ON WEYL’S THEOREM
Matthew Lee

Let %8(H) be the algebra of all bounded operators on an infinite-dimensional
complex Hilbert space H, and let & be the closed ideal of compact operators. L.
Coburn [3] has defined the Weyl spectrum w(A) by

w(A) = nO’(A+K),

where 0(A) denotes the spectrum of A in %B(H) and the intersection is taken over
all K in &. A celebrated theorem of H. Weyl [9] asserts that if A is normal, then
w(A) consists precisely of all points in 0(A) except the isolated eigenvalues of
finite multiplicity.

In [3], Coburn proved that Weyl’s theorem holds for two large classes of gen-
erally nonnormal operators, namely, the class of hyponormal operators and the class
of Toeplitz operators. In this paper, we shall show that Weyl’s theorem holds for yet
another class of operators.

Recall that an operator A is a Fredholm operator if it has a closed range and
both a finite-dimensional kernel and cokernel. The class & of Fredholm operators
constitutes a multiplicative open semigroup in #(H). In fact [1], if 7 is the natural
quotient map from #B(H) to #(H)/o, then A is in & if and only if 7(A) is invertible.
For any A in &, the index i(A) is defined by the formula

i(A) = dim[ker A] - dim[coker A],

and it is known that i is a continuous integer-valued function on #.

Let L2 and L™ denote the Lebesgue spaces of square-integrable and essen-
tially bounded functions with respect to normalized Lebesgue measure on the unit
circle in the complex plane. Let H2 and H” denote the corresponding Hardy spaces.
If ¢ € L™, the Toeplitz operator induced by ¢ is the operator Ty on HZ defined by
T¢f = P(¢f); here P stands for the orthogonal projection in L2 with range H2. Re-
call that the linear span H” + C of H® and C is a closed subalgebra of L® {5,
Theorem 2], where C stands for the space of continuous, complex-valued functions
on the unit circle. This algebra can also be characterized as the subalgebra of L
generated by H and the function z. It is well-known [4] that if ¢ € H™ + C, then
T¢ is a Fredholm operator if and only if ¢ is an invertible function of H* + C.

The relation between the index and the invertibility of Toeplitz operators is
described by the following result of Coburn [3].

LEMMA A. If ¢ € L™, then either ker Ty = (0) or coker Ty = (0).

For ¢ in L™, let R(¢) denote the essential range of ¢. Suppose that
u € H® +C, that |u] =1 a.e., and that T, is invertible; it is easy to show that then
the spectrum ¢(T,) of T, is R(u). In fact, we can use the same argument as in
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Theorem 4 in [6]. In this paper, we shall always assume that u is a nonconstant
Sunction in H*® + C, and that |u| =1 a.e. and T, is invertible.

LEMMA 1. T, - Al has a trivial kernel, for each complex number ).

Proof. If A is not in o(T,), then Ty - A is invertible, so that T, - AI has a
trivial kernel.

Assume now that » € o(T,). Since o(T,) = R(u), |x| =1. Suppose Ty - AI has
a nontrivial kernel; then A is an eigenvalue of T,,. Because T, is a contraction, an
elementary argument shows that A is an eigenvalue of Tﬁ. Since

Th - AL = (T, - AD*,

this contradicts Lemma A. The proof is complete.

Let 9 be the collection of all rational functions w(z) that are analytic on o(T,).
Since the Lebesgue area of o(T,) = R(u) equals zero, 97 is dense in the space
C(o(Ty) of continuous complex functions on o(T,). We shall show that Weyl’s
theorem holds for the class of opervators {w(T.): w(z) € 9 }. First we shall prove
the following lemma.

LEMMA 2. If w(z) € 97, then w(Ty) is invertible if and only if w(Ty) is a
Fredholm opevator and i(w(T,)) = 0.

Proof. Let w(z)=(z - ;) (z - a,)/(z - B1) "+ (z - By,) be a nonconstant func-
tion in 9¢. Since B; is not in o(Ty for i =1, 2, ---, m, each factor of w(T,) isa
one-to-one operator in #(H?2), by Lemma 1. Hence w(T,) has a trivial kernel, for
every nonzero function w(z) in 9¢. Therefore we may conclude that w(T,) is in-
vertible if and only if w(T,) is a Fredholm operator and i(w(T,)) = 0. The proof is
complete.

Our main result is an easy consequence of Lemma 2.
THEOREM 1. w(w(T)) = o(w(Ty)) for each w(z) in 9.

Proof. I is known [7] that A +K is a Fredholm operator, and that
i(A + K) = i(A) for every compact operator K in o, if A is a Fredholm operator.
Hence o(w(T,)) C o(w(T&) +K) for every compact K in #(H?), by Lemma 2.
Therefore w(w(T,)) = o(w(T,)), by the definition of the Weyl spectrum. The proof
is complete.

COROLLARY 1.1. If w(z) € 9, then the spectral radius of w(T,) is less than
| w(Ty) + K|, for each K in #x(H2).

The Weyl spectrum w(A) is in general not empty; but we can say more in our
special case.

COROLLARY 1.2. If w(z) € 9, then o(w(Ty)) = 0(Ty(u)), kence a(w(T,)) is
connected,

Proof. It is known [10] that 0(Ty) is connected, for every ¢ in L. Further,
w(Ty) = Ty(u) + K; for some compact K; (see J. G. Stampfli [8]) and
0 (Tw(u) + K) D 0(Tw(u)) for every compact K in #(H?) (see Coburn [3]). Hence
w(w(Ty) = 0(T(u)), and the desired result follows from Theorem 1. The proof is
complete.

It is easy to see that the class {w(Ty): w(z) € 9 } contains nonnormal opera-
tors, and the following theorem shows that not all of its elements are hyponormal,
and that not all of them are Toeplitz operators.
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THEOREM 2. There exist a function wi(z) in 9 and a nontrivial compact
opevator Ky in H(H?) such that |wi(Ty) || > lwi(Tw) +K 4.

Proof. ¥ |w(T) +K|| > ||w(T)| for every K in #(HZ) and for every w(z) in
9 , then

lwedl = [awr )] < W

where || w(z) o =sup {|w(z)| : z € o(@(Ty) = o{Ty)}, since #(T,) is normal in
B(H?2)/# (H2) [8, Lemma 3]. Hence T, has the unit circle as a spectral set. It is
well known that under this condition T, is a unitary operator, that is, u is a con-
stant of modulus 1, by a corollary in [2]; but this is not the case. Hence there exist
a function w(z) in % and a nontrivial compact operator K; in #(H 2) such that

lw,(T)| > |lwi(T,) +X;||. The proof is complete.

COROLLARY 2.1. The class of operators {w(Ty): w(z) € 9¢} is contained
neither in the class of hyponormal operators nov in the class of Toeplitz operators.

Proof. By Theorem 2, there exist a wj(z) in 9 and a nontrivial compact oper-
ator K in #(H2) such that ||w (Ty)| > [|w,(T,) +X;|. Hence |w,(T,) lr is
strictly greater than the spectral radius of w;(T,), by Corollary 1.1, but this is not
the case for hyponormal operators and Toeplitz operators. The proof is thus com-
plete.
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