ON THE POISSON-STIELTJES REPRESENTATION FOR
FUNCTIONS WITH BOUNDED REAL PART

F. B. Ryan

1. INTRODUCTION

The main purpose of this paper is to establish results that connect a Poisson-
Stieltjes integral with boundary properties of the function it represents. A well-
known theorem of Herglotz [5, p. 196] states that a function f holomorphic in

|z| < 1 with positive real part has a Poisson-Stieltjes representation

1 (T eit 44 o
(1.1) f(z) = o mdp‘.(t)‘l'l df(O),

where [ is a nondecreasing function of bounded variation on [-7, 7]. Briefly, we
shall say that f is a Herglotz function with mass distribution p if (1.1) holds. For

such functions, Fatou’s theorem [6, p. 46] shows that 9% [f] has angular limit at e'0
equal to u'(ty) wherever the derivative exists (including u'(tg) = +%). We shall
seek other relationships that connect f and its mass distribution p.

THEOREM 1. If p is the mass distribution for a Hevglotz function {, and
sup 9% [f] < e, then u is nondecreasing and absolutely continuous and has bounded
Dini derivates.

In fact, every difference quotient of u is bounded by the bounds on % [f]. Ex-
ample 1 shows that f as distinguished from % [f] may nevertheless be unbounded.

Further information about p is obtained under the condition
(1.2) 55 1£'(0)|2 do < =,
G

where G is a domain of the form {|z| <1} N {|z-¢| <r}, |¢| =1. The integral
represents the area of f(G) on the Riemann surface associated with f. Condition
(1.2) has been used extensively in the boundary theory of conformal mapping [1]. We
shall say that f has the finite-area property at ¢ (|§ ] = 1) if (1.2) holds for some

r > 0 (for brevity, we occasionally write f € FAP({)). The usefulness of this condi-
tion arises from the fact that if

Gn = {]z| <1} 0 {rny1 <[z - ¢] <ra}

and r, — 0 as n — o, then

(1.3) §S [f'(0)|?do = o(1) (n— ).
Gn
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Using (1.3), we obtain the following converse of Fatou’s theorem.
THEOREM 2. Letf be a Herglotz function with sup % [f] < « and mass distri-

bution w. If % [f] has asymptotic value o on some curve ending at € = eito and
f € FAP(), then u'(ty) exists and equals o.

Example 1 shows that Theorem 2 fails without the finite-area property.

The finite-area property imposes a certain symmetry upon p. For instance, it
implies that p isalmost odd, in the following sense.

THEOREM 3. Let f be a Herglotz function whose mass distribution |1 has the
property

(1.4) Hg (0), 1 (0) > 0,

where 1L g(0) and 11.(0) denote the lower left and vight Dini derivates of p(t) at
t=0. If sup 9[f] <« andf e FAP(1), then

p-t) - 1) _

(1.5) lim S

t— 0+

It follows that p7(0) = n(0) and p.(0) = p¢(0). A variation of Example 1 shows
the necessity of the finite-area property, while Example 2 shows that Theorem 3
fails without condition (1.4). The conclusion (1.5) of Theorem 3 suggests that p
should behave fairly well when the finite-area property is imposed. The function pu
is said to be smooth [8] at t =to if

ulty +h)+ p(ty - h) - 2u(ty)
- =0

lim
h—0
The following is a simple consequence of Theorem 3.

THEOREM 4. Let f be a Hevglotz function with sup % [f] <« and mass distri-
bution . If f € FAP(1), then p is smooth at t = 0.

Example 3 shows that smoothness does not imply the finite-area property.

The most obvious class of functions to which Theorem 4 applies is the class of
schlicht, bounded functions in lzl < 1. For such functions, we summarize the above
results as follows.

THEOREM 5. Let f be a bounded schlicht function in Izl < 1. Then

eit 1 7
eit - 7

m
(1.6) £(z) = 59 S i) +15 £(0),
-7

wherve |1 is smooth and absolutely continuous on [-Tr, 7] and has bounded Dini devi-
vates. Movreovey, the Jovdan decomposition of yu can be written

(1.7) pt) = at) - Mt,

wherve M > 0 and o is nondecreasing.

Example 4 shows that a representation of type (1.6) is not in general possible
for unbounded schlicht functions.
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2. HERGLOTZ FUNCTIONS

Let f =u +1iv be a Herglotz function. The mass distribution p of f is deter-
mined [5, p. 196] by

t
(2.1) p(t) = lim S u(r, 6)de + C,
0

r—1

where C is a constant. For definiteness, we shall always take C = 0.

Proof of Theorem 1. Equation (2.1) shows immediately that @ is nondecreasing
and satisfies the periodicity relation u(t + 27) = p(t) + 27u(0). Let b = inf 9% [f] and
B=sup % [f]. Then (2.1) and the mean-value theorem imply that

uit) - plty)
(2.2) ST i S

Consequently, the Dini derivates of u must be bounded by the bounds on % [f]. To
show that p is absolutely continuous, consider the Lebesgue decomposition

(2.3) . p=a+y+o,

where @ is absolutely continuous, y is a continuous singular function, and ¢ isa
saltus function. A lemma of Lohwater [3] shows that if o is actually present in this
decomposition, then % [f] cannot be bounded. Thus we may take o(t) =0 in (2.3).
Since p is nondecreasing, the same is true of @ and y. If y is not constant, then
(by a theorem of S. Saks [7, p. 128]) 1 has infinite derivative on an uncountable set
of points, and this contradicts the fact, implied by (2.2), that p'(t) is finite wherever
it exists. Thus we may set (t) =0 in (2.3), and the result follows.

Example 1. Let w denote the harmonic measure in |z| < 1 of the upper semi-
circle. If w* denotes a conjugate function, then h = w +iw* is a schlicht mapping of
|z| <1 onto the vertical strip {0 < %t[z] <1} [5, p. 33]. However, the mass dis-
tribution p of h is given by ‘

pt) =

Thus u is nondecreasing and absolutely continuous, and it has bounded Dini deri-
vates; therefore h is an unbounded Herglotz function. Moreover, h does not possess
the finite-area property at z = 1, and p'(0) does not exist. However, every value in
[0, 1] is an asymptotic value of %[h] at z = 1.

3. THE FINITE-AREA PROPERTY

The following lemma and its variations are basic to our investigation. The
method of proof seems to have been employed first by W. Gross [2]. We use m{E}
to denote the Lebesgue measure of a set E.

LEMMA 1. Let f be a Herglotz function with sup % [f] <~ and mass distribu-
tion |. Denote by E(u' > d) the set of points in (-w, w) where u'(t) exists and ex-
ceeds the value d. If f € FAP(1) and theve exists a sequence {tn} of real numbers
decreasing to zevo such that
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(3.1) lim inf m{E(u' > otl) N[0, tal}

n—> 0 n

=K>0,

then there exists a sequence {I‘n} of civcular arcs with the following propeviies:
(1) r,={lz] <t} n{|z-1|=r_},
(2) if T, =%Ktn, then |1 - eiTnl <rp<|t- eitn],
(8) £(T",) is rectifiable, and length f(C ) — 0 as n— =,
(4) if yn is the endpoint of Ty, in Iz > 0, then %[f(y,)] > d.
To prove Lemma 1, we first observe that

m{E(u >d) N [7,, t,]}
(3.2) lim inf . >

o] R

n—oo

Next, set
En = E(w'>d)n[r,,t)], R, ={pp=]e*-1|, teE],
G, = {z: |z] <1, |z-1]| =p, pe R_}.

From (3.2) we obtain the relations

m{Rn} . m{En} K

(3.3) lim inf m =

n — co

Using Schwarz’s inequality and (1.3), we see that

(SSGH |£'(o)] do)z < (SSGH |§'(o)|2do)<SSGn do)

(3.4) .
= o(l)!l—eltnl‘2 (n — ) .

Now let
ri) = {[z] <1} n{|z- 1] =]eit- 1]}, L(t) = length (T'(t)),

L, = inf {L(t):t € E_}.

n

Using polar coordinates centered at z = 1, we obtain the estimate
(3.5) Sg |£'(c)| do > LnS dp = L m{R_}.
Gn R,

Combining (3.5), (3.4), and (3.3), we find that
|1 - en|

m= 0(1) (n—>°°).

(3.6) L, = o(l)
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Thus we may select p, € E_ and define r = |1 - eipn| with

Ly = {|Z| <1}ﬂ {IZ_ ll = rn};

so that

[1-er <rp<1-e™
and
(3.7) length £(T',) <L, +27".

Since the endpoint 7: = e ™™ of T', in $z > 0 lies in the set {elt: t € Ey |, it fol-
lows from Fatou’s theorem that 9% [f] has asymptotic value p'(py) >d on I'y at yn.
Clearly, (3.6) and (3.7) imply that length (") = o(1) as n — «, and Lemma 1 is
established.

Remark 1. We shall want to apply several variations of Lemma 1 that are evi-
dent from the above proof. For example, if the set E(u' > d) is replaced by the set
E(u' < d), then the lemma holds, with result (4) altered to read % [£(r,)] <d.
Another important variation occurs if we replace (3.1) by

miE(u' >d)n|-t,, 0
lim inf LB )0 [t ]}=K>0.

n —°C tn

In this case, result (4) is altered to the effect that the endpoint y, of T, in 32 <0
has % [f(y_ )] > d. A combination of these two variations clearly holds.

4. A CONVERSE OF FATOU’S THEOREM

We begin by establishing a lemma concerning absolutely continuous functions.
The proof is followed by a remark indicating several variations.

LEMMA 2. Let a be a nondecreasing absolutely continuous function on [-7, 7]
with a(0) = 0. Denote by E{a' > d) the set of points t where a'(t) exists and has a

value exceeding d. If sup a'(t) = B and g—g—'r—)- >d for some T in (0, ), then

a(T)

m{E(a' > d) 'ﬂl [0, 7]} S -d

T
(4.1) p Z " B-4d

To prove Lemma 2, note first that B - d > 0. Since the result holds trivially if
B =, we take B <. Put '
H = E(a' >d)n [0, 7].
Then

Bm(H) + d(7 - m(H)) > ST a'(t)dt = a(7);
0

from this the conclusion follows immediately.
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Remark 2. We shall need the following variation of this lemma. If inf a'(t) = b

and E%) < d for some T in (0, ), then

m{E(a' <d)n [0’ 7]} . d - Ol('r) ‘

.
(4.2) pn Z74d-p

The proof is analogous to the one just given, and we omit it. There are obvious vari-
ations of Lemma 2 and Remark 2 that occur when the set [0, 7] is replaced by
[-7, 0]. We omit the statement of these variations.

Proof of Theorem 2. We may obviously take tg = 0. We show that if p'(0) does
not exist when f € FAP(1), then 9% [f] cannot have an asymptotic value at z = 1. To
begin, suppose that the right-hand Dini derivates p.(t) and uf(t) are distinct at
t = 0, and define € = [p¥(0) - uy-(0)]/8. Since p*r(0) > ur(0), there exist sequences
{a,} and {b_}, with a_, b, >0 and a_, b, — 0 as n — «, such that

= ,LLr(O)-I-S

for all n. ¥ we set B = sup % [f], then (4.1) and (4.2) of Lemma 2 and its variations
imply that

m{E(u' > p¥(0) - 2¢) N [0, a, ]} £
an — B+ 2¢
and
m{E(u' < p.(0)+2¢) N[0, byl} £
by ZB+2"

Lemma 1 and Remark 1 thus establish the existence of two sequences {I‘n} and
{A,} of circular arcs with the following properties:

r,={lz] <1} n{|lz-1|=r,}, r,—0asn—w,
(1) '

A= {|z]| <1} n{]lz-1] =pn}, Pn—0as n— o,

(2) length £(T",) and length f(A,) both tend to 0 as n — «,
(3) if v, and A, are the endpoints of ', and A, in Iz > 0, then
9% [f(y,)] > u¥(0) -2 and  R[EQ,)] < p.(0)+2¢ .
It follows that if 9 [f] has asymptotic value o at z = 1, then simultaneously
@ > p¥(0) - 2¢ and a < p.(0)+ 2e, which is impossible by the choice of €.
i pt(0)> u(0) rather than p*(0) > u.(0), a similar proof gives the result.

If ¢ has unequal right- and left-hand derivatives at t = 0, we adjust the proof as
follows. Let D.(0) and Dg(0) denote these one-sided derivatives, with D..(0) > Dy(0).
We take £ = [D,(0) - Dy(0)]/8 and determine sequences {a,} and {b,} with a, > 0,
b, <0, and a,, b, — 0 as n — «, such that

iay) 1(o,)
> D,(0) - ¢ and 5

< D£(0)+8 .

n
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The proof now proceeds much as that above. Conclusion (3) now must be altered to
read
(3') if vy, is the endpoint of ', in Iz > 0 and A, is the endpoint of A, in
3z <0, then
®[f(y )] > D_(0)-2 and  9t[f(x )] <Dy(0)+ 2.

We see from Example 1 and standard properties of harmonic measure that this
theorem fails without the finite-area property. A related result is given by L. H.
Loomis [4].

Remark. The author wishes to thank the referee for shortening the proof of
Lemma, 2.

5. SYMMETRY OF THE MASS DISTRIBUTION

The finite-area property imposes a strong local symmetry on the mass distri-
bution. Our first result in this direction is Theorem 3.

Pyoof of Theorem 3. Let B = sup %[f]. From (2.2) and (1.4) we find that

) w(-t) 1 4(0) .. e p(-t) B
- 1 - -
ltm ;s)lip o) < B <0 and tlm (I)I—:f mo > () >

m .

Consequently, if (1.5) does not hold, there exists a sequence of points t, decreasing
to zero with the properties

-tp) p(-t,) pity)
lim uﬂ; (-0 <k <0, k#-1), lim = = L lim —
e MED) -

n  —o

Thus L = |k|R # R. Assuming, for example, that L, <R and ¢ = R

g » We may
also require that each t  satisfies the inequalities
(-ty) pity)
(5.1) £ n < L+eg, — >R-¢.
"tn tn
Lemma 2 and the conditions (5.1) now imply that
m{E(' SR-2)n][o0,t,]} £
ty B +2¢’
and Remark 2 implies that
m{E(u' <L +2¢)n [-t_, 0]} £
th > B +2¢ °

Applying Lemma 1, we now obtain two sequences {I',} and {A,} of arcs with the
following properties

M r,={lzl <1}n{lz-1]=r,}, A, ={lz]|<1}n{lz-1| =p,},

@) [1-e"n| <r_, p < |1- eltn|
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Il'eitn] 21?\»+25
8 b

(5.2) lim

n— |1 - eiTnl —

(3) length f(T",)) and length f(A,) tendto 0 as n — =,

(4) if y,, is the endpoint of I';, in Sz > 0, and if A, is the endpoint of A, in
3z <0, then f has asymptotic values at these points, and

(5.3) f[f(y)] > R-2¢, 9%[f(r)] < L+2e.

Now let S be the triangular region with vertices at z = i, -i, and 1. Let S, be the
subregion of S bounded by subarcs of I', and A, . Because f € FAP(1), Schwarz’s
inequality implies that

oo (§5 1) < (55, wore) (55, )

= o(1)]1 - eitn|2 (n — «) .

Now, for -:-3371 <é@ 55—I, define

2,(0) = 8, N {arg(z - 1) = e}, L (0) = length £(¢ (6)), &, =infL (6).
0

Using polar coordinates centered at z = 1} we obtain the inequality
(5.5) SS |£4(a)| do” > gzn |1 -e'Tn| .
Sn

From (5.5), (5.4), and (5.2) we conclude that
£, =0(1) (n—w).

For each n there thus exists a radial segment R, joining I', and A, , with

length f(R;) —» 0 as n — «. Using R, and the portions of I';, and A, joining R, to
the points 7y, and A,,, respectively, we obtain a curve C, joining y, and A, with
length £(C,) — 0 as n — «. But this is impossible, since (5.3) implies that

|f(v,) - £(0))] > R - L - 4¢ = 4e.

Thus our assumption that (1.5) does not hold leads to a contradiction, and Theorem 3
is proved.

The function H(z) = h(z) + 1, where h is the function of Example 1, has mass
distribution
t (-1 <t<0),

u(t) =
2t (0<t< 7).

Thus p satisfies (1.4), but H ¢ FAP(1), and condition (1.5) fails.
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Example 2. We show now that Theorem 3 fails if we omit (1.4) from its hy-
potheses. Define a mass distribution g on [-7, 7] as follows:

0 (-m <t <0),
pt) =
1-cost ((O<L<t<7).

This mass distribution generates a Herglotz function s that does not possess prop-
erty (1.4), and the result (1.5) fails. We note in passing that s is bounded and
schlicht. Boundedness follows from a direct computation of the conjugate v(r, 6) of
% [s]:

1 T 2r sin t
Y

v(r, 8) = > w'(o - t)dt.

1 1-2rcost+r

Univalence follows from the fact that u = % [s] is continuous in |z| <1 Forif s
were not schlicht, then the Riemann surface of s would contain two disjoint, noncom-
pact arcs I'; and I', projecting onto the same vertical line in the w-plane. Con-
sidering the boundary values of u, one sées that the images y; and ¥, in |z| <1 of
I'; and T'2 have common endpoints on ]zl = 1, hence bound a domain in which % [s]
is constant. But s is not constant, and therefore s must be schlicht.

Proof of Theorem 4. We have the representation

’Ir -
1 et +z
f(z) = o ). et - 2 au(t).

Hence, for € > 0,

Ui
(5.6) 8) = fz) +¢ = 5= | :lt 2 a(ue) + o)

is a Herglotz function satisfying the conditions of Theorem 3. If a(t) = p(t) + t,
then for t #0

a(t) + a(- t) _ oz(t) a(-t)
t (1 50 aft)

Hence

a(t) + a(-t)

lim i

t—0

=0’

so that @ is smooth at t = 0. But then p must also be smooth at t = 0, and the
proof is complete.

Example 3. The function

f(z) = exp (- i-_'_:)+1

is a bounded Herglotz function that does not possess the finite-area property at
z = 1. The associated mass distribution is determined from (2.1) to be
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t
ut) = S cos(cot-tz—) dt +t.
0

This function has a finite derivative everywhere, hence is everywhere smooth.

6. APPLICATION TO SCHLICHT FUNCTIONS

Proof of Theorem 5. Most of the details here follow directly from the preceding
facts and the observation that f possesses the finite-area property at every point of
|z| = 1. The decomposition (1.7) follows from a consideration of g(z) = £(z) + M,
where M > sup |f(z)|. We omit the details.

Example 4. The function w(z) =i } fz maps |z| < 1 onto the upper half plane.

Since
27
lim
r—1 %0

%t[w]|do = «,
a Poisson-Stieltjes representation is not possible [5, p. 197].
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