PARACOMPACTNESS OF LOCALLY COMPACT HAUSDORFF SPACES

Ross L. Finney and Joseph Rotman

A topological space is *paracompact* if it is a Hausdorff space and if every open cover has a locally finite refinement that is also an open cover.

Let X be a locally compact Hausdorff space, let A = C(X) be the ring of all continuous real-valued functions on X, and let J(X) be the ideal in A consisting of all continuous functions having compact support.

THEOREM (R. Bkouche). The space X is paracompact if and only if J(X) is a projective A-module.

This theorem is a corollary of a deep result [1] of R. Bkouche. The authors heard of it through P. Samuel, who suggested that an elementary proof would be desirable.

Recall that if a space X is paracompact and $\{V_{\beta}\}$ is an open cover of X, then there exists a partition of unity subordinate to $\{V_{\beta}\}$; in other words, there exist continuous functions $f_{\beta} \colon X \to I = [0, 1]$ such that

- i) for each β , supp $f_{\beta} = \{\overline{x \in X: f_{\beta}(x) \neq 0}\} \subset V_{\beta};$
- ii) the family $\{\text{supp }f_{\beta}\}$ is a locally finite cover of X;
- iii) for each $x \in X$, $1 = \sum_{\beta} f_{\beta}(x)$.

An A-module M is projective [2, p. 132, Proposition 3.1] if and only if it has a projective basis, that is, if there exist elements $f_{\beta} \in M$ and A-homomorphisms $\phi_{\beta} \colon M \to A$ such that for each $g \in M$,

- i) $\phi_{\beta}(g) = 0$ for almost all β ,
- ii) $g = \sum_{\beta} \phi_{\beta}(g) f_{\beta}$.

Also, in a locally compact Hausdorff space each compact subset K has a compact neighborhood in X, and for each such neighborhood V there exists a continuous separating function $s: X \to I$ that is 1 on K and 0 on X - V.

X is paracompact \Rightarrow J is projective. Let $\{U_{\alpha}\}$ be a covering of X by open sets with compact closure. Since X is paracompact, there exists a locally finite refinement $\{V_{\beta}\}$ (of course, each $\overline{V}_{\beta} \subset \overline{U}_{\beta}$ is compact). If $\{f_{\beta}\}$ is a partition of unity subordinate to $\{V_{\beta}\}$, then each f_{β} has compact support, hence lies in J.

For each β , let s_{β} be a separating function that is 1 on the support of f_{β} and 0 on X - V_{β} . Define ϕ_{β} : J \to A by

$$\phi_{\beta}(g) = gs_{\beta}$$
, where $g \in J$.

We claim that the f_{β} and ϕ_{β} give a projective basis of J.

Received February 16, 1970.

Michigan Math. J. 17 (1970).

To prove that for each $g \in J$, all but a finite number of $\phi_{\beta}(g)$ are 0, note that supp g, being compact, meets only finitely many of the V_{β} ; call these V_{β_i} . For each $x \in X$,

$$\phi_{\beta}(g)(x) = (gs_{\beta})(x) = g(x)s_{\beta}(x),$$

and the last member is nonzero only if $x \in \text{supp } g$. For such an x, however, $s_{\beta}(x) \neq 0$ only if β is among the β_i .

To prove that each $g \in J$ has the form $\sum \phi_{\beta}(g) f_{\beta}$, we note first that $f_{\beta} = f_{\beta} s_{\beta}$, for each β (because $s_{\beta} = 1$ on supp f_{β}). Hence

$$g = g \sum f_{\beta} = g \sum f_{\beta} s_{\beta} = \sum (gs_{\beta}) f_{\beta} = \sum \phi_{\beta}(g) f_{\beta}$$
.

J is projective \Rightarrow X is paracompact. We show that X has a locally finite open cover $\{V_{\beta}\}$ for which each \overline{V}_{β} is compact; from this it follows easily that X is paracompact.

Let $\{f_{\beta} \in J, \phi_{\beta}: J \to A\}$ be a projective basis for J, and for each β define V_{β} to be the interior of supp $\phi_{\beta}(f_{\beta})$.

Each \overline{V}_{β} = supp $\phi_{\beta}(f_{\beta})$ is compact. Let U be a compact neighborhood of supp f_{β} , and let s be a separating function that is 1 on supp f_{β} and 0 on X - U. Then supp s is compact because it lies in U, and $f_{\beta} = sf_{\beta}$. Hence

$$\operatorname{supp} \phi_{\beta}(f_{\beta}) = \operatorname{supp} \phi_{\beta}(\operatorname{sf}_{\beta}) = \operatorname{supp} \operatorname{s}\phi_{\beta}(f_{\beta}),$$

and the last member is compact because it lies in supp s.

Next, $\{V_{\beta}\}$ is a cover of X. Let x be a point of X, and let s be a separating function that is 1 at x and 0 outside a compact neighborhood of x. Then $s \in J$, so that $s = \sum \phi_{\beta}(s) f_{\beta}$. Since each ϕ_{β} is an A-homomorphism, $\phi_{\beta}(s) f_{\beta} = \phi_{\beta}(f_{\beta}) s$, and

$$1 = s(x) = \sum [\phi_{\beta}(f_{\beta})s](x) = \sum \phi_{\beta}(f_{\beta})(x).$$

Thus $\phi_{\beta}(f_{\beta})(x) \neq 0$ for some β , and $x \in V_{\beta}$.

Finally, $\{V_{\beta}\}$ is locally finite. Take $x \in X$ and s as before, and let $Y = s^{-1}(0, 1]$. Clearly, Y is an open neighborhood of x; we claim Y meets only finitely many of the V_{β} . Let B be the finite set of indices for which $\phi_{\beta}(s) \neq 0$. If $\beta \notin B$ and $y \in Y$, then

$$\phi_{\beta}(f_{\beta})\left(y\right)\cdot s(y) \; = \; \phi_{\beta}(s)\left(y\right)\cdot f_{\beta}(y) \; = \; 0 \; .$$

Since $s \neq 0$ on Y, it follows that $\phi_{\beta}(f_{\beta}) = 0$ on Y for all $\beta \notin B$. That is, Y does not meet V_{β} if $\beta \notin B$. Thus $\{V_{\beta}\}$ is locally finite, and the proof is complete.

COROLLARY. Let X be a C^r - or C^∞ -manifold (not necessarily separable or paracompact), let A be the ring of real-valued C^r - (or C^∞ -) functions on X, and let J be the ideal in A of functions with compact support. Then X is paracompact if and only if J is a projective A-module.

Proof. The partition of unity and the separating functions that appear in the proof of the main theorem may now be chosen to have the appropriate degree of differentiability.

REFERENCES

- 1. R. Bkouche, Pureté, molesse et paracompacité. C. R. Acad. Sci. Paris Sér. A 270 (1970), 1653-1655.
- 2. H. Cartan and S. Eilenberg, *Homological algebra*. Princeton University Press, Princeton, New Jersey, 1956.

University of Illinois Urbana, Illinois 61801