ON A CLASS OF SCHLICHT FUNCTIONS

P. L. Duren and G. E. Schober

Let S be the class of functions

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$

that are analytic and schlicht in |z| < 1. In 1934, O. Dvořák [1] made the interesting observation that if $f \in S$ and

(1)
$$\Re \sqrt{\frac{f(z)}{z}} > \frac{1}{2} \quad (|z| < 1),$$

then $|a_n| \le n$ (n = 2, 3, ...). The proof simply uses the fact that

$$\sqrt{\frac{f(z)}{z}} - \frac{1}{2} = \frac{1}{2} + c_1 z + c_2 z^2 + \cdots$$

has positive real part, so that $|c_n| \le 1$ (n = 1, 2, ...). Dvořák [1] further showed that every function $f \in S$ satisfies (1) in the disk $|z| < \rho$, where

$$\rho \log \frac{1+\rho}{1-\rho} = 2.$$

A calculation shows that 0.833 $< \rho <$ 0.834. Recently, Dvořák [2] claimed to show that (1) holds in a disk $|z| < r_0$, where 0.90 $< r_0 <$ 0.91. He later [3] claimed an improvement to 0.98 $< r_0 <$ 0.99.

Unfortunately, however, these last two estimates are incorrect. In the present note, we show that the best possible radius is $R=0.835\cdots$. In other words, for every $f\in S$, the inequality (1) holds for every z in |z|< R; but for each z in |z|>R, there is some $f\in S$ for which (1) fails to hold. Our procedure allows the computation of R to any desired accuracy. It is curious that although Dvořák derived the constant ρ by what appears to be crude estimation, the sharp constant R is only slightly larger.

For $f \in S$, G. M. Goluzin [5] used Loewner's differential equation to establish the sharp estimate

$$\left| \arg \frac{f(z)}{z} \right| \, \leq \, \log \frac{1+r}{1-r} \quad \ (r = \left| \, z \, \right| \, < 1) \ . \label{eq:constraint}$$

Thus

$$\Re \, \sqrt{\frac{f(z)}{z}} > 0 \quad \text{ for all } f \in S$$

Received March 2, 1971.

This work was supported in part by the National Science Foundation, under Contracts GP-19148 and GP-19694.

Michigan Math. J. 18 (1971).

if and only if

$$\log\frac{1+r}{1-r}<\pi;$$

that is, if and only if

$$|z| = r < \tanh \pi/2 = 0.917 \cdots$$

Hence

(2)
$$0.83 < \rho < R < \tanh \pi/2 < 0.92$$
.

H. Grunsky [6] and Goluzin [4] also obtained the deeper result that for each fixed z, the region of values of $\log \frac{f(z)}{z}$ for all $f \in S$ is exactly the circular disk

$$|w + \log (1 - r^2)| \le \log \frac{1+r}{1-r}$$
 $(r = |z|)$.

Thus the region of values of $\log \sqrt{\frac{f(z)}{z}}$ is the circular disk $|w-a| \leq b$, where

$$a = -\frac{1}{2} \log (1 - r^2), \quad b = \frac{1}{2} \log \frac{1+r}{1-r}.$$

In view of (2), we need consider only the interval $\rho \le r < \tanh \pi/2$, where $1 \le b < \pi/2$. It follows from the considerations above that the set of all values of $\sqrt{\frac{f(z)}{z}}$, as f ranges over S, is

$$E_r = \{e^w: |w - a| \le b\}$$
 $(r = |z|).$

The radius R is then the largest value of r for which the set E_r lies in the half-plane $\Re \zeta > 1/2$.

For each r, we wish to compute the minimum of $\, \Re\, \zeta \,$ for all $\, \zeta \, \in \, E_{\, r} \, .$ This is equivalent to finding the minimum of

$$\mathbf{F}(\theta) = \{ \exp(\mathbf{a} + \mathbf{b} \cos \theta) \} \cos(\mathbf{b} \sin \theta) \quad (-\pi < \theta \le \pi).$$

But differentiation gives the equation

$$F'(\theta) = -b \{ \exp(a + b \cos \theta) \} \sin(\theta + b \sin \theta),$$

which shows that $F'(\theta) = 0$ if and only if

$$\sin(\theta + b \sin \theta) = 0 \quad (-\pi < \theta < \pi).$$

This implies that

(3)
$$\theta + b \sin \theta = n\pi \quad (n = 0, \pm 1, \pm 2, \cdots)$$
.

But since $-\pi < \theta \le \pi$ and $1 < b < \pi/2$, the only possibilities are n = 0, n = 1, and n = -1.

Case I: n = 0. Here the only solution is $\theta = 0$, where F attains its maximum.

Case II: n = 1. Here equation (3) has the solution $\theta = \pi$, but

$$F(\pi) = e^{a-b} = (1+r)^{-1} > 1/2$$

for all r ($0 \le r < 1$). Equation (3) also has the solution $\theta = \theta_0$ ($\pi/2 < \theta_0 < \pi$); this gives the point where the sinusoid $y = \sin \theta$ intersects the line $y = (\pi - \theta)/b$. There is exactly one intersection in this interval, because $(\pi - \theta)/b > \sin \theta$ at $\theta = \pi/2$, the two curves intersect at $\theta = \pi$, and the line has slope -1/b > -1.

Case III: n = -1. Here equation (3) has only the solution $\theta = -\theta_0$; but $F(-\theta_0) = F(\theta_0)$.

Thus, for each value of r ($\rho \le r < \tanh \pi/2$), one may compute the minimum

$$m(r) = \min_{\zeta \in E_r} \Re \zeta$$

by determining the unique solution $\theta_0 = \theta_0(r)$ of the equation

$$\theta + b \sin \theta = \pi \qquad (\pi/2 < \theta < \pi).$$

If $F(\theta_0(r)) \le (1+r)^{-1}$, then $m(r) = F(\theta_0(r))$. Using detailed tables of logarithms and trigonometric functions, we found that

$$m(0.835) = 0.5011 \cdots > 1/2, \quad m(0.836) = 0.4992 \cdots < 1/2.$$

Thus 0.835 < R < 0.836.

Dvořák [1] also remarked that for odd univalent functions f ϵ S such that

$$\Re \frac{f(z)}{z} > \frac{1}{2}$$

in |z|<1, the coefficients satisfy the inequality $|a_n|\leq 1$ (n = 3, 5, ...). He noted that (4) holds in the disk of radius

$$\sqrt{\rho} = 0.912 \cdots$$

and he claimed corresponding improvements in [2] and [3]. However, the preceding discussion shows after further calculation that the sharp radius is

$$\sqrt{R} = 0.914 \cdots$$

REFERENCES

- 1. O. Dvořák, O funkcích prostých. Časopis Pěst. Mat. 63 (1934), 9-16.
- 2. ——, Über schlichte Funktionen. I. Časopis Pěst. Mat. 92 (1967), 162-189.
- 3. ——, Über schlichte Funktionen. II. Časopis Pěst. Mat. 94 (1969), 146-167.

- 4. G. M. Goluzin, *Interior problems of the theory of schlicht functions*. Uspehi Mat. Nauk 6 (1939), 26-89; English translation by T. C. Doyle, A. C. Schaeffer, and D. C. Spencer (O.N.R., Washington, 1947); reprinted by University Microfilms, Ann Arbor, 1963.
- 5. ——, Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, Vol. 26. Amer. Math. Soc., Providence, R. I., 1969.
- 6. H. Grunsky, Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche. Schr. Math. Inst. u. Inst. Angew. Math. Univ. Berlin 1 (1932), 95-140.

University of Michigan Ann Arbor, Michigan 48104 and Indiana University Bloomington, Indiana 47401