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It is well known that if the family of ideals of a commutative ring satisfies the
ascending chain condition (ACC), then every ideal has a finite primary representa-
tion [8]. This result has been generalized to various algebraic systems. In particu-
lar, the existence of primary representations was investigated in noncommutative
rings by H. Tominaga [6]; in noncommutative rings that satisfy the ACC by J. A.
Riley [5] and by W. E. Barnes and W. M. Cunnea [1]; and in lattices (with multiplica-
tion) that satisfy the ACC by M. Ward and R. P. Dilworth [7] and by R. P. Dilworth
[2]. As in the case of noncommutative rings (D. C. Murdoch {4]), the ACC is not
sufficient to guarantee the existence of primary representations in (commutative)
multiplicative lattices [7]. It is, however, included in each set of sufficient lattice
conditions given in [2] and [7]. In particular, Dilworth proved that if L is a modu-
lar, multiplicative lattice in which the ACC holds and in which each element is a
join of meet-principal elements, then every element in L has a normal decomposi-
tion.

In this paper, we consider conditions weaker than the ascending chain condition
in order to derive necessary and sufficient criteria for the existence of normal de-
compositions in multiplicative lattices. We do not use modularity, the existence of
meet-principal elements, the ascending chain condition, or the condition that irre-
ducible elements are primary. Since the lattice of ideals of a commutative ring (with
an identity) is a multiplicative lattice, our results also extend the normal decompo-
sition theory of Noetherian rings to a wider class of rings.

A commutative, multiplicative latlice is a complete lattice in which there is de-
fined a commutative, associative, and join-distributive multiplication for which the
greatest element, denoted by I, is the multiplicative identity. For basic properties
of such lattices, see [2].

Throughout this paper, L will denote a commutative, multiplicative lattice. We
say that L satisfies the successive residual condition if, for each element A in L,
chains of the form

A:Cp < A:(C)Cy) < < A:(C; C,p e C) < oo

are finite. This condition was used by W. Krull [3] to study minimal primes and as-
sociated primes of ideals. An element C (C #1I) is the vesidual component of A by
B (or simply a residual component of A) if there exists a positive integer n such
that

C=A:B"=A:B" = ..
We note that if A has a normal decomposition, then the residual components of A are

precisely the isolated components of A. If each element A in L has only a finite
number of distinct residual components, we say L satisfies the residual-component
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condition. We say that L satisfies the RRC condition if for each A in L, the ele-
ments of the form A:C, where C is a residual component of A, satisfy the ascend-
ing chain condition. The lattice L satisfies the radical condition if every element of
L contains a power of its radical. The BC condilion holds in L if the equality

(A:B)AAVB") = A

holds for all A, B in L, for sufficiently large n. We say that Q is primary for P
(or Q is P-primary) if P®* < Q < P for some n and if the relation AB < Q implies
that A <Q or B < P. An irredundant decomposition A =Q; N -+ N\ Q is a normal
decomposition of A if Q; is primary for, say, P; and the P; are distinct.

Together with the ascending chain condition, the BC condition plays a key role in
the construction of normal decompositions in [1]. In this paper, we adapt the methods
of [1] and prove that the following three statements are equivalent:

(A) Every element of L has a normal decomposition.

(B) L satisfies the residual-component condition, the BC condition, and the
radical condition.

(C) L satisfies the BC condition, the successive residual condition, and the RRC
condition.

H. Tominaga [6] gives a necessary and sufficient criterion (consisting of four
conditions) for the existence of normal decompositions for two-sided ideals in gen-
eral (noncommutative) rings. Although Tominaga’s viewpoint and methods are con-
siderably different from ours, his condition on residuals is directly related to our
conditions. We reformulate his condition on residuals in a commutative multiplica-
tive lattice L: For any elements D, E in L, the residual component of D by E
exists, and L satisfies the residual-component condition. In our case, the existence
of residual components follows from the BC condition. To see this, let D, E be
elements in L, and choose n such that D=D:E" A (DV EP). From this we con-
clude that

D:E” = D: E’» A (D VE"):E® = D: E?",
THEOREM 1. If each element of L has a normal decomposition, then
a) L satisfies the residual-component condition,
b) L satisfies the RRC condition,
c¢) L satisfies the successive residual condition, and
d) L satisfies the BC condition,
Proof. Let A be an element of L. Write

. . . k .
(where Q; is Pi—prlmary), and choose an integer k such that P; < Q; for all i.
For an element B, we have that

A:B" = /\{Qi:Bk| BLP;} = /\{Qi] BLP;}.
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Consequently, there are only finitely many residual components of A. The RRC
condition is an immediate consequence of this.

To establish the successive residual condition, let
A:Cl _<__ A:(Cl Cz) S e S A:(CICZ."Cm) S e

be a chain of successive residuals of A. Assume the indexing in the above normal
decomposition of A to be such that

Wi

IIci<w

j=1
(for some integer w;) if and only if i > h. For each i > h, choose w; to be the least
such integer. There exists an integer s such that, for each integer t (t > s), the

relation C; £ P; holds for all integers i (i <h). Let r be the maximum among s
and the w; (i > h). For an arbitrary integer q (q > r), let

q
B=1Ilc; anda D =BCyi,
=1

and observe that B < Q; and D < Q; for all i > h. This implies that

h h
A:B=/\(Qi:B) and A:Dz/\(Qi:D).
i=1 i=1

Now choose a positive integer i such that i <h. The equality Q;: Cq+1 = Q; holds,
since Q; is Pj-primary and Cgy) « P;. Consequently, the relations

Q;:B = (Qi:Cq+1):B =Q;:D

imply that A: B = A:D. Therefore, the successive residual condition is satisfied.
The BC condition is established essentially as in [1].

An element P is said to be a maximal prime of A if P is maximal in the set of
elements B for which A:B # A. We note that if P is a maximal prime of A, then
the relations

A:P=A:(AVP) and A:(PVXY) < A:(PVX)PVY)) =(A:(PVX):(PVY)

imply that A < P and that P is prime.

The following lemma provides sufficient conditions for the existence of maximal
primes.

LEMMA 1. If L. satisfies the BC condition, the vesidual-component condition,
and the radical condition, or if L salisfies the successive residual condition and the
RCC condition, then for each element A in L (A #1), there exists a maximal prime
of A.

Proof. Assume L satisfies the BC condition, the residual-component condition,
and the radical condition. First, observe that the residual component of D by C
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exists (for all D, C € L), by the BC condition. For an element A in L (A #1), let
P=Rad(A:(A: Bk)) where A: BK is a minimal residual component of A. Choose m
so that P™< A:(A:BK). The relations

A:Bf #+A and A:BX < A:(A:(A:BX) < A:p?™

imply that A: P # A. To see that P is a maximal prime of A, assume P <R and
A:R #A. Since BX < A:(A:BX), we have B < P <R, so that

A:R™ < A:P" < A:B” = A:BX

for all n. Hence, if A:RS is the residual component of A by R, then A:RS = A: BK
by the m1n1ma11ty of A:BX. Therefore, RS <A:(A:R%) <A: (A BX) and R < P.

Now, assume that L satisfies the successive residual condition and the RCC
cond1t10n For an element A m L (A #1), we define B to be a maximal element of
the form A:(A: sk ) where A:SK is a residual component of A. By the successive
residual condition, there exists a residual component Q = B: T™ of B such that Q
has no proper residual components. Let P = Q:C denote a maximal successive
residual of Q (P#1I), and let Q: P™ be the residual component of Q by P. By our
choice of Q, the residual component Q: P" is either Q or I. But the relation
Q: P" = Q implies that

P=Q:C=(Q:P"):C=(Q:C):P*=1.

Since P # 1, it follows that Q: P™ = I; hence P” < Q. Since the relation A: P=A
implies that

Q=A:D=(A:P"):D =(A:D):P" =Q:P" =1,

where D = (A: S®YT™ we conclude that A: P # A. Finally, to see that P is a maxi-
mal prime of A, assume that P<R and A:R # A. Since sk < A:(A: Sk) <P and P
is prime, we have S<P<R;hence A: (A:S™)<A:(A:R™) #I (m > k) where
A:R™ is a residual component of A by R. By maximality of A:(A: SK), we con-
clude that RM < A: (A:R™)=A:(A:S™) < P. Therefore R =P, and P is a maxi-
mal prime of A.

LEMMA 2. Let L satisfy the BC condition, and let A be an avbitvary element
in L (A #1). If L satisfies the rvesidual-component condition and the vadical condi-
tion, or if L satisfies the successive vesidual condition and the RCC condition, then
for each maximal prime P of A, there exists a P-primary element Q such that
A=(A:PRK)AQ, forall k> 0.

Proof. Assume that L satisfies the residual-component condition and the radi-
cal condition. Let P be a maximal prime of A, and choose n such that
A= (A:P") A(AV P?) and such that A: P is a residual component of A by P.
By the residual-component condition, there exists a residual component
Q =(AV P): Et of AV P" that is maximal with respect to the property
A=(A:P2) AQ (since AV P" is a residual component of itself). Hence
A= (A:PX) AQ for all k.

To show that Q is the desired P-primary element, we prove first that P is a
maximal prime of Q. Since P is a maximal prime of A and A:P" is a residual
component of A by P, we have that

A#A:P=(A:PY)A(Q:P);



NORMAL DECOMPOSITIONS 147

hence Q: P #Q. Let R be an arbitrary element such that R 3 P, and let Q: R™ be
a residual component of Q by R (hence Q: R™ is a residual component of A V P"
by R). The relation R %. P implies that A:R = A; hence

= (A:PHYA(A:R™) = (A:POA[(A: PY)YAQ):R™] = (A: PY) A(Q:R™).

Consequently, Q = Q:R. Hence P is a maximal prime of Q.

To see that Q is P-primary, first observe that P® < Q. Hence P is the radical
of Q, and P is the unique maximal prime of Q. Finally, if BC < Q and C £ P, then
B < Q:C =Q. Otherwise, we have Q:(Q:C%) #I, where Q:CT is a residual com-
ponent of Q by C. By the procedure outlined in the proof of Lemma 1, we can find a
maximal prime P' of Q such that P'> Q: (Q: CT¥). Since P is the unique maximal
prime of Q, we conclude that P = P' and hence that C < P. Therefore, Q is P-
primary.

A similar argument yields the result that if L. satisfies the successive residual
condition and the RCC condition, then for each maximal prime P of A, there exists
a P-primary element @ such that A=(A: PK)A Q for all k > 0.

THEOREM 2. The following statements are equivalent:
(A) Every element of L. has a novmal decomposition,

(B) L satisfies the residual-component condition, the BC condition, and the
radical condition.

(C) L satisfies the BC condition, the successive vesidual condition, and the
RRC condition.

Proof. In view of Theorem 1, we need only to prove that (B) implies (A) and (C)
implies (A).
First we prove that (B) implies (A). Let A be an element of L different from

I, let P; be a maximal prime of A; (Lemma 1), and let Q| be a Pj-primary ele-
ment such that A; = (A;: P})AQp, for all n (Lemma 2). Choose n; such that

nj

nj nl
P, <@ and A =(A1:P1 ) A(AV Py ).
In general, if Ag, Qg, and ng are defined such that

n n n n
= (A;:POANQ, = (At PS)AAV PSS and P < Q,

we set A, | = A 'Pns and choose Pg.;, Qg41, and ngyy for A gy, as Py, Qy,
and n; were chosen for A;. Observe that whenever i <j, we have either A; =1
or both A; & Aj; and P; i £ P;. Since the elements A; form a chain of residual com-
ponents of Ay, we conclude that there exists a least integer m + 1 such that

A,.+1 = L. Therefore,

m
Ay = AN Q;
i=1

is a primary representation of A; in which all the primary components belong to
distinct radicals (since i < j implies b, £ P ) Finally, to show that this primary
representation is irredundant, suppose Q1 is redundant Then the identities
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Ti-1 R Bi-1
A=\ Qj and A; =A; 1:P;l] = Ap:P Py Py
j#i

imply that A; = /\j >i Qj. Consequently,

A;:P; = /\ (Qj:Pi) = Aj.
j>i

This contradiction completes the proof that (B) implies (A).

A similar argument shows that (C) implies (A).

Another property that has been studied in connection with primary decomposi-
tion is the Artin-Rees condition [5], [7]. A lattice L satisfies the Artin-Rees con-
dition if for all A, B € L, the relation A A B™ < AB holds for some integer m.
This simpler condition is equivalent to the BC condition if L is a modular lattice.
Therefore, if L is modular, we can replace the BC condition by the Artin-Rees
condition in Theorem 2.
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