7) and (2.14), we obtain the right half of the inequality
(2.13). The proof of the left half of the inequality is similar.

3. MUTUALLY EQUISTABLE, ATTRACTING, AND
MUTUALLY EQUIBOUNDED SOLUTIONS

The following definitions serve to unify our results on mutual stability and
boundedness.

Let x(k) = x(k; kg, %g) and y(k) = y(k; kg, yo) denote solutions of (2.10) and
(2.11).

(a;) Two solutions of the equations (2.10) and (2.11) are mutually equistable if
for each €7 > 0 and each kg € I it is possible to find positive functions
d; =d;(kg, £1), dz =da(kg, £1), and & =¢,(kg, £1), continuous in &; for each k,
such that €, <d, <d; <ej, and such that g, < ||x(k) - y(k) || <e&; for k > kg,
whenever d, < ||xq - yol <4;.

(a;) Two solutions of the equations (2.10) and (2.11) are muiually attracting if
the following two conditions hold.

(i) In (a)), it is possible to find d; =dj(ko, £1) > 0 such that [x(k) - y(k)| <&,
for k > kg, whenever [xq - y, | <q;.
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(ii) If €3 >0, ;3 >0, 0<a,<a;,and kg € ], it is possible to find positive
functions € = SZ(kO’ €1, O, 012), T = Tl(kOs €)1, 0, 0!2), and

Tz = Talko, €1, @1, @p)
such that T; < T,, &, <&;, €, < @5, and such that £, < || x(k) - y(&)]| <&, when-
ever k € I, k € [kg+T;, kg + T,], and a, < ||xq - yofgal.

(a3) Two solutions of the equations (2.10) and (2.11) are mutually equibounded if
forall a; >0, 0<az L o), ko € 1, it is possible to find positive functions
B1 =Bilko, a1, @2) and B2 = Ba(kp, a1, @), continuous in @] for each kg, such
that B < B3, B2 < az, and B2 < "x(k) - y(k)ﬂ < B1 , whenever k > ko and
ap < 'TXO - Yol £a;p.

Corresponding to the definition (a;), we formulate the definition (a;*) with re-
spect to the system (2.7) and (2.8).

Let u(k) and v(k) be solutions of the equations (2.7) and (2.8).

(a;*) For each 71 > 0 and each kg € I, there exist positive functions
61 = 6;(ko, m1), 62 = 62(ko, m1), and n2 = n2(ko, 71), continuous in 7 for each
kg, such that 7, < 6, < 6; <7, and such that 7, < v(k) <u(k) <7; whenever
k>kp and 6, <vpg<Lup <L 9.

Similarly, we can formulate definitions (az *) and (as *),

THEOREM 4. Suppose the hypotheses of Theovem 3 ave satisfied. If the dif-
SJerence equations (2.7) and (2.8) satisfy condition (a;*) or (az*) or (az*), then
the solutions of (2.10) and (2.11) ave mutually equistable ov mutually attracting ov
mutually equibounded, respectively.

This theorem follows directly from Theorem 3 and our definitions.

4. AN EXTENSION OF LYAPUNOV’S DIRECT METHOD

Let the scalar function V(k, x, y) be defined, nonnegative, and continuous on
I X G X G, where G C R™, and suppose that for each k € I, V(k, x, y) = 0 if and only if
x =y. Let AV(k, x, y) denote the expression

AV(k, x, y) = V(k + 1, x +(k, x), y +g(k, ¥)) - V(k, X, y).
LEMMA. Suppose the function V(k, x, y) satisfies the condition
Wy(k, V(k, %, y)) < AV(k, %, y) < W(k, V(k, x, y)),

where the scalayr functions W1 and W saﬁsfy the hypotheses in Theovem 2. If x(k)
and y(k) arve solutions of (2.10) and (2.11) such that vo < V(kg, Xg, Vo) L ug, then

v(k) < V(k, x(k), y(k)) < uk) (k>kg),

where w(k) and v(K) are solutions of (2.7) and (2.8).

The proof of this lemma is analogous to the proof of Theorem 3. We omit the
details.

For our further discussion, suppose that the function V(k, x, y) satisfies the two
conditions
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b(flx - y[) < V& x, ¥ < alllx-y[),
(4.1) where a(r) and b(r) are continuous, strictly
increasing functions for r > 0 with a(0) = b(0) =0,
(4.2) b(r) = asr — =,

Then we have the following theorems on mutual stability and boundedness of the
solutions of (2.10) and (2.11).

THEOREM 5. Suppose the hypothesis of the lemma holds. Assume that the
SJunction V(k, x, y) satisfies condition (4.1). Then (a;*) implies that the solutions of
(2.10) and (2.11) are mutually equistable.

Proof. Suppose £ >0, kg € I, and 51 =b(e1) > 0. Since (a;*) holds, there
exist positive functions 6; = 61(ko, 11), 62 = 62(ko, 71), and 72 = n2(kg, 171) such
that n2 < 525 61 <771’ and
(4.3) N, <vik) <uk) <7y,

whenever k > kg, and
(4.4) 62 < vop < v < 9.

By the continuity of a at r = 0, we can choose an €, > 0 such that a(e;) <7, and
g, <&;. Let x(k) and y(k) be solutions of (2.10) and (2.11) such that

(4.5) vy < Vikg, Xg, ¥9) < ugp -
Then it follows from the lemma that
(4.6) vk) < Vik, x(K), y&) < u®  (k>ko),

where u(k) and v(k) are solutions of (2.7) and (2.8). Further, (4.1), (4.5), and (4.4)
show that there exist two positive functions d;(ky, €;) and d,(kg, €£;) such that

(4.7) d, < % - voll <4
whenever
(4-8) 62 S V(ko y X0 s YO) S 61 ’

and vice versa. Thus, whenever d, < ||xg - yo| <dy, it follows from the lemma
that (4.6) is true. Now we claim that ¢, < ||x(k) - y(k)|| <&, for k >k, , provided
(4.7) holds.

Suppose, on the contrary, that there exist solutions x(k) and y(k) of (2.10) and
(2.11), satisfying (4.8), such that ||x(k;) - y(k;)|| >&; or ||x(k;) - y(k))|| <&, for
some k; > k. Using the inequalities (4.1), (4.6), and (4.3), we arrive at the contra-
diction

b(e;) < V(kp, x(ky), yky)) < ulk;) < bleg) .
On the other hand, if ||x(k;) - y(k;)|| <e,, we obtain the contradiction

alez) > Vik;, x(k;), y(k;)) > v(k;) > Ny 2> aley)
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from the inequalities (4.1), (4.6), and (4.3). This proves that (a;) follows from (a; *).

THEOREM 6. Suppose the hypothesis of the lemma holds, and assume that the
SJunction V(k, x, y) satisfies condition (4.1). Then (a,*) implies that the solutions of
(2.10) and (2.11) are mutually attracting.

Proof. Suppose €] >0, kg € I, and a; > 0. Choose an a2 so that
0<a; <a). Let xo0 and ygo be such that ap < ||xo - yo || Laj. Then because
V(k X, y) =0 and by (4.1), it is possible to find positive numbers @&; = al(al) and
ozz = az(az) such that

(4.9) a, < V(kg, X, ¥o) < @ .

Let (a, %) hold, so that (i*) and (11*) of (az *) are simultaneously true. Then, if
71 =ble)) > 0 kg € I, and 0 < 0, < @ , there exist positive numbers

T; =Ti(ko, &}, @z, n1), Tz =Tylko, &1, Gz, 7)), and 1, =7,(1,) such that
n, <My, N2 <@, T; <T,, and such that

(4.10) n, <vk) <uk) <ny, kelkg+Ty,ky+T,l
whenever
(4.11) &2 _<_ Vo S Up S &1 .

Also, let x(k) and y(k) be solutions of (2.10) and (2.11) such that
vy < Vikg, Xp, o) < g -

Then, as in Theorem 5, condition (4.6) is satisfied whenever (4.5) holds. Now, when-
ever a, < ||xg - yo|| < @1, it follows from (4.9) that (4.11) is valid.

Choose an £, such that a(e;) <712, €2 < @z, and €, <€) . Proceeding as in
the proof of Theorem 5, we can prove that (ii) is true with this €, and T;, T, as in
the earlier part of this proof.

The same argument of the proof of Theorem 5 shows also that (i*) implies (i).
The two conditions (i) and (ii) together show that (a,) is satisfied. Hence the proof
is complete.

THEOREM 7. Assume that the function V(k, x, y) satisfies the hypothesis of
the lemma, as well as conditions (4.1) and (4.2). Then (az*) implies that the solu-
tions of (2.10) and (2.11) are mutually equibounded.

The proof is similar to the proof of Theorems 5 and 6, and we leave the details
to the reader.
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