IMMERSIONS OF k-ORIENTABLE MANIFOLDS
James C. Becker

1. INTRODUCTION

Let M™ denote a smooth, closed, connected m-manifold. According to the
classical theorems of Whitney, M™ embeds in R2M and (if m > 1) immerses in
R%m-1  There are, however, many examples to show that the existence of an em-
bedding M™ c RZM-k+l (9 <k < m - 1) does not imply the existence of an immer-
sion M™ C R2m-K  In particular, complex projective space CPp, (m = 2%) embeds
in R¥™-1 [3] put does not immerse in R4¥™-2 [7]. In this note, we show that with

additional restrictions, an embedding M™ c R2™-K*1 jl] produce an immersion
M™ C RZm-k .

If o is a vector bundle over a CW-complex B, denote its stable equivalence
class by (o). We say that (@) is k-orientable if the restriction of « to the k-
skeleton of B is stably fibre-homotopy trivial. A manifold M™ (hereafter assumed
to be smooth and connected) is k-orientable if its tangent bundle 7(M™) is k-
orientable. A map f: M™ — N between manifolds is k-orienlation-presevving if
£*(7(N")) - (7(M™)) is k-orientable. Let ig: N®—N" X R denote the inclusion
y — (y, 0) (y € N®). Our main result is the following.

THEOREM 1.1. Suppose 2k < m - 1. Let M™ be closed, and let
f, Mm — sz—k

be k-ovientation-presevving. If the composition igf: M — N2m-k

to an embedding, then f is homotopic to an immersion.

X R is homolopic

Some interesting corollaries follow.

COROLLARY 1.2. Suppose 2k < m - 1. Let M™ be closed and k- orientable. If
M™ c R2m-ktl gpen M C REMK

COROLLARY 1.3. Suppose 2k < m - 1. Let f: M™ — N2™-k pe given, where
M™ is closed and N2™-k js k-connected. Suppose either

(a) M™ is k-connected ov
(b) M™ is (k - 1)-connected and f is k-orientation-preserving.
Then £ is homotopic to an immersion.

Proof. By A. Haefliger’s embedding theorem [3], igf: M™ — N°™-Kx R js
homotopic to an embedding. Now apply Theorem 1.1.

Note that, if M™ is (k - 1)-connected and k =3, 5, 6, or 7 (mod 8), the assump-
tion that f be k-orientation-preserving is superfluous. To verify this, let
v: M™ — BO be a classifying map for £*(7(N2m-K)) - (7(M™)). There is a single
obstruction to lifting v to the k-connected covering BO[k] of BO. This occurs in
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HX(M™; m(BO)) and, by the Bott periodicity theorem, 71 (BO) = 0 if
k=3,5,6, or 7 (mod 8).

COROLLARY 1.4. Suppose 2kg m - 1. Let M™ be closed, (k - 2)-connected,
and k-ovientable. Then M™ C R2™K if and only if WK+l = g,

Proof. The necessity is clear. A. Haefliger and M. Hirsch [4] have shown that
Mm ¢ R2m-ktl nroyided WK+l = 0, The corollary now follows from Corollary
1.2.

Note that, if M™ is (k - 2)-connected and k =6 or k =7 (mod 8), then M™ is
automatically k-orientable.

J. Van Eps [9] has also obtained Corollary 1.4, by different techniques.

The type of argument used in Corollary 1.4 can be carried further. Suppose that
M™ js k-orientable and r-connected (k < 2r +1 and Zkg m - 1). Let Mm denote

M™ minus the interior of a smooth disk. If MJ ¢ R*™ X then M™ C RZm ~ktl

[6]; now Corollary 1.2 implies that M™ ¢ R2m-k  That 1s, immersing M™ is equi-
valent to immersing M{)n . The latter problem is more amendable to obstruction
theory. In particular, using the work of E. Thomas [8], we can give cohomology con-
ditions, 1nv01v1ng secondary operations, for immersing a (k - 3)-connected manifold
M™ in Rzm‘ , for some values of m and k.

2. ORIENTABILITY

Let ¢ denote the sphere spectrum whose nth term is S™ (n > 0), and let & (k)
denote the spectrum whose nth space (S?)) is obtained by k1111ng wr(Sn) for all
integers r > n +k. We denote the natural map ¥ — &) by AK),| If o = (E, B, p)
is an orthogonal (n - 1)-sphere bundle, let

Z(a) = (Z(E), B, Z(p))

denote its fibrewise suspension, and let Ay (respectively, A;) denote the cross-
section that sends b € B to the north (respectively, south) pole of Z(p~1(b)). The
Thom space of a is B% = Z(E)/A((B), and we regard B C B% by the inclusion Aj.

Suppose h is a multiplicative cohomology theory. Recall that @ is h-orientable
if there exists an element u € h™(B%®) such that if i: S” — B? identifies S" with
Z(p-1(p)), then 1b(u) is a basis for the h(pt.)-module h(S®). If & is a ring spectrum
(such as & or (k) we shall use the term & -orientable rather than h( ; %)-
orientable.

LEMMA 2.1. A vector bundle « is k-orvientable if and only if it is .?(k)~
ovientable.

Proof. The lemma is certainly true for k=1, If k > 1, we may use the Thom
isomorphism for singular cohomology to show that in the sequence
(k) K
e, g®)) 15, fele B gy T pmgle |55 o)

both i* and Ai%k are onto. Here i denotes the inclusion. Therefore a is &K
orientable if and only if « | BK is & -orientable, and the latter holds if and only if
a | BX is stably fibre-homotopy trivial [1, Proposition (2.8)].
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If be m(BY; ¢ k)) is a Thom class for o, the associated Euler class is
x = AXu) € nn(B; 9),

LEMMA 2.2. Suppose o is k-orientable and B is q-coconnected
(q < min{n+Xk, 2n - 2}). Then a admits a cross-section if and only if x = 0.

Proof. Let f: B— BO be a elassifying map for o, and let ¥ € h™(B, {; &) be an
Euler class for «, as constructed in [2]. By Theorem (13.23) of [2], @ has a cross-
section if and only if X = 0. Since q < n +Xk, the map

AN hn(B, £ #) - n(B, £; 91)

is an isomorphism. Therefore X = 0 if and only if 7\#{ (X) = 0. Finally, by [2
Lemma (13.20)], A 5; (X) =0 if and only if x = 0.

Our proof of Theorem 1.1 is based on the following observation, which may be of
independent interest.

THEOREM 2.3. Suppose a is k-orientable and B is q-coconnected
(a <min{n+k, 2n - 2}). Then o admits a cross-section if and only if B is
contractible in BY,

Proof. If &: B— E is a cross-section, define a homotopy
D: BXI — Z(E)

by D(b, t) = [O(b) t] for b e B and 0 <t < 1. Then D, followed by the collapsing
map Z(E) — BY , is the desired contraction. On the other hand, if B is contractible
in B%, then A is null-homotopic; hence x = A (u) 0. By Lemma 2.2, @ has a
cross-section.

3. PROOF OF THEOREM 1.1

Let gt M — N X R be an embedding homotopic to iy f, and let v(g) denote the
normal bundle. We have the homotopy commutative diagram

NG /‘ff”k

where @ is the Pontryagin-Thom map. By moving NXx {0} up to a level N x {t},
so that 6 maps N X {t} to a point, we see that 0iy{, and hence A;, is homotopic to
a constant. By Theorem 2.3, v(g) has a cross-section; therefore f*(7(N)) - (7(M))
has geometric dimension not exceeding m - k. By Hirsch’s theorem [5], f is ho-
motopic to an immersion.

Added March 9, 1970. It has come to my attention that D. Handel, in his paper
On the normal bundle of an embedding (Topology 6 (1967), 65-68), has also proved
Corollary 1.2 and has given other applications of this result.
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