ON THE POISSON-STIELTJES REPRESENTATION FOR FUNCTIONS WITH BOUNDED REAL PART

F. B. Ryan

1. INTRODUCTION

The main purpose of this paper is to establish results that connect a Poisson-Stieltjes integral with boundary properties of the function it represents. A well-known theorem of Herglotz [5, p. 196] states that a function f holomorphic in |z| < 1 with positive real part has a Poisson-Stieltjes representation

(1.1)
$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + i \Im f(0),$$

where μ is a nondecreasing function of bounded variation on $[-\pi, \pi]$. Briefly, we shall say that f is a *Herglotz* function with *mass distribution* μ if (1.1) holds. For such functions, Fatou's theorem [6, p. 46] shows that $\Re[f]$ has angular limit at e^{it_0} equal to $\mu'(t_0)$ wherever the derivative exists (including $\mu'(t_0) = +\infty$). We shall seek other relationships that connect f and its mass distribution μ .

THEOREM 1. If μ is the mass distribution for a Herglotz function f, and $\sup \Re[f] < \infty$, then μ is nondecreasing and absolutely continuous and has bounded Dini derivates.

In fact, every difference quotient of μ is bounded by the bounds on $\Re[f]$. Example 1 shows that f as distinguished from $\Re[f]$ may nevertheless be unbounded.

Further information about μ is obtained under the condition

$$\int\!\int_{G} |f'(\sigma)|^2 d\sigma < \infty,$$

where G is a domain of the form $\{|z| < 1\} \cap \{|z - \zeta| < r\}, |\zeta| = 1$. The integral represents the area of f(G) on the Riemann surface associated with f. Condition (1.2) has been used extensively in the boundary theory of conformal mapping [1]. We shall say that f has the *finite-area property* at ζ ($|\zeta| = 1$) if (1.2) holds for some r > 0 (for brevity, we occasionally write $f \in FAP(\zeta)$). The usefulness of this condition arises from the fact that if

$$G_n = \{ |z| < 1 \} \cap \{ r_{n+1} < |z - \zeta| < r_n \}$$

and $r_n \to 0$ as $n \to \infty$, then

(1.3)
$$\iint_{G_n} |f'(\sigma)|^2 d\sigma = o(1) \quad (n \to \infty) .$$

Received June 9, 1969.

Michigan Math. J. 17 (1970).

Using (1.3), we obtain the following converse of Fatou's theorem.

THEOREM 2. Let f be a Herglotz function with sup $\Re[f] < \infty$ and mass distribution μ . If $\Re[f]$ has asymptotic value α on some curve ending at $\zeta = e^{it_0}$ and $f \in FAP(\zeta)$, then $\mu'(t_0)$ exists and equals α .

Example 1 shows that Theorem 2 fails without the finite-area property.

The finite-area property imposes a certain symmetry upon μ . For instance, it implies that μ is *almost odd*, in the following sense.

THEOREM 3. Let f be a Herglotz function whose mass distribution μ has the property

(1.4)
$$\mu_{\ell}(0), \ \mu_{r}(0) > 0,$$

where $\mu_{\ell}(0)$ and $\mu_{r}(0)$ denote the lower left and right Dini derivates of $\mu(t)$ at t = 0. If $\sup \Re[f] < \infty$ and $f \in FAP(1)$, then

(1.5)
$$\lim_{t \to 0+} \frac{\mu(-t) - \mu(0)}{\mu(t) - \mu(0)} = -1.$$

It follows that $\mu^{\mathbf{r}}(0) = \mu^{\ell}(0)$ and $\mu_{\mathbf{r}}(0) = \mu_{\ell}(0)$. A variation of Example 1 shows the necessity of the finite-area property, while Example 2 shows that Theorem 3 fails without condition (1.4). The conclusion (1.5) of Theorem 3 suggests that μ should behave fairly well when the finite-area property is imposed. The function μ is said to be smooth [8] at $t = t_0$ if

$$\lim_{h\to 0} \frac{\mu(t_0 + h) + \mu(t_0 - h) - 2\mu(t_0)}{h} = 0.$$

The following is a simple consequence of Theorem 3.

THEOREM 4. Let f be a Herglotz function with sup $\Re[f] < \infty$ and mass distribution μ . If $f \in FAP(1)$, then μ is smooth at t = 0.

Example 3 shows that smoothness does not imply the finite-area property.

The most obvious class of functions to which Theorem 4 applies is the class of schlicht, bounded functions in |z| < 1. For such functions, we summarize the above results as follows.

THEOREM 5. Let f be a bounded schlicht function in |z| < 1. Then

(1.6)
$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + i \Im f(0),$$

where μ is smooth and absolutely continuous on $[-\pi, \pi]$ and has bounded Dini derivates. Moreover, the Jordan decomposition of μ can be written

$$\mu(t) = \alpha(t) - Mt,$$

where M > 0 and α is nondecreasing.

Example 4 shows that a representation of type (1.6) is not in general possible for unbounded schlicht functions.

2. HERGLOTZ FUNCTIONS

Let f = u + iv be a Herglotz function. The mass distribution μ of f is determined [5, p. 196] by

(2.1)
$$\mu(t) = \lim_{r \to 1} \int_0^t u(r, \theta) d\theta + C,$$

where C is a constant. For definiteness, we shall always take C = 0.

Proof of Theorem 1. Equation (2.1) shows immediately that μ is nondecreasing and satisfies the periodicity relation $\mu(t+2\pi) = \mu(t) + 2\pi u(0)$. Let $b = \inf \Re[f]$ and $B = \sup \Re[f]$. Then (2.1) and the mean-value theorem imply that

(2.2)
$$b \leq \frac{\mu(t) - \mu(t_0)}{t - t_0} \leq B.$$

Consequently, the Dini derivates of μ must be bounded by the bounds on $\Re[f]$. To show that μ is absolutely continuous, consider the Lebesgue decomposition

$$(2.3) \mu = \alpha + \gamma + \sigma,$$

where α is absolutely continuous, γ is a continuous singular function, and σ is a saltus function. A lemma of Lohwater [3] shows that if σ is actually present in this decomposition, then $\Re[f]$ cannot be bounded. Thus we may take $\sigma(t) \equiv 0$ in (2.3). Since μ is nondecreasing, the same is true of α and γ . If γ is not constant, then (by a theorem of S. Saks [7, p. 128]) μ has infinite derivative on an uncountable set of points, and this contradicts the fact, implied by (2.2), that μ '(t) is finite wherever it exists. Thus we may set $\gamma(t) \equiv 0$ in (2.3), and the result follows.

Example 1. Let ω denote the harmonic measure in |z| < 1 of the upper semicircle. If ω^* denotes a conjugate function, then $h = \omega + i\omega^*$ is a schlicht mapping of |z| < 1 onto the vertical strip $\{0 < \Re[z] < 1\}$ [5, p. 33]. However, the mass distribution μ of h is given by

$$\mu(t) = \begin{cases} 0 & (-\pi \leq t \leq 0), \\ t & (0 \leq t \leq \pi). \end{cases}$$

Thus μ is nondecreasing and absolutely continuous, and it has bounded Dini derivates; therefore h is an unbounded Herglotz function. Moreover, h does not possess the finite-area property at z=1, and $\mu'(0)$ does not exist. However, every value in [0, 1] is an asymptotic value of $\Re[h]$ at z=1.

3. THE FINITE-AREA PROPERTY

The following lemma and its variations are basic to our investigation. The method of proof seems to have been employed first by W. Gross [2]. We use $m\{E\}$ to denote the Lebesgue measure of a set E.

LEMMA 1. Let f be a Herglotz function with sup $\Re\left[f\right]<\infty$ and mass distribution μ . Denote by $E(\mu'>d)$ the set of points in $(-\pi,\pi)$ where $\mu'(t)$ exists and exceeds the value d. If $f\in FAP(1)$ and there exists a sequence $\{t_n\}$ of real numbers decreasing to zero such that

(3.1)
$$\lim_{n\to\infty}\inf\frac{m\{E(\mu'>d)\cap[0,t_n]\}}{t_n}=K>0,$$

then there exists a sequence $\{\Gamma_n\}$ of circular arcs with the following properties:

(1)
$$\Gamma_n = \{ |z| < 1 \} \cap \{ |z - 1| = r_n \},$$

(2) if
$$\tau_n = \frac{1}{2} Kt_n$$
, then $|1 - e^{i\tau_n}| \le r_n \le |1 - e^{it_n}|$,

- (3) $f(\Gamma_n)$ is rectifiable, and length $f(\Gamma_n) \to 0$ as $n \to \infty$,
- (4) if γ_n is the endpoint of Γ_n in $\Im\,z>0$, then $\Re\,[f(\gamma_n)]>d$.

To prove Lemma 1, we first observe that

(3.2)
$$\lim_{n\to\infty}\inf\frac{\mathrm{m}\{\mathrm{E}(\mu'>\mathrm{d})\cap[\tau_n\,,\,t_n]\}}{t_n}\geq\frac{\mathrm{K}}{2}.$$

Next, set

$$\begin{split} & E_n = E(\mu' > d) \cap [\tau_n, t_n], \quad R_n = \{\rho: \rho = |e^{it} - 1|, t \in E_n\}, \\ & G_n = \{z: |z| < 1, |z - 1| = \rho, \rho \in R_n\}. \end{split}$$

From (3.2) we obtain the relations

(3.3)
$$\lim_{n\to\infty} \inf \frac{m\{R_n\}}{|1-e^{it_n}|} = \lim_{n\to\infty} \inf \frac{m\{E_n\}}{t_n} \geq \frac{K}{2}.$$

Using Schwarz's inequality and (1.3), we see that

(3.4)
$$\left(\iint_{G_{\mathbf{n}}} |\mathbf{f}'(\sigma)| \, d\sigma \right)^{2} \leq \left(\iint_{G_{\mathbf{n}}} |\mathbf{f}'(\sigma)|^{2} \, d\sigma \right) \left(\iint_{G_{\mathbf{n}}} \, d\sigma \right)$$

$$= o(1) \left| 1 - e^{it_{\mathbf{n}}} \right|^{2} \quad (\mathbf{n} \to \infty) .$$

Now let

$$\Gamma(t) = \{ \left| z \right| < 1 \} \cap \{ \left| z - 1 \right| = \left| e^{it} - 1 \right| \}, \quad L(t) = length \ f(\Gamma(t)),$$

$$L_n = \inf \{ L(t); \ t \in E_n \}.$$

Using polar coordinates centered at z = 1, we obtain the estimate

(3.5)
$$\int \int_{G_n} |f'(\sigma)| d\sigma \ge L_n \int_{R_n} d\rho = L_n m\{R_n\}.$$

Combining (3.5), (3.4), and (3.3), we find that

(3.6)
$$L_{n} = o(1) \frac{\left|1 - e^{it_{n}}\right|}{m\{R_{n}\}} = o(1) \quad (n \to \infty).$$

Thus we may select $p_n \in E_n$ and define $r_n = \left| 1 - e^{ip_n} \right|$ with

$$\Gamma_{n} = \{ |z| < 1 \} \cap \{ |z - 1| = r_{n} \},$$

so that

$$\left|1 - e^{i\tau_n}\right| \le r_n \le \left|1 - e^{it_n}\right|$$

and

(3.7)
$$\operatorname{length} f(\Gamma_n) < L_n + 2^{-n}.$$

Since the endpoint $\gamma=e^{ip_n}$ of Γ_n in $\Im\,z>0$ lies in the set $\{e^{it}\colon t\in E_n\}$, it follows from Fatou's theorem that $\Im\,[f]$ has asymptotic value $\mu'(p_n)>d$ on Γ_n at γ_n . Clearly, (3.6) and (3.7) imply that length $f(\Gamma_n)=o(1)$ as $n\to\infty$, and Lemma 1 is established.

Remark 1. We shall want to apply several variations of Lemma 1 that are evident from the above proof. For example, if the set $E(\mu'>d)$ is replaced by the set $E(\mu'< d)$, then the lemma holds, with result (4) altered to read $\Re\left[f(\gamma_n)\right]< d$. Another important variation occurs if we replace (3.1) by

$$\lim_{n\to\infty}\inf\frac{m\{E(\mu'>d)\cap[-t_n,\,0]\}}{t_n}=K>0.$$

In this case, result (4) is altered to the effect that the endpoint γ_n of Γ_n in $\Im\,z<0$ has $\Re\,\left[f(\gamma_n)\right]>d$. A combination of these two variations clearly holds.

4. A CONVERSE OF FATOU'S THEOREM

We begin by establishing a lemma concerning absolutely continuous functions. The proof is followed by a remark indicating several variations.

LEMMA 2. Let α be a nondecreasing absolutely continuous function on $[-\pi, \pi]$ with $\alpha(0)=0$. Denote by E(a'>d) the set of points t where $\alpha'(t)$ exists and has a value exceeding d. If $\sup \alpha'(t)=B$ and $\frac{\alpha(\tau)}{\tau}>d$ for some τ in $(0,\pi)$, then

(4.1)
$$\frac{m\{E(\alpha'>d)\cap[0, \tau]\}}{\tau} \geq \frac{\frac{\alpha(\tau)}{\tau}-d}{B-d}.$$

To prove Lemma 2, note first that B - d > 0. Since the result holds trivially if $B = \infty$, we take $B < \infty$. Put

$$H = E(\alpha' > d) \cap [0, \tau].$$

Then

$$B m(H) + d(\tau - m(H)) \ge \int_0^{\tau} \alpha'(t) dt = \alpha(\tau);$$

from this the conclusion follows immediately.

Remark 2. We shall need the following variation of this lemma. If inf $\alpha'(t) = b$ and $\frac{\alpha(\tau)}{\tau} < d$ for some τ in $(0, \pi)$, then

$$\frac{\mathbf{m}\left\{\mathbf{E}(\mathbf{a}'<\mathbf{d})\cap[0,\ \tau]\right\}}{\tau}\geq\frac{\mathbf{d}-\frac{\alpha(\tau)}{\tau}}{\mathbf{d}-\mathbf{b}}.$$

The proof is analogous to the one just given, and we omit it. There are obvious variations of Lemma 2 and Remark 2 that occur when the set $[0, \tau]$ is replaced by $[-\tau, 0]$. We omit the statement of these variations.

Proof of Theorem 2. We may obviously take $t_0 = 0$. We show that if $\mu'(0)$ does not exist when $f \in FAP(1)$, then $\Re [f]$ cannot have an asymptotic value at z = 1. To begin, suppose that the right-hand Dini derivates $\mu_r(t)$ and $\mu^r(t)$ are distinct at t = 0, and define $\epsilon = [\mu^r(0) - \mu_r(0)]/8$. Since $\mu^r(0) > \mu_r(0)$, there exist sequences $\{a_n\}$ and $\{b_n\}$, with a_n , $b_n > 0$ and a_n , $b_n \to 0$ as $n \to \infty$, such that

$$\frac{\mu(a_n)}{a_n} = \mu^r(0) - \varepsilon$$
 and $\frac{\mu(b_n)}{b_n} = \mu_r(0) + \varepsilon$

for all n. If we set $B = \sup \Re[f]$, then (4.1) and (4.2) of Lemma 2 and its variations imply that

$$\frac{\mathrm{m}\left\{\mathrm{E}(\mu^{\mathsf{r}}>\mu^{\mathsf{r}}(0)-2\epsilon)\cap[0,\,\mathrm{a_n}]\right\}}{\mathrm{a_n}}\geq\frac{\epsilon}{\mathrm{B}+2\epsilon}$$

and

$$\frac{m\left\{E(\mu'<\mu_{\mathbf{r}}(0)+2\epsilon)\cap[0,\,b_{\mathbf{n}}]\right\}}{b_{\mathbf{n}}}\geq\frac{\epsilon}{B+2\epsilon}.$$

Lemma 1 and Remark 1 thus establish the existence of two sequences $\{\Gamma_n\}$ and $\{\Lambda_n\}$ of circular arcs with the following properties:

(1)
$$\begin{cases} \Gamma_{n} = \{|z| < 1\} \cap \{|z - 1| = r_{n}\}, r_{n} \to 0 \text{ as } n \to \infty, \\ \Lambda_{n} = \{|z| < 1\} \cap \{|z - 1| = \rho_{n}\}, \rho_{n} \to 0 \text{ as } n \to \infty, \end{cases}$$

- (2) length $f(\Gamma_n)$ and length $f(\Lambda_n)$ both tend to 0 as $n \to \infty$,
- (3) if γ_n and λ_n are the endpoints of Γ_n and Λ_n in $\Im\,z>0$, then

$$\Re\left[f(\gamma_n)\right] > \mu^{\,\mathbf{r}}(0) - 2\epsilon \qquad \text{and} \qquad \Re\left[f(\lambda_n)\right] < \mu_{\,\mathbf{r}}(0) + 2\epsilon \ .$$

It follows that if $\Re[f]$ has asymptotic value α at z=1, then simultaneously $\alpha \geq \mu^{r}(0)$ - 2ϵ and $\alpha \leq \mu_{r}(0) + 2\epsilon$, which is impossible by the choice of ϵ .

If $\mu^{\ell}(0) > \mu_{\ell}(0)$ rather than $\mu^{r}(0) > \mu_{r}(0)$, a similar proof gives the result.

If μ has unequal right- and left-hand derivatives at t=0, we adjust the proof as follows. Let $D_r(0)$ and $D_\ell(0)$ denote these one-sided derivatives, with $D_r(0) > D_\ell(0)$. We take $\epsilon = [D_r(0) - D_\ell(0)]/8$ and determine sequences $\{a_n\}$ and $\{b_n\}$ with $a_n > 0$, $b_n < 0$, and a_n , $b_n \to 0$ as $n \to \infty$, such that

$$\frac{\mu(a_n)}{a_n} > D_r(0) - \epsilon$$
 and $\frac{\mu(b_n)}{b_n} < D_{\ell}(0) + \epsilon$.

The proof now proceeds much as that above. Conclusion (3) now must be altered to read

(3') if γ_n is the endpoint of Γ_n in $\,\Im\,z>0\,$ and λ_n is the endpoint of Λ_n in $\,\Im\,z<0,$ then

$$\Re\left[f(\gamma_n)\right] > D_r(0) - 2\epsilon \quad \text{ and } \quad \Re\left[f(\lambda_n)\right] < D_\ell(0) + 2\epsilon \;.$$

We see from Example 1 and standard properties of harmonic measure that this theorem fails without the finite-area property. A related result is given by L. H. Loomis [4].

Remark. The author wishes to thank the referee for shortening the proof of Lemma 2.

5. SYMMETRY OF THE MASS DISTRIBUTION

The finite-area property imposes a strong local symmetry on the mass distribution. Our first result in this direction is Theorem 3.

Proof of Theorem 3. Let $B = \sup \Re[f]$. From (2.2) and (1.4) we find that

$$\lim_{t \, \to \, 0+} \sup_{\mu(t)} \frac{\mu(\text{-}t)}{\mu(t)} \leq -\frac{\mu_{\,\boldsymbol{\ell}}(0)}{B} < 0 \quad \text{ and } \quad \lim_{t \, \to \, 0+} \inf_{\mu(t)} \frac{\mu(\text{-}t)}{\mu(t)} \geq -\frac{B}{\mu_{\,\boldsymbol{r}}(0)} > -\infty \;.$$

Consequently, if (1.5) does not hold, there exists a sequence of points t_n decreasing to zero with the properties

$$\lim_{n \to \infty} \frac{\mu(-t_n)}{\mu(t_n)} = k \quad (-\infty < k < 0, \ k \neq -1), \qquad \lim_{n \to \infty} \frac{\mu(-t_n)}{-t_n} = L, \qquad \lim_{n \to \infty} \frac{\mu(t_n)}{t_n} = R.$$

Thus $L = |k|R \neq R$. Assuming, for example, that L < R and $\varepsilon = \frac{R - L}{8}$, we may also require that each t_n satisfies the inequalities

(5.1)
$$\frac{\mu(-t_n)}{-t_n} < L + \varepsilon, \quad \frac{\mu(t_n)}{t_n} > R - \varepsilon.$$

Lemma 2 and the conditions (5.1) now imply that

$$\frac{m\left\{E(\mu' \stackrel{\checkmark}{>} R - 2\epsilon) \cap [0, t_n]\right\}}{t_n} > \frac{\epsilon}{B + 2\epsilon},$$

and Remark 2 implies that

$$\frac{m\{E(\mu' < L + 2\epsilon) \cap [-t_n, 0]\}}{t_n} > \frac{\epsilon}{B + 2\epsilon}.$$

Applying Lemma 1, we now obtain two sequences $\{\Gamma_n\}$ and $\{\Lambda_n\}$ of arcs with the following properties

(1)
$$\Gamma_n = \{ |z| < 1 \} \cap \{ |z - 1| = r_n \}, \quad \Lambda_n = \{ |z| < 1 \} \cap \{ |z - 1| = \rho_n \},$$

(2)
$$\left|1 - e^{i\tau_n}\right| < r_n, \quad \rho_n < \left|1 - e^{it_n}\right|,$$

(5.2)
$$\lim_{n\to\infty} \frac{\left|1-e^{it_n}\right|}{\left|1-e^{i\tau_n}\right|} \leq 2\frac{B+2\varepsilon}{\varepsilon},$$

- (3) length $f(\Gamma_n)$ and length $f(\Lambda_n)$ tend to 0 as $n \to \infty$,
- (4) if γ_n is the endpoint of Γ_n in $\Im z > 0$, and if λ_n is the endpoint of Λ_n in $\Im z < 0$, then f has asymptotic values at these points, and

(5.3)
$$\Re \left[f(\gamma_n) \right] > R - 2\varepsilon, \qquad \Re \left[f(\lambda_n) \right] < L + 2\varepsilon.$$

Now let S be the triangular region with vertices at z=i, -i, and 1. Let S_n be the subregion of S bounded by subarcs of Γ_n and Λ_n . Because $f \in FAP(1)$, Schwarz's inequality implies that

(5.4)
$$\left(\iint_{S_{\mathbf{n}}} |\mathbf{f}'(\sigma)| \, d\sigma \right)^{2} \leq \left(\iint_{S_{\mathbf{n}}} |\mathbf{f}'(\sigma)|^{2} \, d\sigma \right) \left(\iint_{S_{\mathbf{n}}} d\sigma \right)$$

$$= o(1) |1 - e^{it_{\mathbf{n}}}|^{2} (\mathbf{n} \to \infty) .$$

Now, for $\frac{3\pi}{4} \le \theta \le \frac{5\pi}{4}$, define

$$\ell_{n}(\theta) = S_{n} \cap \left\{ \arg (z - 1) = e^{i\theta} \right\}, \quad L_{n}(\theta) = \operatorname{length} f(\ell_{n}(\theta)), \quad \mathscr{L}_{n} = \inf_{\theta} L_{n}(\theta).$$

Using polar coordinates centered at z = 1, we obtain the inequality

(5.5)
$$\int \int_{S_n} |f'(\sigma)| d\sigma \ge \frac{\pi}{2} \mathscr{L}_n |1 - e^{i\tau_n}|.$$

From (5.5), (5.4), and (5.2) we conclude that

$$\mathscr{L}_{n} = o(1) \quad (n \to \infty)$$
.

For each n there thus exists a radial segment R_n joining Γ_n and Λ_n , with length $f(R_n) \to 0$ as $n \to \infty$. Using R_n and the portions of Γ_n and Λ_n joining R_n to the points γ_n and λ_n , respectively, we obtain a curve C_n joining γ_n and λ_n , with length $f(C_n) \to 0$ as $n \to \infty$. But this is impossible, since (5.3) implies that

$$|f(\gamma_n) - f(\lambda_n)| > R - L - 4\epsilon = 4\epsilon$$
.

Thus our assumption that (1.5) does not hold leads to a contradiction, and Theorem 3 is proved.

The function H(z) = h(z) + 1, where h is the function of Example 1, has mass distribution

$$\mu(t) = \begin{cases} t & (-\pi \leq t \leq 0), \\ 2t & (0 \leq t \leq \pi). \end{cases}$$

Thus μ satisfies (1.4), but $H \notin FAP(1)$, and condition (1.5) fails.

Example 2. We show now that Theorem 3 fails if we omit (1.4) from its hypotheses. Define a mass distribution μ on $[-\pi, \pi]$ as follows:

$$\mu(t) = \begin{cases} 0 & (-\pi \le t \le 0), \\ 1 - \cos t & (0 \le t \le \pi). \end{cases}$$

This mass distribution generates a Herglotz function s that does not possess property (1.4), and the result (1.5) fails. We note in passing that s is bounded and schlicht. Boundedness follows from a direct computation of the conjugate $v(r, \theta)$ of $\Re[s]$:

$$v(r, \theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2r \sin t}{1 - 2r \cos t + r^2} \mu'(\theta - t) dt.$$

Univalence follows from the fact that $u = \Re[s]$ is continuous in $|z| \le 1$. For if s were not schlicht, then the Riemann surface of s would contain two disjoint, noncompact arcs Γ_1 and Γ_2 projecting onto the *same* vertical line in the w-plane. Considering the boundary values of u, one sees that the images γ_1 and γ_2 in |z| < 1 of Γ_1 and Γ_2 have common endpoints on |z| = 1, hence bound a domain in which $\Re[s]$ is constant. But s is not constant, and therefore s must be schlicht.

Proof of Theorem 4. We have the representation

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t).$$

Hence, for $\varepsilon > 0$,

(5.6)
$$g(z) = f(z) + \varepsilon = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d(\mu(t) + \varepsilon t)$$

is a Herglotz function satisfying the conditions of Theorem 3. If $\alpha(t) = \mu(t) + \varepsilon t$, then for $t \neq 0$

$$\frac{\alpha(t) + \alpha(-t)}{t} = \frac{\alpha(t)}{t} \left(1 + \frac{\alpha(-t)}{\alpha(t)} \right).$$

Hence

$$\lim_{t\to 0} \frac{\alpha(t) + \alpha(-t)}{t} = 0,$$

so that α is smooth at t=0. But then μ must also be smooth at t=0, and the proof is complete.

Example 3. The function

$$f(z) = \exp\left(-\frac{1+z}{1-z}\right) + 1$$

is a bounded Herglotz function that does not possess the finite-area property at z = 1. The associated mass distribution is determined from (2.1) to be

$$\mu(t) = \int_0^t \cos\left(\cot\frac{t}{2}\right) dt + t.$$

This function has a finite derivative *everywhere*, hence is everywhere smooth.

6. APPLICATION TO SCHLICHT FUNCTIONS

Proof of Theorem 5. Most of the details here follow directly from the preceding facts and the observation that f possesses the finite-area property at *every* point of |z| = 1. The decomposition (1.7) follows from a consideration of g(z) = f(z) + M, where $M \ge \sup |f(z)|$. We omit the details.

Example 4. The function $w(z) = i \frac{1+z}{1-z}$ maps |z| < 1 onto the upper half plane. Since

$$\lim_{\mathbf{r} \to 1} \int_0^{2\pi} |\Re[\mathbf{w}]| d\theta = \infty,$$

a Poisson-Stieltjes representation is not possible [5, p. 197].

REFERENCES

- 1. E. F. Collingwood and A. Lohwater, *The theory of cluster sets*. Cambridge Univ. Press, Cambridge, 1966.
- 2. W. Gross, Über die Singularitäten analytischer Funktionen. Monatsh. Math. 29 (1918), 3-47.
- 3. A. J. Lohwater, The boundary values of a class of meromorphic functions. Duke Math. J. 19 (1952), 243-252.
- 4. L. H. Loomis, The converse of the Fatou theorem for positive harmonic functions. Trans. Amer. Math. Soc. 53 (1943), 239-250.
- 5. R. Nevanlinna, *Eindeutige analytische Funktionen*. 2te Aufl. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. LXVI. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953.
- 6. I. I. Privalov, Randeigenschaften analytischer Funktionen. VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.
- 7. S. Saks, Theory of the integral. Monografie Matematyczne, Vol. 7, Warsaw, 1937.
- 8. A. Zygmund, Smooth functions. Duke Math. J. 12 (1945), 47-76.

Case Western Reserve University Cleveland, Ohio 44106