IMMERSIONS OF k-ORIENTABLE MANIFOLDS

James C. Becker

1. INTRODUCTION

Let M^m denote a smooth, closed, connected m-manifold. According to the classical theorems of Whitney, M^m embeds in R^{2m} and (if m>1) immerses in R^{2m-1} . There are, however, many examples to show that the existence of an embedding $M^m \subset R^{2m-k+1}$ ($2 \le k \le m-1$) does not imply the existence of an immersion $M^m \subseteq R^{2m-k}$. In particular, complex projective space CP_m ($m=2^r$) embeds in R^{4m-1} [3] but does not immerse in R^{4m-2} [7]. In this note, we show that with additional restrictions, an embedding $M^m \subset R^{2m-k+1}$ will produce an immersion $M^m \subseteq R^{2m-k}$.

If α is a vector bundle over a CW-complex B, denote its stable equivalence class by (α) . We say that (α) is k-orientable if the restriction of α to the k-skeleton of B is stably fibre-homotopy trivial. A manifold M^m (hereafter assumed to be smooth and connected) is k-orientable if its tangent bundle $\tau(M^m)$ is k-orientable. A map $f: M^m \to N^n$ between manifolds is k-orientation-preserving if $f^*(\tau(N^n)) - (\tau(M^m))$ is k-orientable. Let $i_0: N^n \to N^n \times R$ denote the inclusion $y \to (y, 0)$ ($y \in N^n$). Our main result is the following.

THEOREM 1.1. Suppose 2k < m - 1. Let M^m be closed, and let

$$f: M^m \rightarrow N^{2m-k}$$

be k-orientation-preserving. If the composition $i_0 f: M^m \to N^{2m-k} \times R$ is homotopic to an embedding, then f is homotopic to an immersion.

Some interesting corollaries follow.

COROLLARY 1.2. Suppose $2k \le m$ - 1. Let M^m be closed and $k\text{-}\mathit{orientable}.$ If $M^m \subset R^{2m-k+1}$, then $M \subseteq R^{2m-k}$.

COROLLARY 1.3. Suppose $2k \le m-1$. Let $f: M^m \to N^{2m-k}$ be given, where M^m is closed and N^{2m-k} is k-connected. Suppose either

- (a) Mm is k-connected or
- (b) M^m is (k 1)-connected and f is k-orientation-preserving.

Then f is homotopic to an immersion.

Proof. By A. Haefliger's embedding theorem [3], $i_0 f: M^m \to N^{2m-k} \times R$ is homotopic to an embedding. Now apply Theorem 1.1.

Note that, if M^m is (k-1)-connected and $k \equiv 3, 5, 6$, or 7 (mod 8), the assumption that f be k-orientation-preserving is superfluous. To verify this, let $\nu \colon M^m \to BO$ be a classifying map for $f^*(\tau(N^{2m-k})) - (\tau(M^m))$. There is a single obstruction to lifting ν to the k-connected covering BO[k] of BO. This occurs in

Received July 10, 1969.

This research was supported by the National Science Foundation Grant GP-8747.

Michigan Math. J. 17 (1970).

 $H^k(M^m; \pi_k(BO))$ and, by the Bott periodicity theorem, $\pi_k(BO) = 0$ if $k \equiv 3, 5, 6,$ or 7 (mod 8).

COROLLARY 1.4. Suppose $2k \le m-1$. Let M^m be closed, (k-2)-connected, and k-orientable. Then $M^m \subseteq R^{2m-k}$ if and only if $\overline{W}^{m-k+1} = 0$.

Proof. The necessity is clear. A. Haefliger and M. Hirsch [4] have shown that $M^m \subset R^{2m-k+1}$, provided $\overline{W}^{m-k+1} = 0$. The corollary now follows from Corollary 1.2.

Note that, if M^m is (k-2)-connected and $k \equiv 6$ or $k \equiv 7 \pmod 8$, then M^m is automatically k-orientable.

J. Van Eps [9] has also obtained Corollary 1.4, by different techniques.

The type of argument used in Corollary 1.4 can be carried further. Suppose that M^m is k-orientable and r-connected (k \leq 2r + 1 and 2k \leq m - 1). Let M_0^m denote M^m minus the interior of a smooth disk. If $M_0^m \subseteq R^{2m-k}$, then $M^m \subseteq R^{2m-k+1}$ [6]; now Corollary 1.2 implies that $M^m \subseteq R^{2m-k}$. That is, immersing M^m is equivalent to immersing M_0^m . The latter problem is more amendable to obstruction theory. In particular, using the work of E. Thomas [8], we can give cohomology conditions, involving secondary operations, for immersing a (k - 3)-connected manifold M^m in R^{2m-k} , for some values of m and k.

2. ORIENTABILITY

Let $\mathscr G$ denote the sphere spectrum whose nth term is S^n $(n \geq 0)$, and let $\mathscr G^{(k)}$ denote the spectrum whose nth space $(S^n)^{(k)}$ is obtained by killing $\pi_r(S^n)$, for all integers $r \geq n+k$. We denote the natural map $\mathscr G \to \mathscr G^{(k)}$ by $\lambda^{(k)}$. If $\alpha = (E, B, p)$ is an orthogonal (n-1)-sphere bundle, let

$$\Sigma(\alpha) = (\Sigma(E), B, \Sigma(p))$$

denote its fibrewise suspension, and let Δ_0 (respectively, Δ_1) denote the cross-section that sends b ϵ B to the north (respectively, south) pole of $\Sigma(p^{-1}(b))$. The Thom space of α is $B^{\alpha} = \Sigma(E)/\Delta_0(B)$, and we regard $B \subset B^{\alpha}$ by the inclusion Δ_1 .

Suppose h is a multiplicative cohomology theory. Recall that α is h-orientable if there exists an element $u \in \widetilde{h}^n(B^\alpha)$ such that if $i_b \colon S^n \to B^\alpha$ identifies S^n with $\Sigma(p^{-1}(b))$, then $i_b^*(u)$ is a basis for the h(pt.)-module $\widetilde{h}(S^n)$. If $\mathscr F$ is a ring spectrum (such as $\mathscr F$ or $\mathscr F^{(k)}$), we shall use the term $\mathscr F$ -orientable rather than h(; $\mathscr F$)-orientable.

LEMMA 2.1. A vector bundle α is k-orientable if and only if it is $\mathscr{G}^{(k)}$ -orientable.

Proof. The lemma is certainly true for k = 1. If k > 1, we may use the Thom isomorphism for singular cohomology to show that in the sequence

$$\widetilde{\mathbf{h}}^{\mathbf{n}}(\mathbf{B}^{\alpha};\,\mathscr{G}^{(\mathbf{k})}) \xrightarrow{\mathbf{i}^{*}} \widetilde{\mathbf{h}}^{\mathbf{n}}((\mathbf{B}^{\mathbf{k}})^{\alpha \mid \mathbf{B}^{\mathbf{k}}};\,\mathscr{G}^{(\mathbf{k})}) \stackrel{\lambda_{\#}^{(\mathbf{k})}}{\longleftarrow} \mathbf{h}^{\mathbf{n}}((\mathbf{B}^{\mathbf{k}})^{\alpha \mid \mathbf{B}^{\mathbf{k}}};\,\mathscr{G}),$$

both i* and $\lambda_{\#}^{(k)}$ are onto. Here i denotes the inclusion. Therefore α is $\mathscr{G}^{(k)}$ -orientable if and only if $\alpha \mid B^k$ is \mathscr{G} -orientable, and the latter holds if and only if $\alpha \mid B^k$ is stably fibre-homotopy trivial [1, Proposition (2.8)].

If $u \in \widetilde{h}^n(B^\alpha; \mathcal{G}^{(k)})$ is a Thom class for α , the associated Euler class is $\chi = \Delta_1^*(u) \in h^n(B; \mathcal{G}^{(k)})$.

LEMMA 2.2. Suppose α is k-orientable and B is q-coconnected $(q \le \min\{n+k, 2n-2\})$. Then α admits a cross-section if and only if $\chi = 0$.

Proof. Let $f: B \to BO$ be a classifying map for α , and let $\widetilde{\chi} \in h^n(B, f; \mathscr{G})$ be an Euler class for α , as constructed in [2]. By Theorem (13.23) of [2], α has a cross-section if and only if $\widetilde{\chi} = 0$. Since $q \le n + k$, the map

$$\lambda_{\#}^{(k)}$$
: $h^{n}(B, f; \mathscr{S}) \rightarrow h^{n}(B, f; \mathscr{S}^{(k)})$

is an isomorphism. Therefore $\widetilde{\chi}=0$ if and only if $\lambda_{\#}^{(k)}(\widetilde{\chi})=0$. Finally, by [2, Lemma (13.20)], $\lambda_{\#}^{(k)}(\widetilde{\chi})=0$ if and only if $\chi=0$.

Our proof of Theorem 1.1 is based on the following observation, which may be of independent interest.

THEOREM 2.3. Suppose α is k-orientable and B is q-coconnected $(q \le \min\{n+k, 2n-2\})$. Then α admits a cross-section if and only if B is contractible in B^{α} .

Proof. If $\delta: B \to E$ is a cross-section, define a homotopy

D:
$$B \times I \rightarrow \Sigma(E)$$

by D(b, t) = $[\delta(b), t]$ for b ϵ B and $0 \le t \le 1$. Then D, followed by the collapsing map $\Sigma(E) \to B^{\alpha}$, is the desired contraction. On the other hand, if B is contractible in B^{α} , then Δ_1 is null-homotopic; hence $\chi = \Delta_1^*(u) = 0$. By Lemma 2.2, α has a cross-section.

3. PROOF OF THEOREM 1.1

Let g: $M \to N \times R$ be an embedding homotopic to i_0 f, and let ν (g) denote the normal bundle. We have the homotopy commutative diagram

where θ is the Pontryagin-Thom map. By moving $N \times \{0\}$ up to a level $N \times \{t\}$, so that θ maps $N \times \{t\}$ to a point, we see that θ io f, and hence Δ_1 , is homotopic to a constant. By Theorem 2.3, $\nu(g)$ has a cross-section; therefore $f^*(\tau(N)) - (\tau(M))$ has geometric dimension not exceeding m - k. By Hirsch's theorem [5], f is homotopic to an immersion.

Added March 9, 1970. It has come to my attention that D. Handel, in his paper On the normal bundle of an embedding (Topology 6 (1967), 65-68), has also proved Corollary 1.2 and has given other applications of this result.

REFERENCES

- 1. M. F. Atiyah, Thom complexes. Proc. London Math. Soc. (3) 11 (1961), 291-310.
- 2. J. C. Becker, Extensions of cohomology theories (to appear).
- 3. A. Haefliger, *Plongements différentiables dans le domaine stable*. Comment. Math. Helv. 37 (1962/63), 155-176.
- 4. A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings. Topology 2 (1963), 129-135.
- 5. M. W. Hirsch, *Immersions of manifolds*. Trans. Amer. Math. Soc. 93 (1959), 242-276.
- 6. ——, Embeddings and compressions of polyhedra and smooth manifolds. Topology 4 (1966), 361-369.
- 7. M. Mahowald, On obstruction theory in orientable fiber bundles. Trans. Amer. Math. Soc. 110 (1964), 315-349.
- 8. E. Thomas, Postnikov invariants and higher order cohomology operations. Ann. of Math. (2) 85 (1967), 184-217.
- 9. J. Van Eps, Sectioning bundles of high filtration and immersions (to appear).

University of Massachusetts Amherst, Massachusetts 01002