AN INFINITE-DIMENSIONAL VERSION OF
LIAPUNOV’S CONVEXITY THEOREM

Vliadimir Drobot

The classical theorem of Liapunov asserts that the range of a finite measure
with values in a finite-dimensional vector space is convex and closed (see [1], [2],
[3], [4]). In his later paper [5], Liapunov gives an example of an L;-valued measure
whose range is compact but not convex. In this note, we prove a weaker version of
Liapunov’s theorem, where the measure takes values in a Hilbert space and is ab-
solutely continuous with respect to a numerical measure.

Let (S, &, 1) denote a measure space, where g is a positive, nonatomic
measure with p(S) =1, and let H denote a real Hilbert space with the inner product
(x, y) and norm | x].

THEOREM. Let f: S — H be an integrable function (that is, S"f“ dp < ),

and let R = R(f) be the set of all vectors of the form S fdu (E € ). Then R is
E

convex.

The proof is motivated by a method due to Halkin [2] who considered the finite-
dimensional case only. We need several lemmas.

LEMMA 1. Let {x}, x5, ", xii} be a collection of N vectors in H such that

2 x;=0. Then the xJ' can be rearranged to form a set {x,, x,, ***, X} Such that
n 2 N
Zoxll <2 xl* a<agN).
i=1 i=1
Proof. We choose x;) arbitrarily. Having chosen x, X2, '+, X,, we select

X,h+1 to be one of the remaining vectors with the property that
(x) + x4+ - +x,, X511) < 0.
Such a choice is always possible, because
N N n n N n "N N
0 = (Exi', Ex;) = (Exi, in)+2 2 (Exi, fo)+ 2 fo, 22 xJ')
1 1 1 1 j=n+l N 1 n+l n+l
Since the first and the last inner products are nonnegative, at least one summand in

the middle term must be nonpositive. Our arrangement of the x; gives us the equa-
tions
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2 n+1 n+l > n
=\ 2 x, Exi) = Sl Ry +2(Zl>xi,xn+l)'

n+1

23 %

i
1

n
27 %,
1

1

2

1 1

The result now follows by induction.
The following lemma was proved by P. R. Halmos [3].

LEMMA 2. For every set E € &, theve exists a function ¢: E — [0, 1] such
that

p({x € E: ¢(x) <A}) = au(E).
The next result is crucial.

LEMMA 3. Let g: X — H be an integvable function (that is, S el ap < «).
Then, for every € > 0, there exists a function ®: X — [0, 1] such that

i)

S gdu - A 5 gdu“ < g, where B(A) = {x &x) <A}, and
() S

ii) p({x: ®(x) <A}) = .
(We denote the collection of such functions ® by K(g, €).)

Proof. We may assume S gdu = 0, since otherwise we could apply the result
S
to g - S gdu. Choose an integer N such that if p(E) S%, then
S

-1
@ § telon < mind 3o ko2 | hetan | gon

E X

Select a function ¢: X — [0, 1] as in Lemma 2, so that u{x: ¢(x) <A} =2r. Let

y_ ) i-1 i .
Ai—{x. % _§¢(X)<N} (i=1,2, -, N).

Then wu(A; =§, Zf S gdp =0, and S lgllde <m .
Al Al

i i
By Lemma 1, A.i can be rearranged into {Al y Ay, oo, AN}, say, such that
n 2 N 2 N 4
2 S gde|| < 2 Sgdu _<_Z)n5 lelaw <7e2 @ <n<N)
i=1 A 1 Ay 1 A

Hence each partial sum satisfies the inequality

%S gdu

i=1 Aj

(2) <

€.

D=
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For each index i (i =1, 2, ---, N), we choose a function ¢;: A; — [0, 1] as in Lemma
2. Set
N N
i-1 1
B(x) = L =I5 (0 + 2L % (),
i=1 i=1

where Ir is the characteristic function of F and ¢y(x) = 0 for x ¢ A;. Now we can
write the set E()\) as

E(M) = {x: #(x) <A}

U A; U {A[m]ﬂﬁ {x: an]+1(x) < N(‘/\ - % :}},

i-1
~ <

(3)

where [a@] denotes the greatest integer not exceeding «.

The sets whose union we take in (3) are disjoint, so that

[N ]
‘g gdp 2: \ gdp
i=1
EQ))

Aj

<

+ 0 Tellan.

AlNa]+1

The first partial sum is less than €/2, by (2). The integral is less than £/2, by (1).
The result now follows.

We proceed to prove the theorem. It is enough to show that if E and F are two
measurable subsets of X, then for every X € [0, 1] and every & > 0, there exists a
measurable set C(A) such that

S fdu—h‘s‘fdu - (1 -A)Sfdu
F

C(r) E

(4) <e.

We select & € K(flz_g, €/2) and ¥ € K(fIx_g, £/2) (the sets K are defined by
Lemma 3) and put

CO) ={ENFlUu{xeE-Fax <AtUu{xe F-E: yx) <1-2r}.

Since the sets above are disjoint, we obtain the inequalities

{ -A[ 5 + SJ+(1-A) X + S}Il

C(A) ENF E-F ENF F-E
S S fIE-Fd“‘ -A 5 fIE_Fd[J.
{®&<ar}
{y<1-a}

This completes the proof.



408 VLADIMIR DROBOT
REFERENCES

1. D. Blackwell, The range of certain vector integrals. Proc. Amer. Math. Soc. 2
(1951), 390-395.

2. H. Halkin, Sow:e further genevalizations of a theovem of Lyapounov. Arch.
Rational Mech. Anal. 17 (1964), 272-2717.

3. P. R. Halmos, The vange of a vector measure. Bull. Amer. Math. Soc. 54 (1948),
416-421.

4. A. A. Lyapunov, Sur les fonctions-vecteurs complétement additives. (Russian.
French summary) Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR]
4 (1940), 465-478.

, Sur les fonctions-vecteurs complétement additives. (Russian. French
summary) Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 10
(1946), 277-279.

State University of New York at Buffalo
Buffalo, New York 14226



