THE K-NULLITY SPACES OF THE CURVATURE OPERATOR
Yeaton H. Clifton and Robert Maltz

1. INTRODUCTION

For any real constant K, set K,(z) = Ry(z) - K{ (x, z> y - <y, z)x}, where
R denotes the curvature tensor, s denotes the Riemannian inner product, and
X, ¥, z belong to the tangent space M,, of the Riemannian manifold M, at the point
m. Let Ng(m)= {x € Mp,| Ky, =0 for all y € M,,}. We call Ng(m) the K-nullity
fpizce at m, and we call pyg(m)=dim Ng(m) the index of K-nullity at m (T. Otsuki
6]).

Ngk(m) and pg(m) generalize the concepts of the nullity space No(m) and of the
index of nullity po{m), which constitute the case K = 0. S. S. Chern and N. H.
Kuiper [2] showed that N defines an involutive distribution, and that if ¢ is con-
stant in a neighborhood, then the leaves of the resulting foliation are locally flat in
the induced metric. R. Maltz [5] showed the following.

(i) The leaves are actually totally geodesic submanifolds of M (this implies
they are locally flat).

(ii) If G denotes the open set on which pg takes its minimum value mg (as-
sumed to be positive), and if M is complete, then the leaves of the nullity foliation of
G are also complete.

(iii) The nullity distribution Ny has no isolated singular points (a singular point
is a point at which the dimension pg is not locally constant).

(iv) The boundary of G is the union of geodesics tangent to Ny .

Both involution of the distribution and property (i) are local, essentially alge-
braic results; since Ky, satisfies precisely the same algebraic conditions as Ry
(Otsuki [6]), it is obvious that Nk is involutive and has property (i) for all K (A.
Gray [3]). It follows, of course, that the leaves of the foliation (for locally constant
L) have constant curvature K.

Properties (ii), (iii), and (iv), on the other hand, are global results. It is the pur-
pose of this paper to establish them for arbitrary K. The essential idea is contained
in the following result.

THEOREM (*). Let M be a complete Riemannian manifold. Suppose G is an
open subset of M on which the K-nullity index [y takes the constant value m. If L
is a leaf of the K-nullity foliation induced on G, and if v[0, ¢) is a geodesic segment
lying in L, then lim¢_,.- y(t) lies in L also.

Remarks. (1) px is easily seen to be upper-semicontinuous; therefore the set
G on which uyg attains its minimum value mg is open. If myk > 0, we actually ob-
tain a foliation of G.

(2) It is easy to verify, by a simple generalization of Schur’s Theorem, that no
further generality can be obtained by allowing K to vary from point to point, except
in the case where ux = 1.
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(8) If ux(m) #0 for some m and K, then pyii(m) =0 for all K' (K #K'); for if
X € Ng(m) and y € Nk:(m) are orthogonal unit vectors, then <ny(x), y> =K =K',
and therefore either Ny or Ny must be trivial.

(4) Manifolds for which gy > 0 is constant might be called quasi-constant-
curvature manifolds, since they constitute an obvious generalization of the constant-
curvature case. Examples are provided by (a) product spaces of locally flat mani-
folds by arbitrary manifolds for K = 0, (b) spaces of recurrent curvature, where
VR =R(X a for some 1-form o (the components of the curvature tensor with re-
spect to a parallel-frame field along a curve B are proportional to their initial
values (Y. C. Wong [7], S. Kobayashi and K. Nomizu [4, p. 304]); therefore, if
p = B(0) and q = B(1), it is easy to see that pk(p) = uk(q); hence pyx is constant on
connected components). One verifies easily that Riemannian homogeneous spaces,
symmetric spaces, and Lie groups have constant py.

If pk is constant, then property (ii) is obvious, and (iii) and (iv) follow immedi-
ately.

2. GLOBAL PROPERTIES OF THE INTEGRAL MANIFOLDS

In the following, the symbol & denotes cyclic summation.

LEMMA. If [X, Y] =[X, 2] =[Y, Z] for vector fields X, Y, Z on M, then
@X,Y,ZVX(RYZ) = 0. Also @X,Y,ZVX(KYZ) = (0.

Proof of the lemma. Bianchi’s identity reads ©x vy z(VxR)yz = 0. Expand
Vx(Ryz) = (VxR)yz +Ryy v,z + Ry,v, 7,

sum cyclically on X, Y, Z, and cancel, using the symmetry conditions on V. Then
replace R by K everywhere.

Proof of Theovem (*). First, let p = ¢(0) and p = Y(c), where ¥ is the extension
of v in M; and let i, j, k (1 <i, j, k < m) be nullity indices, a, B, v
(m +1 < a, B, y <d) nonnullity indices, and I, J, K (1 <1, J, K < d) unrestricted
indices.

Now we note that if £ = (x1, -+ x9 is a coordinate system in a neighborhood U
of B, with 8/8x! = along y and with 3/x! nullity vector fields on U 0 G, then, by
the lemma, @Va/axl(Ka/axa a/axﬁ) = 0.

It follows that Va /axl(Ka Ja /axﬁ) = 0, since the second and third terms in the

cyclic sum vanish identically in U N G, by nullity of 2/ ox! . But this means that
Ka/axa 3 /ascP is parallel along ¥ in UN G. Now let E= (E;, ---, E_, -, Eg) be

a parallel-frame field along ¥: [0, ©) — M, the extension in M of y to [0, «) guar-
anteed by completeness. If E;(0) € Nx(y(0)) and E,(0) € Ni(y(o)), then it follows
from the total geodesity of L. that E is adapted to Nx in G, in other words, that
E; € Nk and Ey € Né for all t. If E¢(D) is a nullity vector for some I, then
KB/BXO‘ a/axB(EI) is a parallel-vector field along % | U N G vanishing at #(c), and

therefore it must vanish identically by our assumptionon ¥ | U N G. Hence E; € N
on ¥ | UN G. This proves that p cannot increase at .
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We now establish the existence of a coordinate system £ as above, starting with
a Frobenius coordinate system 7 = (y!, -:-, y9) on a neighborhood V of »(0) = p.
We can further assume that 7 (p) = (0, ---, 0), the origin in R4, and that

(’o‘/ayl)p = ¢'(0), (i?/é)yo‘)p € Nik(p), 9/dyle Ny on V.

(If » can be extended to a neighborhood of P, we can complete the proof as above;
but in general this is impossible.)

Now let = be a slice of V determined by yi =0, and let

E = (El’ . Em’ oo Ed)

be a C%, orthonormal-frame field on Z, adapted to the nullity distribution
(E; € Ng), and such that E(p) = ¢'(0) (we can assume 7y has unit speed).
n, = (y*tl ... y9) defines a coordinate system on Z; set 72(Z) = W C
Now define F: R™ X W — M by

Rd-m

F(x!, -+, x™, 5,(s)) = expg (%),
where s € £ and %k = 22 x! E;(s). Since M is complete, F is defined for all values
in R™,

Identify R™ X W with a subset U of RY, and let ul, ---, ud be the natural Eu-
clidean coordinate functions on U. Fixing ul=0 forall I (I #1, I # ) and restrict-
ing F to the plane so defined in U, we obtain an induced mapping Fgy: RZ — M, which
is a rectangle in the sense of R. L. Bishop and R. J. Crittenden [1, p. 147]. Further-
more, the longitudinal curves of Fy are the geodesics expgs(tE;(s)), where s is a
point in the slice Z,5 of Z defined by uP =0 for B #a. It follows that the vector
field X, associated to F, is a Jacobi vector field satisfying the Jacobi equation
Xy = RXa .7.(77') along the geodesic ¥ = expy(t E1(p)), in particular. But

Ry 5:) = K{{Xa, ') 7' - {7, ') Xa}

along y, since y' € Nyi. By Gauss’s Lemma <on , 7‘7') = 0, since all longitudinal
curves have unit speed, and <X2, A > (0) = 0 (since

Xy (0) = dF,(3/0u®)g5 = (0/0y%)(p),

and the last member is assumed to be orthogonal to Ny(p)). Therefore X; = KX, .
We have three cases:

K < 0 and Xg(t) = sinh(V-Kt)A, + cosh(V-Kt)Bg,
K = 0 and Xa(t) = Aa +tBa,
K > 0 and Xy(t) = sin(VKt)Ay +cos(VKt)B, .

(Here Ay and B, denote parallel vector fields along v.)

In each case, we see that Xy is well defined, continuous, and bounded on
P([0, c]). (We are setting Xy (t) = Xq(y(t)), of course.)

For K <0, we show that F must be regular everywhere on %([0, c]).
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Let Xé(t) be the projection of X, (t) onto the orthogonal complement NI-L{('V(t)) of
. s L P
Ny (y(t)), for 0 <t <c. Define X3(c) = 11mt_)c_ X5 (t). By continuity of Ny, we
have X, - Xg € Ng on %([0, c]).
We now show that the Xéz remain linearly independent on $([0, c]). First of all,
the Xé are linearly independent at p, since X, (0) = dF(a/ Buo‘)p = (3/0y% )p are as-
sumed to be in Ni(p). Hence X5(0) = (a/aya)p. Now suppose there is some linear

combination X = 2J ¢% Xg such that X(ty) = 27 ¥ X5 (tg) = 0 for some ty < c.
Noting that

[Xa, Xg] = dF([a/au®, 3/0uP]) = 0,
[v', Xq] = dF([a/3ul, 3/0u¥]) = 0, and [y', Xg] = 0,

we can apply the lemma again to find that 6v7'(KXa XB) = V.},.(Kxa Xﬁ) =0 along 7.
Since K vanishes on the nullity components of X, we have Kxd Xg = Kxo Xg on
([0, c]). Hence it follows from V.},|(KXa XB) = 0 that the components of KxL Xg

with respect to a parallel Nyi-adapted frame field E(t) along y are constants, and
the same is true of the components of KXXB . But KXXB =0 at ty, since X(ty) = 0.

Hence KXXE = 0 everywhere on y. In particular, this must be true at p and for all
B> m+ 1. But the Xg span NJK at p, so that KXXB =0 implies X(0) € Ng(p). On
the other hand, X(0) = 27 e Xé(o) € Nﬁ(p), which is possible only if c% = 0 for all
@. Therefore the X} must remain linearly independent on ([0, c]).

Now define the map F; by F;(xl, ---, xm) = F(xl, «--, xm 0, ---, 0). Then F,;
defines a regular mapping onto L. for K < 0, because

Fl(xl, e x™) = exp,, (E xiEi(p)> € L,

and dexpp is an isometry for K = 0 and is norm-increasing for K < 0. If follows
immediately that F; is regular on the boundary of L as well, in particular at p.
Hence the vectors dF(3/2u!) = dF;(3/9ul) are linearly independent at p. Further-
more, dF(3/dul) ¢ Nx on L; hence dF(a/aui)ﬁ € Ni(P), by continuity.

Now we can see that F must be regular on ([0, c]). First, let Nx(t) be the m-
plane at y(t) obtained by parallel translation of Ni(0) along y (Ng(t) = Nk(t) for
0 <t<c). Thenthe dF(3/9ul) are linearly independent on $([0, c]), and they span
N(t) (0 <t <c). Furthermore, the dF(3/9u®) = X, are linearly independent, and
the X% span N*(t) (0 <t < c). Hence the rank of dF is exactly d everywhere on
y([o, c]).

In particular, F is regular at p = y(c); therefore F-1 defines a coordinate Sys-
tem & = (x!, .-+, x9) on a neighborhood U of F. Also, 3/dxi € Ng on UN G, and

9/0ox1 = %' along ¥. Hence, £ is the required coordinate system, and the proof fol-
lows as in the first paragraph.

For K > 0, the map F;(x1, ---, x™) = expyp (E xiEi(p)) has critical points on
the sphere of radius 7/VK; but F is still regular on ([0, t)), for t < 7/VK.
Therefore, if ¢ < 7/VK, then F-1 provides the required coordinate system. On the
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other hand, if ¢ > 7/VK, set 5(t) = $(t - ¢ +7/2VK), and redefine F, using 3 in-
stead of ¥ and p' = y(c - 7/2VK) instead of p. This completes the proof.

Property (ii) of Section 1 follows immediately from this lemma. The proofs of

properties (iii) and (iv) follow exactly as in [5], and we refer the reader to that paper
for the details.

REFERENCES

1. R. L. Bishop and R. J. Crittenden, Geomeiry of manifolds. Academic Press,

New York, 1964.

. S. S. Chern and N. H. Kuiper, Some theovems on the isometvic imbedding of
compact Riemannian manifolds in euclidean space. Ann. of Math. (2) 56 (1952),
422-430.

. A. Gray, Spaces of constancy of curvatuve opervators. Proc. Amer. Math. Soc. 17
(1966), 897-902.

. S. Kobayashi and K. Nomizu, Foundations of diffevential geometry. Interscience
Publishers, New York, 1963.

. R. Maltz, The nullity spaces of the curvature opevator. Topologie et Géométrie
Différentielle, Vol. 8, 20 pp. Centre Nat. Recherche Sci., Paris, 1966.

. T. f)tsuki, Isometric imbedding of Riemann manifolds in a Riemann manifold.
J. Math. Soc. Japan 6 (1954), 221-234,

. Y.-C. Wong, Recurvent tensors on a lineavly connected differentiable manifold.
Trans. Amer. Math. Soc. 99 (1961), 325-341.

University of California

Los Angeles, California 90024

and
University of California
Irvine, California 92664






