UNIFORM CONVERGENCE
OF FOURIER SERIES ON GROUPS, I

C. W. Onneweer and Daniel Waterman

In 1940, R. Salem [6] proved that the Fourier series of a continuous periodic

function converges uniformly if lim _, T (x)=1lim _, Q,(x) = 0 uniformly in x,
where
(n-1)/2
T (x) = 27 (p+ 1) 1[#(x + 2pn/n) - £(x + (2p + Va/n)],
p=0

and where Q,(x) is obtained from T (x) by changing 7 into -7. In a recent paper
[5], C. W. Onneweer proved a similar theorem for Walsh- Fourier series. In this
paper, we extend this result to continuous functions defined on certain compact,
O0-dimensional, metrizable, abelian groups. Such groups and their character groups
were first studied by N. Ja. Vilenkin [7]. The significance of our result is evidenced
primarily by its corollaries, as was the case with Salem’s original theorem.

1. THE GROUPS G AND X

Let G be a compact, 0-dimensional, metrizable, abelian group, and let X be its
character group. Then X is a discrete, countable, abelian torsion group [4, Theo-
rems 24.15 and 24.26]. Vilenkin [7, Sections 1.1 and 1.2] established the existence of
an increasing sequence of finite subgroups {X,} of X such that

(i) Xo= {x o}, where x; is the identity character on G,

(ii) each X_/X__; is of prime order p,, and
n n-1 n

ai) x=U7, x, .

Moreover, the subgroups X, can be chosen so that there exists a sequenée {d)n}
of elements of X satisfying the conditions

: o\ P
(1) ¢ € X0\ X, and (i) ¢," € X,.

Using these ¢,, we can enumerate the elements of X as follows. Let mg=1 and
m, = H?zl p; . Each natural number k can be represented uniquely as
k= Efzo ajmj, with 0 < a; <pj4+) for 0 <i < s; we define ¥ by the formula
X = 900 - oo -925. Then X, = {x;] 0<i<mp}.
Next, let G, be the annihilator of X,,, thatis, let

Received March 23, 1970,
This research was partially supported by National Science Foundation Grant
GP-12320.

Michigan Math. J. 18 (1971).

265



266 C. W. ONNEWEER and DANIEL. WATERMAN

G, = {x e G| x(x)=1for 0<k<m_J.

o0
Then, obviously, G=Gg D G} D G, D *** and nn:() G, = {0}, and it is easy to show
that the G,, form a basis for the neighborhoods of zero in G. In [7, Section 3.2]
Vilenkin proved that for each n there is an x, € G, \ G, such that

xmn(xn) = 2T/Pn+1 . He also observed that each x € G has a unique representation

(2o}

X = 21:0 b; X;, with 0 < b; <p;;; . This representation of the elements of G en-
ables us to order them by means of the lexicographic ordering of the corresponding
sequences {b,}. Furthermore,

0
G, = {x € G| x=27 b;x; with bg=--=Db, ; =0}.
i=0
Consequently, each coset of G, in G has a representation of the form z + G,
-1
where z = E?_O b; X; for some choice of the b; with 0 < b; <p;;+; . We shall de-
note these z, ordered lexicographically, by {zgl)} (0L <my).

Remavrk 1. The choice of the ¢, € X and of the x, € G is not uniquely deter-
mined by the groups X and G. In the following, we assume that a particular choice
has been made.

Remavk 2. The standard examples of groups G and X as described by Vilenkin
are

o0
(a) G=1II__; (Z(2)),; here X is the group of Walsh functions as described by
N. J. Fine [3];

[+ o]
(b) G= anl (Z(p)),, ; here X is the group of generalized Walsh functions; see

[2].

2. FOURIER SERIES OF FUNCTIONS ON G, AND DIRICHLET KERNELS

Let dx denote the normalized Haar measure on G. If f € L,(G), then the
Fourier series of f is the series

o0
s[flx) = 2 c; x;(x), where c; = S £(t) x;(t) dt .

i=0 G
For the partial sums of S[f] we have the formula

n-1

S.(x; ) = 27 c;x(x) = S f(x - t)Dy(t) dt,
i=0 G

-1
where D, (t) = E?zo x;j(t). D,(t) is called the Dirichlet kernel of order n. We shall
now state a number of properties of the Dirichlet kernels.

LEMMA 1. For each n,
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0 (x ¢ Gp),
D, (x) =

n m, (xeG,).

See [7, Section 2.2] for a proof.

LEMMA 2. For each n, S D, (t)dt = 1.

Proof. This follows from the fact that S X, (D) dt =0 for k> 0.
G

LEMMA 3. If my <n<myy; and n=amy +n', with 0 < ay < pyy; and
0<n' <my, then

ak
1= Xm (®)
Dy(x) = T X ® ) Dy, (%) +xmk(X)D (x) .

Proof.,
ajmy -1 n-1 2y -1 my-1 n'-1

Z} xi(x) + Z) Xi(X) E E XJm +1(X) + E

i=0 i=akmk J =0 i=0 i=0

Dn(X) Xakmk+1 (X)

apx-1 my -1 n'-1

o@D x @@ D oxy)
my i=0 : k i=0

u
, 0

mk(X) + x?r]fk(x) D, (x) .

LEMMA 4. Ifx € G\ Gy, then |Di(x)| <m, for all k.
See [7, Section 3.61] for a proof.

Before stating Lemma 5, which is a generalization of Lemma 1 in [3], we need a
definition.

Definition 1. G has property (P) if sup(p;) =p < «.
1

LEMMA 5. If G has property (P), then |Di(z{™)| <(p+1)m_/a for all k, n,
and a (0 <o <my).

Proof. For each z&n), there exists an ¢ (0 < £ <n) such that
z((f) € Gy \ Gy, . Consequently,

n-1
2 = 2 bx, with by #0 and 0 <b, <p;,; -
‘
1

Also,
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@ = byPgyp "+ Pnt 01 Pgy3 " s Pyt by opy +by g
Therefore,
Pg+1 bn-2 Pn-1
my,;o/m, =by+ + -+ + <bp+2<p+1.
£+1 n £ Pg+2 Pg+2 * +e¢ " Pn-1 Pg+2 * +++ " Pn L =P

Hence, Lemma 4 implies that

Dz < mgyy < 0+ Dmy/a.

3. THE MAIN THEOREM

In this section we prove our main result, which is similar to Salem’s theorem
for trigonometric Fourier series {6, Chapter VI]. For another proof of Salem’s re-
sult, see [1, Chapter IV, Section 5]. The special case of Theorem 1, which we obtain

[>e]
when G =II__; (Z(2)),, was proved by Onneweer in [5].

Definition 2. If f is a function on G and H C G, then
osc(f, H) = sup { |f(x;) - f(x;)| |x1 , X, € H} .
Definition 3. If f is a function on G, then for each n
0,(f) = sup { |£(x;) - £(xp)] lxl ,X, € Gand X] -x € Gy }.

We observe that f is continuous on G if and only if lim_ _, . 6, (f) = 0.

THEOREM 1. Let G satisfy condition (P). Let f be a continuous function on
G such that

my -1 Py -l
lim 27 % 2 f(x - 2R - jxk)eszak/PkH -0
k—w =1 j=0

uniformly in x € G and ay € {1, 2, P+l - 1}. Then the Fourier series of f
converges uniformly on G.
k
Proof. Let n= Ei=0 a;m;, with ax #0 and 0 < a; <p;4; for 0 <i <Kk, and
set n' =n - apm). By Lemmas 2 and 3,

S,06 ) - 169 = | (x - V) - Kx)Dy(t)at
G

]

SG (15 - ) = 169) (1 + X (0 + = + X 2K (O D, (Dl

+ | a6 - 1) - 10) xZX ®D (Bt = A+B.
G k

By Lemma 1,
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A< my SG |86 - £) = 6| |1+ X (0) -+ + X0 o] at
k

1
< mkﬁl‘; Gk(f)ak <p 6’k(f),

and the last member tends to 0 (as k — «) uniformly with respectto x € G

In order to find an estimate for B, we observe thatif t € Gy, 0 < @ <my,
and 0 < j < pyyp, then

n'-1 n'-1
K), . k . k k
Dozl +jx, +t) = EO xi(zg ) x4(ixi + 1) = = xi(z%) = ,,(z1).
i= i=
A].SO, for t € Gk+1 s
Ppyp-l P -l Py -1 .
Zox(x 4t = D x(x)= U (@) =0
j=0 My k j=0 my k j=0 k ’
where w) = 2T/ Pt1 Consequently,
mye-1 pryp-1
S f(x)xfg;k(t)nn.(t) at= 2 2 f(x)xm (t)D_.(t) dt
a=0 j=0 Z}yk)+jxk+Gk+l
my -1 Pk+1-1
- k) 2k (k)y 33 o) =
= f(x)E D, (z5 x 2K (2 ) (%) = 0.
Thus
P11 )
a

= _ a - ) ap s _ Jax
SG f(x - XX (D, (Bt ijHDn,(O)xmk(O) j:z() fx - Jx - Doy X dt

my -l Pk+1-1 _
+ S z Dn.(z(k’)xak ) T fx- 28 -z - Doy Sat = B, +B,.
j=0

Gyyp @=1
In what follows, we assume that f is real-valued. (In case f is complex-valued
the proof needs some obvious modifications.) For a real number a, we set
at = max(a, 0) and a~ = min(a, 0). Then, since

Prs1”l
a
27 w’:{k =0,
j=0

there exists an s, with 0 < s <py,;, such that

Pr+1-1 ja Pk+1-1 oy
Z (R )t =- D (e ) =s.

j=0 j=0
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Therefore, denoting f(x - jx, - t) by f; for t € Gy, we have the relations

Prrr=l Py1-! _ Pyl _
. a 1 Ja Jay, _
N E fjwi(k =8 Z) fjg(ﬂfwkk)++ E fjl(i)‘xwkk)
(1) j=0 j=0 j=0. ° 8

< s(spp(fj) - ipf(fj)) < Py 0sc(f, x+Gy) < Pitl 6,.() .
J J

A similar argument shows that

Pry1-l
& Ja
(2) S ey | < pigyy 6.
j=0
Hence,
|B1] < n'——2pict1 6lf) < 20x() = 0o(1) as k.

k+1

Using the result of Lemma 5 and the assumption of the theorem, we find that

my-1 | prtg-l ,
ja
|B,| S(p—i—l)mkS 2 —(1; 2 f(x—zg)-;‘|xk—t)wkk dt
G a=1 j=0

k+l

= (p+ 1) my o(1) = o(1) as k — .

my

4. COROLLARIES OF THE MAIN THEOREM

In this section, we prove several consequences of Theorem 1, similar to results
Salem obtained in the case of trigonometric Fourier series. Throughout the section,
we assume that G satisfies condition (P).

COROLLARY 1. Let f be a continuous function on G. If
mk-l
- 1 k _
lim 27 > osc (f, x - z((y )+Gk) =0
a=1
uniformly in x € G, then the Fouvier sevies of f convevges uniformly on G,

Proof. We assume that f is real-valued. An argument similar to that used to
prove inequalities (1) and (2) shows that

Pjet1-1 y
J
2 f(x - Zc(xk) - iz W) 5| < 2posc(f, x - zg‘)-ka)
j=0
for each k, each a; € {1, 2, -, Prsg - 1}, each @ such that 1 < o < my, and each

x € G. Therefore,
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m, -1 P -1
k k+1 ‘o

J

a=1 j=0
mk-l
< 2p 27 }&osc(f,x—zg"-jxk)=o(l) as k — o
a=1
uniformly in x € G, and a; € {1, 2, ", Prel - 1}; that is, we can apply Theorem 1.

The next result was proved directly in [7, Section 3.5]; it is the analogue of the
well-known Dini-Lipschitz test for trigonometric Fourier series.

COROLLARY 2. Let f be a continuous function on G for which 6(f) = o(k~1)
as k — ©. Then the Fourier series of f converges uniformly on G.

Proof. We first observe that m; < p¥ implies that log my = O(k). Further-
more,

mp-1 mk—l

27 %osc(f, X - z((}f) +Gy) < 01 () 2 % = 61(f) O(log my) = o(1) as k — o ,
a=1 a=1

Consequently, we can apply Corollary 1.

Using the ordering of G as defined in Section 1, Vilenkin defined the concept of
bounded variation (BV) in the usual way [7, Section 3.2]. We generalize this concept
in two ways.

Definition 4. A function f on G is of bounded fluctuation (f € BF) if there
exists a constant F < « such that Z?zl osc (f, Fi) < F for each finite, disjoint col-
. n
lection {F;, ---, F,} in which each F; is a coset of some G (i) and U i=1 Fi=G.

Definition 5. A function f on G is of generalized bounded fluctuation (f ¢ GBF)
if there exists a constant Fy <« such that

m -1
27 osclf,z™+G) < F, foreachn.
=0

We shall denote the smallest such constant by Fg(f).

It is obvious that for continuous functions f on G, f € BV implies f ¢ BF and
f € BF implies f € GBF. The converse of the last statement is not true, as can be
(2]
seen from the following example of a continuous function on G = anl (z(2)), :
1 txez® 16, (0 odd)
n 2.2 n ’

flx) =<0 ifxe z(zrr‘l)_2 + G, (n even),

0 ifx=(1,1,-).
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In [8], J. L. Walsh proved that the Fourier series of a continuous function of

o0
bounded variation on G = Hn=1 (Z(2)),, converges uniformly. Corollary 3 is a gen-
eralization of this result.

COROLLARY 3. If f is a continuous function on G, and if f € GBF, then the
Fourier sevies of £ convevges uniformly on G.

Proof. Let {r(n)} be an increasing sequence of natural numbers for which
(i) r(n) — < as n — «, (ii) r(n) <m, - 1 for all n, and (iii) 6,(f)log r(n) — 0 as
n — ., Then

my -1 . r(k) my -1
2 Eosc(f,x - 287 + G < 0, (D) 2 %+ 2 %ocs(f, X - zgf)+Gk)
a=1 a=1 a=r(k)+1

< g% (f) O(log r(k)) + Fo(f) = o(1) as k — o,

.
r(k) +1

Therefore, Corollary 1 can be applied.

Finally, we prove an extension of Corollary 3. Let ¢(u) be a continuous, real-
valued, strictly increasing function, defined for u > 0, such that ¢(0) = 0 and
lim, _, ., ¢(u) = . Let y(u) be the inverse of ¢(u). Next, let

®(u) = h o(t) dt and T(u) = ’ Y(t)at.
f 0=

Functions & and ¥ thus obtained are called complementary in the sense of W. H.
Young, and they satisfy the following inequality, due to W. H. Young, see [9, p. 16}

if a, b > 0, then ab < &(a) +¥(b).
Definition 6. A function f on G is of generalized bounded &-fluctuation if there
exists an M < e such that
my -1
27 ®(osc(f, 2™ +G)) <M forall n.
i=0
COROLLARY 4. Let & and ¥ be functions complementary in the sense of W. H.
oo
Young, and let Ekzllli(k'l) < w, Then the Fouriev sevies of every continuous func-
tion f on G, that has bounded ®-fluctuation convevges uniformly on G.
o0
Proof. Since 27y _; ¥(k™!) < =, we can find a decreasing sequence {e(k)} of

o0
positive numbers such that limy —, 0 £(k) = 0 and Ek:l ¥ ((ke(k))"1) < ». Using
Young’s inequality, we see that there exists a constant N < e« such that
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my-1
- (k) g
2 osc (f, x - 24" + Gy) )
a=m
my -1 mk—l
< 2 dosc(f, x -z +G )+ 2 ¥((aeg(@) ) < N
a=m a=m

for each x € G and each m <m.

Hence, if we choose a sequence {r(n)} as in the proof of the previous corollary, we
find that

my -1 r(k) my -1
D Zoselr,x-z®+6) <00 L T+ D Loser,x-20+6y
a=1 a=1 a=r(k)+1

< 01(f) O(log r(k)) + Ne(r(k) +1) = o(1) as k — o,

Thus, Corollary 1 can again be applied.
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