AMBIGUOUS POINTS OF HOLOMORPHIC FUNCTIONS
OF SLOW GROWTH

R. L. Hall

1. INTRODUCTION

Let f denote a holomorph1c function in the open unit disc D. An avc at elf isa
curve J C D such that J U {e1 } is a Jordan arc. The complex number a (a =
is admitted) is an asymptotic value of f at e19 if there exists an arc at eif on
which f has the 11m1t a at elf. Let I(f, et 8) denote the set of asymptotic values of
f at e 9. If T°'(f, e* ) contains at least two values, then e’ 10 is called an ambiguous
point of f.

It follows from the work of E. Lindelof [8] that an f omitting two finite values
has no ambiguous points (for a generalization of this result, see [7]). However, a
result of W. Gross [5] can be used to show that even if f omits only one finite value,
I'(f, 1) may nevertheless contain every complex number. By F. Bagemihl’s ambigu-
ous-point theorem [1], the set of ambiguous points of any f is at most countable.
Amb[igu]ous points of various classes of functions have been siudied in [2], [3], [4],
and {10

~ Suppose a € I'(f, e19) and let J be an arc at e'? on which f has the limit a at
eif. For each ¢ > 0, let G(a, J, £) denote the component of {z: |#(z) - a| <e} (of
{z: |#(z)| >€e-1} if a = =) suchthat G(a, J, &) N J contains an arc at eif. The

collection {G(a, J, €): ¢ > 0} is called the #ract (or asymptotic tract) of f at eif
associated with the asymptotic value a and determined by J. Let

= {G(a, J,€): € >0} and T, = {G(b,J', €):e>0}

be tracts of f at el®. Then T, and Ty are distinct if there exists an &€ > 0 such
that G(a, J, €) N G(a, J', €) = @. Note that the tracts are automatically distinct if
a #b. However, more than one tract may be associated with an element

a € I(f, ei?),

Let n*(f elf) (n,(f, ele)) denote the cardinal number of the set of tracts of
at el? associated with finite (infinite) asymptotic values. For 0 <r <1, let M(f, r)
denote the maximum modulus of f on the circle {z: |z| =r}, and for x > 0, let

logt x = max(log x, 0). G. R. MacLane [10, p. 54] has obtained the following results:
1

(4) if S logt M(f, r)dr < e, then
0

n,(f, eif) <1 and n,f, eif) < 2 for each 6;
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1
(B) if S (1 - r)log™ M(f, r)dr < =, then
0

n(f, elf) <2 and n_(f, el) <3  for each 6.

2. STATEMENT OF RESULTS

THEOREM 1. Suppose f is holomorphic in D, omits one finite value, and
satisfies the condition

(1) (1-r)log" M(f, r) =0o(l) asr—1.
Then, for each 6,
n,(f, eif) <1 and n,ff, ei?) < 2.

Remark. Example 1 in Section 4 shows that the same conclusion can not be ob-
tained if the o(1) in (1) is replaced by O(1).

THEOREM 2. Suppose f is holomorphic in D, omits 0, and satisfies the con-
dition
(2) (1-r)1ogM(f+fl,r) =o(l) asr-—1,.
Then, for each 9,
(3) nf, eif) <1 and n,(f, ei?) < 1.

Moveover, if a € T(f, e'9) and 0 < |a| < w, then t has only one tract at eif.

Remavrks. Example 1 in Section 4 shows that the conclusion (3) can not be ob-
tained if the o(1) in (2) is replaced by O(1). Example 2 in Section 4 shows that the
conclusion (3) is in some sense best possible under a growth condition on
M(f + 1/£, r).

THEOREM 3. Let p(r) be a positive, increasing, continuous function for
0 g__r < 1 such that p(r) — « as r — 1. Then theve exists a function f, continuous
in D - {1} (the bar denotes closure) and holomorphic in D, such that

f omits O,
M@, r) < pu(r) Jfor 0<r<1,
n(f,1) =1 and n(f, 1) = 2.

Rewmark, Compare Theorem 3 and Theorem 1.

THEOREM 4. Let u(r) satisfy the conditions in Theorem 3, and let E be a
countable subset of the unit civcle C. Then theve exists a function f, holomorphic in
D, such that

M{f, r) < p(r) (0<r<1),
and such that
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n(f, elf) =1  and n(f, elf) = 2

for each eig € E.

Remarks. A consequence of Theorem 4 is that there exist Zolomorphic func-
tions of arbitrarily slow growth with prescribed ambiguous points. Also, the con-
clusion of MacLane’s result (A) is best possible.

3. PROOFS

Proof of Theovem 1. Assume, without loss of generality, that f omits 0. It
suffices to show that n,(f, 1) <1 and n,(f, 1) < 2. In the following two paragraphs,
we shall show that if n (f 1) > 2 or ne(f, 1) > 3, then there exist a constant K > 0
and a component A of {z |£(z)| > K} such that AN C = {1}. From this we shall
then obtain a contradiction of (1).

If n,(f, 1) > 2, then there exist Jordan arcs J, and J in D U {1}, with end-
points O and 1, such that the restriction of f to J; has a finite limitat 1 (i =1, 2)
and the tracts determined by J, and J, are distinct. It can be assumed that J; and
J, intersect only at 0 and 1. Since the tracts are distinct, it follows from the theo-
rem of Gross and Iversen [11, p. 24] that f is unbounded in the bounded Jordan do-
main determined by J; UJ,. Since f is bounded on J; U J,, there exists a number
K > 0 such that some component A of {z: |f(z)] > K} satisfies the condition

Anc={1}.

If n,(f, 1) > 3, then there exist Jordan arcs J;, J,, and J3 in D U {1}, with
endpoints 0 and 1, such that the restriction of f to J; has the limit « at 1
(i =1, 2, 3) and the corresponding tracts are distinct. It can be assumed that
J;NJre={0, 1} if 1 <i <k < 3. One of these arcs, say J;, must lie (except for
its endpoints) in the bounded Jordan domain B determined by the other two. Since
the arcs determine distinct tracts, there exists an ¢ > 0 such that the components
G(w, Jj, &) (i=1, 2, 3) are pairwise disjoint. Let H denote the component of

BN (G(», J,, £))€ N (G, I3, €))°€

that contains J; (S€ denotes the complement of S). The boundary of H consists of
subsets of J, and J3 that are compact in D, of a subset of {z: |f(z)| =¢-!}, and of

{1}. It follows that f is bounded on the portion of the boundary of H contained in D,
and that f is unbounded in H. Thus there exist a number K > 0 and a component A

of {z: |f(z)| > K} suchthat AN C= {1}.
If F is a fractional linear transformation of D onto itself, then the composition
f(¥) satisfies the hypotheses of Theorem 1. Also,
n(i(F), F(eif)) = n(f, e¥¥) and n, ({(F), F(el?)) = n,(f, if)

for each 6. Thus, we may assume that 0 € A. Note that A is simply connected,
since f omits O, and let z(w) be a one-to-one conformal mapping of {w: |w| < 1}
onto A such that z(0) =

Since f satisfies (1), it follows from the work of MacLane [10, p. 36] that for
each A > 0 the supremum of the diameters of the components of

{z: |£#=)| = 2} n {z:r < 2] <1}
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tends to zero as r tends to 1. Thus the boundary of A interior to D consists of
arcs of the level set {z: |f(z)| =K} that become Jordan curves when we adjoin the
point 1. It follows that z(w) has a continuous extension to {w: |w| = 1}.

The set {w: |w| =1 and z(w) = 1} has measure 0, by a version of Lowner’s
lemma [11, p. 34]. Thus the positive harmonic function u(w) = log {K -1 |#(z(w))|}
has the radial limit zero almost everywhere on {w: |w| = 1}. I u has the radial
limit « at a point eif then z(eif) =1 and z(w) maps the radius to ei? into an arc
at 1 on which f has the asymptotic value «. Furthermore, if u has the radial limit
o at el‘91 and e192 (elg1 ;&elgz), then the images of the radii to 9191 and elg‘2
determine distinct tracts of f at 1. Since f satisfies (1), it follows from MacLane’s
result (B) (see the Introduction) that n.(f, 1) < 3. Thus u has the radial limit « in
at most three distinct points.

Together with the properties of u obtained in the preceding paragraph, a theo-
rem of Lohwater [9] implies that there exist nonnegative numbers ¢y, C,, and cy
such that

3
(4) ulpei®) = 21 ¢;P(p, 6 - 6)
j=1

b

where w = pew and

1- p?

P(p, 6 - a) = :
(b ) 1-2pcos(6@ - a) +p?

The function f is nonconstant under the assumption that either n*(f, 1) > 2 or
n(f, 1) > 3, so that at least one of the cj, say c], is positive. By the lemma of
Schwarz, |z(w)| < |w|. Thus it follows from (4) that

(5) [1 - |a(pe' " 1) | l10g {K-1 |f(z(pe |} > (1 - p)ulpe®D) > ¢,

But z(peial) — 1 as p — 1, since u(peiel) — w ag p — 1. Therefore (5) contra-
dicts (1). This completes the proof of Theorem 1.

Proof of Theovem 2. For each complex number z #0, |z| <1+ |z +z-1].
Thus it follows from (2) that both f and 1/f satisfy the hypotheses of Theorem 1.
The conclusion follows from Theorem 1 and the observation that the transformation
w — w-1 effects a one-to-one correspondence between I'(f, el9) and T(1/f, ei9),
for each 0.

Proof of Theovem 3. Let w(z)=(1+2z)/(1 - z), and let g(z) = w(z) e~W(z)
Then g is holomorphic except at z = 1. Also, the restriction of g to D has radial
limit 0 at 1, and for each u > 0, g(z) tends to © as z tends to 1 along the circle
{z: t(w(z)) =u}. Infact, (1 - r) M(r) = O(1), so that n,(g, 1) =1 and n(g, 1) = 2,
by result (A) of MacLane (see the Introduction).

For each r (0 <r < 1), let m(r) denote the minimum of M{g, r) and u(r).
Then m(r) is an increasing, continuous, and unbounded function for 0 <r < 1.
Since g(z) = g(z) (z #1) and g(r) is bounded for real r (|r| < 1), there exists a
number rg (0 <rg <1) such that g(r) <m(r) for ry < Ir] <1.

For each r (rg <r <1), let
o(r) = inf{6: 0< 6 <, |g(reit)]| = m(r)} .
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Since g is continuous, Ig(reig(r))| = m(r). Thus |g(re19(r))| —m(r') as r —r'
(ro <r'<1), by the continuity of m(r). Now the continuity of 6(r) follows from the
observation that for each r (ro <r < 1), there exists a number ¢(r) (0 < ¢(r) <)
such that lg(rei9) | , as a function of 6, is increasing for 0 < 6 < ¢(r) and decreas-
ing for ¢(r) < 6 <. Since g(rei?(r)) - w as r — 1 and g is holomorphic except
at 1, it also follows that reif(r) -1 as r — 1.

Let G={z: |z]| <ro} U {z: |z| > 1o, |argz| < 8(]|z]|)}. Let z(t) be a one-
to-one conformal mapping of {t: |t| <1} onto G such that z(0) =0 and z(1) = 1.
Note that z(t) has a continuous extension to {t: |t]| = 1}.

Choose a k (0 <k < 1) such that k M(g, ro) < min {u(r): 0 <r <rg}, and let
£(t) = kg(z(t)). Then clearly f omits 0, f is continuous on D - {1}, n,(f, 1) =1,
and n(f, 1) = 2.

For 0 <r <1, let Gr =GN {z: |z| <r}. By the lemma of Schwarz,
lz(t)| < |t|, so that {z(t): |t| <r} c Gy for 0 <r < 1. Then M({, r) < p(r) for
0 <r <rpy, by the maximum principle and the choice of k. For rg <r <1, the
boundary of G, consists of the following sets: an arc of {z: |z| =ro}, the radial
segment {peifP): ry <p<r}, anarcof {z: |z| =r}, and the segment
{pe-i®P)lry<p<r}. Since g(z) =g(z) and p is increasing, it follows from the
construction that lg(z)] < u(r) for all z on the boundary of G,.. Since 0 <k <1,

it follows from the maximum principle that M(f, r) < pu(r) (ro <r <1). This com-
pletes the proof of Theorem 3.

Pyoof of Theovem 4. Let h be a function of the type described in Theorem 3.
Since n_(h, 1) = 2, there exists a Jordan curve S contained in D (except for the
point 1) such that the restriction of h to S has the limit « at 1. Since h omits O,
the theorem of Gross and Iversen (applied to 1/h) implies that the bounded Jordan
domain determined by S contains an arc T at 1 such that the restriction of h to T
has the limit 0 at 1. (This also follows from the construction given in the proof of
Theorem 3.)

16y

i01 , eib2 e X, .-} where ¢'% 2 61% i j #k. For each

Let E = {e
k> 1, let

s ..-,

g(z) = h(e %k z), S = {ewkz: ze€ S}, Ty= {eiekz: zeT}.

Choose c; sothat 0 <c; <1/2. If k> 1, it follows from the properties of h
and the definition of g; that g, is continuous on the compact set

(6) M= U (s;uty.
i<k

For each k > 1, choose ¢, so that

(7 0 <c <2k
and
(8) ¢y le@)| < 2% forall z e M.

By the definition of gy, M(gxk, r) = M(h, r) < u(r) for 0 <r < 1. Thus, it fol-
lows from (7) that
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M(cy gy, r) < 2~k (r) (0<r<1, k=1,2, --).

Therefore the series 2J ¢ 8k converges (uniformly on each compact subset of D) to
a function f holomorphic in D. Furthermore,

M(f, r) < p(r) (0<r<1).

For each k > 1, write f = ¢y + ¢ 8K + ¥k, Where

k-1
(9) d=0 if k=1, ¢ = 2 cjg; if k>1,
j=1
and
[~}
(10) Y= 2 Cj8j.
j=k+1

If j #k, the function gj is finite-valued and continuous on Sy U Tx. Therefore, it
follows from (9) that for each k the function ¢y is bounded and continuous on

Sk U Tx. Also, it follows from (6), (8), and (10) that ¥y is bounded and continuous
on S, U Ty, for each k. Since the restriction of ¢, g, to Ty has the limit 0 at

elek the restriction of f to Tk has a finite limit at e Bk. Therefore,
(11) n(f, ¢ %) > 1.

The restriction of f to Sy - {eigk} has the limit «~ at eiek, since the restriction
. 9 -
of ¢, g to Si- {e" "k} has the limit « at ek, Therefore,
: 10k
(12) n,(f, e ) > 2,
i6
because f is bounded on Ty and the arc Ty joins 0 to e k through the bounded

Jordan domain determined by S. Now, if we use min (u(r), (1 - r)~1) in place of
t(r) to obtain h from Theorem 3, then (A), (11), and (12) guarantee that

n,(f, elek) =1 and ny(f, elek) = 2. The proof of Theorem 4 is complete.

4. EXAMPLES

Example 1. Let f =1/g, where g is the function introduced in the proof of
Theorem 3. Then f is holomorphic in D, omits 0, and satisfies the condition

(1-r)logM(f, r) =0O(1) asr—1.

Also, f satisfies the condition
1
(1—r)10gM(f—I——,r)=O(1) asr —1.

However, n,(f, 1) = 2, since n.(g, 1) = 2.
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Example 2. Let u(r) be a continuous, increasing, unbounded function for
0 <r <1 suchthat p(r) >2 (0 <r <1). Let U(z) = %t(iw(z)), where

1+2z
w(z)=1_z.

Then U is harmonic in D and U(z) = - U(z) (z # 1). Also, for each k > 0, U(z) has
the limit -« as z tends to 1 along the semicircle {z: Sw(z) =k, Sz >0}, and
U(z) has the limit © as z tends to 1 along the semicircle {z: Iw(z) =k, $z <O0}.
We can apply the technique used in the proof of Theorem 3 to U, to obtain a function
u, harmonic in D, with the properties

(13) u has the limit -« along an arc at 1,
(14) u has the limit « along an arc at 1,
and

u(|z])
(15) lu(z)| < log—5—= forall z € D.

2

Let v be a harmonic function in D that is conjugate to u, and let f = eutiv
Then f is holomorphic in D and omits 0. Furthermore

|f+fl-[ < ev+e ™,
and thus, by (15),

M(f+fl,r) <plr) (O<r<1i).

It follows from (13) and (14) that 0 € T(f, 1) and » € I'({, 1).
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