PARACOMPACTNESS OF LOCALLY COMPACT
HAUSDORFF SPACES

Ross L. Finney and Joseph Rotman

A topological space is paracompact if it is a Hausdorff space and if every open
cover has a locally finite refinement that is also an open cover.

Let X be a locally compact Hausdorff space, let A = C(X) be the ring of all con-
tinuous real-valued functions on X, and let J(X) be the ideal in A consisting of all
continuous functions having compact support.

THEOREM (R. Bkouche). The space X is pavacompact if and only if J(X) is a
projective A-module.

This theorem is a corollary of a deep result [1] of R. Bkouche. The authors
heard of it through P. Samuel, who suggested that an elementary proof would be
desirable.

Recall that if a space X is paracompact and {VB} is an open cover of;X, then
there exists a partition of unity subovdinate to {VB} ; in other words, there exist
continuous functions fg: X — I =[0, 1] such that

i) for each B, supp fg = 1x € X: fp(x) # 0} C Vg;

ii) the family {supp fﬁ} is a locally finite cover of X;

iii) for each x € X, 1 = EBfB(x)'

An A-module M is projective [2, p. 132, Proposition 3.1] if and only if it has a
projective basis, that is, if there exist elements fg € M and A-homomorphisms
¢g: M — A such that for each g € M,

i) qSB(g) =0 for almost all B,

ii) g = 27 ¢p(e) f5 .-
Also, in a locally compact Hausdorff space each compact subset K has a com-

pact neighborhood in X, and for each such neighborhood V there exists a continuous
separating function s: X —» I thatis 1 on K and 0 on X - V.

X is pavacompact = J is projective. Let {Ua} be a covering of X by open
sets with compact closure. Since X is paracompact, there exists a locally finite
refinement {Vﬁ} (of course, each VB - ﬁg is compact). If {f.B} is a partition of
unity subordinate to {VB}, then each fﬁ has compact support, hence lies in J.

For each B, let sg be a separating function that is 1 on the support of fg and 0
on X - Vg. Define ¢g: J — A by

¢3(g) = gsg, wheregeJ.

We claim that the fg and ¢g give a projective basis of J.
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To prove that for each g € J, all but a finite number of ¢g(g) are 0, note that
supp g, being compact, meets only finitely many of the Vg; call these VBi . For each

X € X,

#g(g) (x) = (gsp) (x) = g(x)sp(x),

and the last member is nonzero only if x € supp g. For such an x, however,
sp(x) # 0 only if 8 is among the B;.

To prove that each g € J has the form 2J ¢3(g) fg, we note first that tg =1gsp,
for each B (because sg =1 on supp fg). Hence

d is projective = X is pavacompact, We show that X has a locally finite open
cover {V.B} for which each VB is compact; from this it follows easily that X is
paracompact.

Let {fﬁ €Jd, ¢g:d — A} bea projective basis for J, and for each B8 define Vg
to be the interior of supp ¢B(f3)‘

Each VB = supp ¢g(fg) is compact. Let U be a compact neighborhood of supp fg,
and let s be a separating function that is 1 on supp fB and 0 on X - U. Then supp s
is compact because it lies in U, and 1g = sfg. Hence

supp ¢g(fg) = supp ¢(sfg) = supp s¢p(fg),

and the last member is compact because it lies in supp s.

Next, {VB} is a cover of X. Let x be a point of X, and let s be a separating
function that is 1 at x and 0 outside a compact neighborhood of x. Then s € J, so

that s = 2 ¢p(s)fg. Since each ¢g is an A-homomorphism, ¢g(s)fg = qu(fB) s, and

1= s(x) = 27 [eg(Eg)s](x) = 27 ¢plp) (x).

Thus ¢g(fg) (x) # 0 for some B, and x € Vg.

Finally, {VB} is locally finite. Take x € X and s as before, and let
Y = s-1(0, 1]. Clearly, Y is an open neighborhood of x; we claim Y meets only
finitely many of the Vg. Let B be the finite set of indices for which ¢g(s) # 0. I
B¢ B and y € Y, then )

0a(tp) () - s(y) = 9p(s) (¥) “15(¥) = 0.

Since s # 0 on Y, it follows that ¢g(fg) =0 on Y for all 8 ¢ B. That is, Y does not
meet Vg if B ¢ B. Thus {Vg} is locally finite, and the proof is complete.

COROLLARY. Let X bea C*- or Coo—mamfold (not necessarily sepavable oy
pavacompact), let A be the ving of real-valued C*- (or C™-) functions on X, and
let J be the ideal in A of functions with compact support. Then X is paracompact
if and only if J is a projective A-module.

Proof. The partition of unity and the separating functions that appear in the
proof of the main theorem may now be chosen to have the appropriate degree of
differentiability.
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