ON SPECIAL *-REGULAR RINGS

N. Prijatelj and I. Vidav

1. A ring R is *regular* if for every a ϵ R there exists an x ϵ R such that axa = a. A regular ring with an involution * is called *-regular if xx* = 0 implies x = 0. In this note, we study *-regular rings with unit 1 that possess some additional properties. Before specifying these properties, let us state some known facts about regular rings.

Two idempotents e and f of a ring R are *equivalent* (notation: $e \sim f$) if e = xy and f = yx, where $x \in eRf$ and $y \in fRe$. For each element a of a *-regular ring R, we have the relations aR = eR and Ra = Rf, where e and f are uniquely determined projections (self-adjoint idempotents), called the *left* and the *right projection* of a. Further, there exists a uniquely determined element \bar{a} - the *relative inverse* of a such that $a\bar{a} = e$ and $\bar{a}a = f$. The left and the right projections of any element a are equivalent [1].

A *-regular ring is complete (alternate terminology: a regular Baer *-ring) if the lattice of its projections is complete. Let $\{e_{\alpha}\}$ be any set of projections. By LUB e_{α} and GLB e_{α} we shall denote the least upper bound and the greatest lower bound of the set $\{e_{\alpha}\}$. A complete *-regular ring R is finite; that is, if a projection $e \in R$ is equivalent to 1, then e = 1. The central cover of a projection $e \in R$ is the smallest central projection g in R for which e = 1.

A regular ring is *abelian* if all its idempotents are central. An idempotent $e \in R$ is *abelian* if the subring eRe is abelian. A *-regular ring R is of *type* I if it has an abelian projection with central cover 1, and of *type* II if it does not possess nonzero abelian projections.

Every complete *-regular ring is a direct sum of a ring of type I and a ring of type II (see [1], [3]). A ring of type I is n-homogeneous (or of type I_n) if there exists a set of n mutually orthogonal equivalent abelian projections whose sum is 1. Every complete *-regular ring of type I is a special subdirect sum of homogeneous rings. The proof of this theorem can be found in [1], [2], [3]. Here we shall give a proof of the structure theorem based on the following known properties of complete *-regular rings of type I: (a) abelian projections with the same central cover are equivalent, and (b) if g is the central cover of a projection f, then there exists an abelian projection $e \leq f$ with central cover g.

First we show that in every complete *-regular ring of type I there exist a sequence of orthogonal abelian projections e_n and a decreasing sequence of central projections g_n with the following properties: The central cover of e_n is g_n . If $h_n = g_n - g_{n+1}$ and $h_n \neq 0$, then $h_n e_1$, ..., $h_n e_n$ are orthogonal equivalent abelian projections with the sum h_n . Thus the subring Rh_n is n-homogeneous.

The construction of these sequences is by induction on n. Since R is of type I, there exists an abelian projection e with central cover 1. We put $e_1 = e$ and $g_1 = 1$. Suppose now that the projections e_1 , \cdots , e_n and g_1 , \cdots , g_n with the required

Received January 22, 1970.

This work was supported by the Boris Kidric Fund, Ljubljana, Yugoslavia.

Michigan Math. J. 18 (1971).

properties are already known. Take for g_{n+1} the central cover of

$$f = g_n(1 - e_1 - \cdots - e_n).$$

Clearly, $g_{n+1} \leq g_n$. By (b), there exists an abelian projection $e_{n+1} \leq f$ with central cover g_{n+1} . Write $h_n = g_n - g_{n+1}$. Since $g_{n+1} f = f$, we have the relation $h_n e_1 + \dots + h_n e_n = h_n$. The summands on the left are orthogonal abelian projections with central cover h_n . Hence, by (a), the $h_n e_i$ are mutually equivalent. Furthermore, $e_{n+1} \leq f = g_n(1 - e_1 - \dots - e_n)$ implies that e_{n+1} is orthogonal to $g_n e_1$, ..., $g_n e_n$. Since $g_{n+1} e_{n+1} = e_{n+1}$, e_{n+1} is orthogonal to e_1 , ..., e_n . Hence e_{n+1} and g_{n+1} have all the required properties. It follows that we can construct the sequences $\{e_n\}$ and $\{g_n\}$.

Let $g = GLB \ g_n$. Since $g_n \ e_1$, \cdots , $g_n \ e_n$ are orthogonal abelian projections with central cover g_n , they are mutually equivalent. It follows that $g \ g_n \ e_i = g \ e_i$ ($i = 1, 2, \cdots, n$) are orthogonal equivalent projections with central cover g. Since this holds for each n, we conclude that $\{ge_i\}$ is an infinite sequence of orthogonal equivalent projections. But a complete *-regular ring does not contain an infinite set of orthogonal equivalent projections different from 0. Hence g = 0.

If $h_n = g_n - g_{n+1}$, then LUB $h_n = 1$. The subring Rh_n is n-homogeneous if $h_n \neq 0$. Hence, we have proved the structure theorem for rings of type I in the following form.

If R is a complete *-regular ring of type I, then there exists a sequence of orthogonal central projections h_n , with LUB h_n = 1, such that the subring Rh_n is n-homogeneous for each $h_n \neq 0$.

- 2. The *-regular rings derived from finite W*-algebras have many special properties. We shall study the *-regular rings possessing some of these properties, and we shall investigate the interdependence of these properties, regarded as axioms. We shall consider five axioms:
 - (A) The equality

(1)
$$a_1 a_1^* + a_2 a_2^* + \cdots + a_n a_n^* = 0$$

implies $a_1 = a_2 = \cdots = a_n = 0$ for any number n of summands on the left.

- (A') If $aa^* + bb^* = 0$, then a = b = 0.
- (B) For all a, b \in R, there exists an element $x \in$ R such that

(2)
$$xx^* = aa^* + bb^*$$
.

- (C) If $aa^* \in eRe$, where e is any projection, then we can find an element $x \in eRe$ such that $xx^* = aa^*$.
- (D) Every element of the form aa^* is the square of a self-adjoint element u; thus $u^2 = aa^*$.
- (E) If e and f are equivalent projections, then there exists a $u \in R$ such that $e = uu^*$ and $f = u^*u$.

These axioms hold in every C*-algebra.

Discussion of the axioms. 1. A *-regular ring satisfying Axiom A has characteristic 0 and can be regarded as an algebra over the field of rational numbers. The properties of such rings are studied in [4].

2. Axiom A implies Axiom A', but not conversely. In fact, let R be the field Z/(p) of residue classes modulo a prime p, where $p \equiv -1 \pmod 4$. Z/(p) is a *-regular ring, if we take the identity map as involution (that is, $x^* = x$). In this ring, the equality

$$aa* + bb* = a^2 + b^2 = 0$$

implies a = b = 0, so that Z/(p) satisfies Axiom A'. Since the equation $a^2 + b^2 + c^2 = 0$ has nontrivial solutions in Z/(p), Axiom A does not hold.

On the other hand, if a ring satisfies A' and B, then evidently it satisfies also A.

3. Axioms A and B are mutually independent. For let R be the field of complex numbers, and let the involution be the identity map. In this case equation (2) is of the form $a^2 + b^2 = x^2$ and always has a solution. Thus Axiom B holds. Since the equality $a^2 + b^2 = 0$ is satisfied for a = bi, Axiom A' does not hold.

On the other hand, take the field of rational complex numbers, where the involution is the complex conjugation. In this *-regular ring, Axiom A holds and B does not.

- 4. Let R be any ring with involution *. By S(R) we shall denote the set of all elements of the form aa^* ; thus $S(R) = \{aa^* \mid a \in R\}$. If a *-regular ring satisfies Axiom C, then $S(eRe) = S(R) \cap eRe$.
- 5. I. Kaplansky introduced an axiom [2, Axiom SR] similar to Axiom D, but with the additional assumption that if u satisfies the condition $u^2 = aa^*$, it commutes with every element commuting with aa^* .

It is easy to see that Axiom D implies Axiom C. In fact, suppose that $aa^* \in eRe$, where e is a projection. By Axiom D, there exists a self-adjoint u such that $u^2 = aa^*$. It follows that $eu^2 = u^2$. Hence $(eu - u)(eu - u)^* = 0$, whence eu = u. Therefore, $aa^* = u^2 = uu^*$, where $u \in eRe$.

- 6. Two projections e and f are called *-equivalent [2] (notation: $e \stackrel{*}{\sim} f$) if there exists a u such that $e = uu^*$ and $f = u^*u$. It is well known that *-equivalence implies ordinary equivalence, but not conversely. If $uu^* = e$, where e is a projection, then $u^*u = f$ is also a projection and $u \in eRf$.
- 3. Axioms C, D, and E are not independent. In fact, we have the following result.

THEOREM 1. Axiom D implies Axiom E, and Axiom E implies Axiom C.

If a *-reqular ring is finite and satisfies Axiom C, then it satisfies Axiom E. Hence, Axioms C and E are equivalent in finite rings.

Proof. (i) $D \Rightarrow E$ (see [2]). Assume that Axiom D holds in a *-regular ring R. If $e \sim f$, there exist elements x and y such that

$$e = xy$$
, $f = yx$, $x \in eRf$, $y \in fRe$.

Choose a self-adjoint element v satisfying the condition $v^2 = yy^*$. Clearly, v commutes with yy*. Since fy = y, we have the relation $fv^2 = v^2$, and therefore $(fv - v)(fv - v)^* = 0$. Hence fv = vf = v. Moreover,

$$(x*x)(yy*) = (yy*)(x*x) = f$$
,

and if we write u = xv, we find that $uu^* = (xy)(y^*x^*) = e$ and

$$u*u = vx*xv = fvx*xv = (x*x)(yy*)v(x*x)v = (x*x)v(yy*)(x*x)v$$

= $(x*x)v^2 = (x*x)(yy*) = f$.

Hence e ^{*} f.

(ii) E \Rightarrow C. Suppose that Axiom E is valid in R. If a is such that $aa^* \epsilon$ eRe, where e is a projection, then $e(aa^*) = aa^*$. It follows that ea = a. Let e_1 and f_1 denote the left and the right projection of a. From ea = a we deduce that $ee_1 = e_1$; thus $e_1 \leq e$. Since $e_1 \sim f_1$, it follows further from Axiom E that $e_1 \stackrel{*}{\sim} f_1$. Hence $e_1 = uu^*$ and $f_1 = u^*u$, where $u \in e_1$ Rf₁. Put $v = au^*$. Then

$$vv^* = au^*ua^* = af_1 a^* = aa^*,$$

since $af_1 = a$. The element $v = au^*$ belongs to the subring $e_1 Re_1 \subset eRe$. Hence Axiom C holds in R.

(iii) $C \Rightarrow E$. Let R be a finite ring satisfying Axiom C. Let e and f be equivalent projections:

$$e = xy$$
, $f = yx$, $x \in eRf$, $y \in fRe$.

Since $yy^* \in fRf$, we can (by Axiom C) choose an element $v \in fRf$ such that $vv^* = yy^*$. Put u = xv. Then $uu^* = xyy^*x^* = e$. Further, $u^*u = v^*x^*xv = f_1$, where f_1 is a projection. It follows that $e \stackrel{*}{\sim} f_1$. Since vf = v, we see that $f_1 f = f_1$. Hence $f_1 \leq f$. On the other hand, $f_1 \sim e \sim f$; thus $f_1 \sim f$. The finiteness of the ring R now implies $f_1 = f$. Hence $e \stackrel{*}{\sim} f$, so that Axiom E holds in R. The proof of Theorem 1 is now complete.

The dependence between Axioms A and B and Axioms C and D is more complicated.

LEMMA 1. Let the *-regular ring R satisfy Axiom E, and let $e \in R$ be a projection such that there exists an equivalent orthogonal projection $f \in R$. Then Axioms A' and B hold in the subring eRe.

Proof. Since Axiom E holds in R, and since $e \sim f$, there exists a $u \in eRf$ such that $e = uu^*$ and $f = u^*u$. The orthogonality of e and f implies

$$fu = feu = 0$$
, $ue = ufe = 0$, $u^2 = ufu = 0$.

Now, let a and b be any elements of the subring eRe. If z = a + bu, then

(3)
$$zz^* = (a + bu)(a^* + u^*b^*) = aa^* + bb^*$$
.

By Theorem 1, R satisfies also Axiom C. Hence, there exists an $x \in eRe$ such that $xx^* = zz^* = aa^* + bb^*$. Therefore, Axiom B holds in the subring eRe.

If a, b ϵ eRe are such that $aa^* + bb^* = 0$, then we see from (3) that z = a + bu = 0. Multiplication by e on the right gives a = 0. Thus, Axiom A' is valid in the subring eRe.

Axioms A' and B imply that Axiom A holds in eRe, and similarly, in fRf.

THEOREM 2. Let Axiom E hold in a *-regular ring R. If a_1, a_2, \cdots, a_n satisfy equation (1), then the right projection of each element a_k is central and abelian.

Proof. Let equation (1) hold. If all a_k are 0, there is nothing to prove. Suppose now, for instance, that $a_1 \neq 0$. Denote by e the right projection of a_1 , and by \bar{a} its relative inverse. If we multiply (1) by \bar{a} on the left and by \bar{a}^* on the right, we obtain the equation

(4)
$$e + b_2 b_2^* + \cdots + b_n b_n^* = 0,$$

where $b_k = \bar{a}a_k$ (k = 2, ..., n).

Take any element $x \in R$, and consider ex(1 - e). If this product is not zero, then its right projection e_1 and its left projection f_1 are orthogonal, equivalent, and different from 0. If we multiply (4) by e_1 on both sides, we get the equation

(4*)
$$e_1 + e_1 b_2 b_2^* e_1 + \cdots + e_1 b_n b_n^* e_1 = 0.$$

By assumption, Axiom E holds in R, hence also Axiom C. Since

$$(e_1 b_k)(e_1 b_k)^* \epsilon e_1 Re_1$$
,

we can choose $c_k \in e_1 \operatorname{Re}_1$ so that $c_k c_k^* = e_1 b_k b_k^* e_1$. Thus (4*) can be written in the form $e_1 + c_2 c_2^* + \cdots + c_n c_n^* = 0$. By Lemma 1, Axiom A holds in the subring $e_1 \operatorname{Re}_1$, because e_1 and f_1 are equivalent orthogonal projections. Hence $e_1 = c_1 = \cdots = c_n = 0$. This contradicts $e_1 \neq 0$. Consequently, $\operatorname{ex}(1 - e) = 0$ for every $x \in R$. Similarly, (1 - e)xe = 0. Hence $e_1 = e_2 = e_3$ and $e_1 = e_4$ is central.

Now take any projection $e' \leq e$. Multiplying both sides of (4) by e', we get the equation

$$e' + e' b_2 b_2^* e' + \cdots + e' b_n b_n^* e' = 0$$
.

As before, we conclude from (4) that e' is a central projection. Hence, e is central and abelian. This completes the proof of Theorem 2.

COROLLARY. If a *-regular ring has no nonzero central abelian projections, then Axiom E implies Axiom A.

Proof. Let Axiom E be valid in R. If a_1, a_2, \cdots, a_n satisfy (1), then, by Theorem 2, the right projection of each a_k is central and abelian. If R has no non-trivial central abelian projections, then $a_k = 0$. Therefore, Axiom A holds in R.

4. Let R be a ring with involution *. We shall denote by P(R) the set of all elements of the form $a_1a_1^* + a_2a_2^* + \cdots + a_na_n^*$, where a_1, a_2, \cdots, a_n are any elements of R, their number $n \ge 1$ being arbitrary. The set P(R) is evidently closed under addition: $p_1, p_2 \in P(R)$ implies $p_1 + p_2 \in P(R)$. Furthermore, if $p \in P(R)$ and c is any element of R, then $cpc^* \in P(R)$. In fact, from $p = a_1a_1^* + \cdots + a_na_n^*$ we see that

$$cpc^* = (ca_1)(ca_1)^* + (ca_2)(ca_2)^* + \cdots + (ca_n)(ca_n)^* \in P(R).$$

The set S(R) introduced above is a subset of P(R). Axiom B holds in R if and only if these two sets coincide.

LEMMA 2. Let a_1, a_2, \dots, a_m be any elements of a ring R with involution *, and let b_1, b_2, \dots, b_m be such that $b_1b_1^* + b_2b_2^* + \dots + b_mb_m^* = 1 - p$, where $p \in P(R)$. Then

(5)
$$\sum_{k=1}^{m} a_{k} a_{k}^{*} = \left(\sum_{k=1}^{m} a_{k} b_{k}^{*}\right) \left(\sum_{k=1}^{m} a_{k} b_{k}^{*}\right)^{*} + p',$$

where $p' \in P(R)$.

Proof. Put $u = \sum_{k=1}^{m} a_k b_k^*$. The sum

$$p_1 = \sum_{k=1}^{m} (a_k - ub_k)(a_k - ub_k)^*$$

may be written in the form

$$p_{1} = \sum_{k=1}^{m} a_{k} a_{k}^{*} - 2uu^{*} + u \left(\sum_{k=1}^{m} b_{k} b_{k}^{*} \right) u^{*} = \sum_{k=1}^{m} a_{k} a_{k}^{*} - uu^{*} - upu^{*}.$$

Since $p \in P(R)$, the element upu* is also in P(R). If we write $p' = p_1 + upu*$, where $p' \in P(R)$, then we obtain (5). Lemma 2 is thus proved.

LEMMA 3. Let R be a *-regular ring, and let e and f be orthogonal projections such that Axioms A' and B hold in eRe and in fRf. Further, assume that the equation $xx^* = aa^*$ can be solved by an element $x \in eRe$ if $aa^* \in eRe$, and by an element $x \in fRf$ if $aa^* \in fRf$. Then Axioms A' and B hold in the subring (e+f)R(e+f).

Proof. Without loss of generality, we may assume that e + f = 1.

(i) Let a, b ϵ R be such that $aa^* + bb^* = 0$. It follows that $eaa^*e + ebb^*e = 0$. By assumption, there exist elements a_1 , $b_1 \epsilon$ eRe such that

$$eaa*e = a_1a_1^*$$
 and $ebb*e = b_1b_1^*$.

Since Axiom A'holds in eRe, $a_1 a_1^* + b_1 b_1^* = 0$ implies $a_1 = b_1 = 0$. Thus ea = eb = 0. Similarly, we deduce that fa = fb = 0. Hence a = b = 0. Thus Axiom A' is valid in R.

(ii) Now, let a, b \in R be arbitrary. The equation

$$xx^* = aa^* + bb^*$$

is equivalent to the system

$$exx*e = eaa*e + ebb*e$$
, $exx*f = eaa*f + ebb*f$, $fxx*f = faa*f + fbb*f$.

By assumption, we can find elements $a_1, b_1 \in eRe$ and $a_2, b_2 \in fRf$ such that

eaa*e =
$$a_1 a_1^*$$
, ebb*e = $b_1 b_1^*$, faa*f = $a_2 a_2^*$, fbb*f = $b_2 b_2^*$.

Put

$$exe = x_1, exf = x_2, fxf = u;$$

then $ex = x_1 + x_2$. In this way we obtain the system

(7)
$$x_1 x_1^* + x_2 x_2^* = a_1 a_1^* + b_1 b_1^*$$
, $x_2 u^* = eaa^* f + ebb^* f$, $uu^* = a_2 a_2^* + b_2 b_2^*$.

Since Axiom B is valid in fRf, there exists a $u \in fRf$ satisfying the third equation (7). Let g and h be the right and the left projection of u, and let $\bar{u} \in fRf$ be its relative inverse, so that $u\bar{u} = g$ and $\bar{u}u = h$. Since $u \in fRf$, we see that gf = g and hf = h. Since gu = u, the third equation (7) gives the relation

$$(1 - g) faa * f(1 - g) + (1 - g) fbb * f(1 - g) = 0.$$

By Axiom A', it follows that (1 - g) fa = (1 - g) fb = 0, or fa = ga and fb = gb. Write $x_2 = eaa*\bar{u}* + ebb*\bar{u}*$. Then

$$x_2u^* = eaa^*g + ebb^*g = eaa^*f + ebb^*f$$
.

Hence, x_2 and u satisfy the second equation (7). Now we can apply Lemma 2 for m = 2, where we replace a_1 , a_2 by ea and eb, and b_1 , b_2 by $\bar{u}a$, $\bar{u}b$. In fact,

$$(\bar{u}a)(\bar{u}a)* + (\bar{u}b)(\bar{u}b)* = h = 1 - p$$

where $p = 1 - h \in P(R)$. By (5) we see that eaa*e + ebb*e = $x_2x_2^* + p'$, where p' belongs to the set P(eRe). Because Axiom B holds in eRe, P(eRe) = S(eRe). This implies the existence of an element $x_1 \in eRe$ such that $p' = x_1x_1^*$. Therefore the first equation (7) is also satisfied. Let now $x = u + x_1 + x_2$. Since $x_1 \in eRe$, $x_2 \in fRf$, $u \in fRf$, and ef = 0, we have the equation

$$xx^* = uu^* + x_1x_1^* + x_2x_2^* + x_2u^* + ux_2^* = aa^* + bb^*.$$

Thus equation (6) has a solution. This completes the proof of Lemma 3.

5. It is well known that the ring R_n of all n-by-n matrices over a ring R is regular if and only if R is regular. Let R be *-regular, and let $X = (x_{ij}) \ (x_{ij} \in R)$ be any matrix. Put $X^* = (x_{ij}^*)^T$, where $(a_{ij})^T$ denotes the transpose of the matrix (a_{ij}) . The map $X \to X^*$ is an involution in the ring R_n . In general, R_n is not *-regular, since $XX^* = 0$ does not imply X = 0. However, it is not difficult to see that R_n is *-regular for each n if and only if the ring R satisfies Axiom A.

THEOREM 3. If Axioms A' and B hold in a *-regular ring R, then these axioms hold also in every matrix ring R_n .

Proof. Since Axioms A' and B are valid in R, Axiom A is also valid. It follows that the matrix ring R_n is *-regular and that it satisfies Axiom A.

Since the ring R_1 is isomorphic with R, Theorem 3 is true for n=1. Let us now suppose that Axiom B holds in R_m for some $m \geq 1$. We shall show that the axiom also holds in the matrix ring R_{m+1} . Let $E \in R_{m+1}$ be the matrix having 1's in the first m entries of the main diagonal, and 0's elsewhere. E is a projection, and $ER_{m+1}E$ is isomorphic to R_m . On the other hand, $FR_{m+1}F$ (F=1-E) is isomorphic to R. Since, by the induction hypothesis, Axioms A' and B hold in R_m , we conclude by Lemma 3 that these axioms hold also in the ring R_{m+1} if the following additional conditions of this Lemma are satisfied: for each matrix $M \in R_{m+1}$, the equation $XX^* = MM^*$ is satisfied by a matrix $X \in ER_{m+1}E$ if $MM^* \in ER_{m+1}E$, and by a matrix $X \in FR_{m+1}F$ if $MM^* \in FR_{m+1}F$. We see in the following way that these conditions are fulfilled. Each element $M \in R_{m+1}$ can be written as 2-by-2 matrix

(8)
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where A is an m-by-m matrix, D \in R, and B and C are m-by-1, respectively, 1-by-m matrices. Let MM* \in ER_{m+1}E; then EMM* = MM*. This implies that EM = M. Since E = $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, C and D are 0 in (8). It follows that

$$MM^* = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}^* = \begin{pmatrix} AA^* + BB^* & 0 \\ 0 & 0 \end{pmatrix}.$$

Here we have denoted by B^* the 1-by-m matrix whose adjoint elements are those of B:

$$B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \quad B^* = (b_1^*, \dots, b_m^*).$$

Let D_1 be the m-by-m matrix having the elements b_1 , \cdots , b_m in the first column and 0's elsewhere. Evidently, $D_1 \in R_m$ and $BB^* = D_1D_1^*$. By assumption, Axiom B is valid in R_m . Therefore, there exists a matrix $Y \in R_m$ such that $YY^* = AA^* + D_1D_1^*$. Now we can write

$$MM^* = \begin{pmatrix} Y & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} Y & 0 \\ 0 & 0 \end{pmatrix}^*.$$

If X denotes the first matrix on the right, then $MM^* = XX^*$, where $X \in ER_{m+1}E$.

Suppose now that MM* ϵ FR_{m+1} F, so that FM = M. In this case, the matrix M has the form M = $\begin{pmatrix} 0 & 0 \\ C & D \end{pmatrix}$, hence

$$MM^* = \begin{pmatrix} 0 & 0 \\ 0 & CC^* + DD^* \end{pmatrix}.$$

Here $CC^* + DD^* = c_1c_1^* + \cdots + c_mc_m^* + dd^*$, where c_1 , \cdots , c_m , $d \in R$. Since Axiom B holds in R, $c_1c_1^* + \cdots + c_mc_m^* + dd^* = uu^*$ for some $u \in R$. Hence

$$MM^* = \begin{pmatrix} 0 & 0 \\ 0 & u \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & u \end{pmatrix}^* = XX^*,$$

where $X \in FR_{m+1}F$. We now conclude, by Lemma 3, that Axioms A' and B hold in the ring R_{m+1} . This completes the proof of Theorem 3.

THEOREM 4. Let R be a complete *-regular ring without nonzero central abelian projections. Then Axiom C implies Axioms A and B.

Proof. A complete *-regular ring is finite. Hence, by Theorem 1, Axiom C implies Axiom E. The ring R being without nonzero central abelian projections, we conclude by the corollary to Theorem 2 that Axiom A is valid in R.

Decompose R into a special subdirect sum of rings of types I_n and II. Let g and h_n (n = 1, 2, ...) be the corresponding central projections (here h_n = 0 if the component I_n is absent in R). Since there are no central abelian projections, h_1 = 0. Put

$$h' = g + LUB h_{2m}, h'' = LUB h_{2m+1}$$
 (m = 1, 2, ...).

If R' = Rh' and R'' = Rh'', then $R = R' \oplus R''$.

Consider first the summand R'. Since Rh_{2m} is 2m-homogeneous, we can find two orthogonal equivalent projections e_{2m} and f_{2m} with the sum h_{2m} . Also, g=e'+f', where e' and f' are equivalent and orthogonal projections (see [1]). Here it is understood that $e_{2m}=f_{2m}=0$ if $h_{2m}=0$, and that e'=f'=0 if g=0. Let

$$e = e' + LUB e_{2m}$$
, $f = f' + LUB f_{2m}$.

Then e and f are orthogonal equivalent projections with the sum e + f = h'. Axiom E being valid in R, we conclude by Lemma 1 that Axioms A and B hold in eR'e and fR'f, and then, by Lemma 3, that these axioms hold also in R.

In each subring Rh_{2m+1} we choose four projections e_{2m+1} , f_{2m+1} , k_{2m+1} , t_{2m+1} in the following way: the first three are mutually orthogonal to the sum h_{2m+1} ; further, $e_{2m+1} \sim f_{2m+1}$; and finally, k_{2m+1} and t_{2m+1} are equivalent orthogonal abelian projections with central cover h_{2m+1} . Denote by e, f, k, t the LUB of the sets of projections $\{e_{2m+1}\}$, $\{f_{2m+1}\}$, $\{k_{2m+1}\}$, $\{t_{2m+1}\}$. Then

$$e + f + k = h''$$
, $e \sim f$, $k \sim t$, $ef = 0$, $kt = 0$.

By Lemma 1, Axioms A and B hold in the rings eR''e, fR''f, and kR''k. Hence, by Lemma 3, they hold also in the ring (e+f+k)R''(e+f+k) = R''. The proof of Theorem 4 is now complete.

REFERENCES

- 1. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry. Ann. of Math. (2) 61 (1955), 524-541.
- 2. ——, Rings of operators. W. A. Benjamin Inc., New York-Amsterdam, 1968.
- 3. L. A. Skornyakov, Complemented modular lattices and regular rings. Oliver and Boyd, Edinburgh-London, 1964.
- 3. I. Vidav, On some *-regular rings. Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 73-80.

University of Ljubljana Lubljana, Jadranska 19, Yugoslavia