A NONSTANDARD APPROACH TO LINEAR FUNCTIONS
Lawrence D. Kugler

It is a well-known result, due to Cauchy, that all of the continuous solutions of
the functional equation

(1) f(x+y) = f(x) +1(y),

where f is required to be a real-valued function of a real variable, are given by
f(x) = mx. In 1905, Hamel discovered discontinuous solutions of (1). His construc-
tion depended on the existence of a basis for the vector space R of real numbers
over the rational field [2]. Further papers on the subject have dealt mainly with the
problem of finding conditions on an additive function that guarantee its continuity.
For example, one such condition, due to G. Darboux, is that the function be bounded
on some interval [1, p. 109]. A nonstandard discussion of this condition may be
found in [4, pp. 80-83].

The dichotomy between the continuous and discontinuous solutions of (1) is strik-
ing, especially in view of the simplicity of the equation. In the present paper, we use
the methods of nonstandard analysis to investigate the question whether all solutions
of (1) can be described in terms of linear functions of the form mx, where m may be
either infinite or finite.

The problem of finding solutions to (1) is closely related to the problem of finding
all the characters of an additive subgroup S of R, that is, all the complex-valued
functions X on S suchthat |x(x)| =1 for all x € S and

(2) x&x+y) = x(x) x(y)

for all x, y € S.

The solutions of this character problem are of two kinds, continuous and discon-
tinuous, all of the former having the form x(x) = el™* (m € R). The following ver-
sion of Kronecker’s approximation theorem (see [3, p. 431]) gives important infor-
mation about the discontinuous solutions of (2).

THEOREM. If S is a subgroup of R and X is a chavacter of S, then for every
€ > 0 and every finite subset {xl , xn} of S, theve exists a continuous chavac-
ter xo(x) = elmx such that

IX(XJ) - XO(XJ)I <e (] = 1’ 27 "ty n)-

It follows from the approximation theorem that for each character x of a sub-
group S of R, the relation T(x, €, m) defined by the inequality |x(x) - elmx| <e
is concurrent in the sense of A. Robinson [5, p. 31]. Hence there exists an element
m of an enlargement *R of R such that x(x) ~ el™X for all x € S. Thus every
chara;cter x of S, continuous or not, is of the form x(x) = O(ei™*) for some
m € *R.
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To deal with additive functions, we need another form of the approximation
theorem.

THEOREM. Suppose f is a real-valued function on a subgrvoup S of R such that
(3) f(x+y) = £f(x)+1(y) (mod N)

Jor some positive number N. Then, for each & > 0 and every finite subset
{x1, X2, **, Xn} Of S, there exists a number m such that

lf(xj) - mxj| <g (modN) (=1, ---, n),

in other words, such that !f(xj) - mxj] is always within € of some integral multiple
of N.

Proof. Each character on S is of the form X (x) = exp (2mif(x)/ N), where f
satisfies (3). By the character approximation theorem, there exists for each 6 > 0 a
number m such that |X(Xj) - exp (21rimxj/ N)I <& (j=1, ---, n). Since the logarith-
mic function is continuous, it follows that to each ¢ > 0 there corresponds a number
m such that

|27£(x;)/ N - 2rmxj/ N| < 27e/N (mod 21) (=1, -+, n),

in other words, such that lf(xj) - mx;| <& (mod N) (j =1, -+, n).

For infinite values of m, the linear function mx is clearly infinite for all non-
zero standard x. Thus, to obtain a standard additive function, we must reduce the
values of the function mx to finite values. Let K be the additive subgroup of *R
generated by the set of infinite powers of 2; that is, let

K = {z2N| z and N integers, N > 0 and infinite} .

If K, is the (additive) subgroup of *R generated by 2" (n a standard positive inte-
ger), then K can also be written K = nKn m=1,2, ).

THEOREM. For m € *R, let S denote the subgroup of R consisting of all x
such that mx is finite modulo X, in other words, such that mx is congruent to some
finite number z(x) modulo K. Define a function £ on S by £(x) = 0(z(x)). Then £ is
additive on S. Conversely, if £ is additive on a subgroup S of R, then there exists a
number m_in *R such that for each x € S, mx is finite modulo K and
f(x) £ mx (mod K). (a =b (mod K) means that the distance between a - b and some
element of K is infinitesimal.)

Proof. Suppose m € *R. If x, y € R have the property that mx and my are
finite modulo K, then certainly m(x + y) = mx + my has the same property. Now, by
definition of {,

f(x)+1(y) S mx+my = m(x+y) = f(x+y) moduloK.

Since the values of f are standard and no two standard numbers can be congruent
modulo K without being equal, f(x) + £(y) = f(x + y).

Now suppose f is an additive function on a subgroup S of R. Then certainly

fx+y) = f(x) + f(y) (mod 2")
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for every positive integer n. By the second approximation theorem, for any € > 0,
for positive integers nj, -+, ny,, and for numbers x), .-, Xk € S, there exists some
m € R such that

|f(XJ) - mXJl <& (mOd 21) (] = 1’ "ty k; i=n1} Tt n})’

for we can take N to be the largest of the numbers 2l (i= ny, -, np). The relation
T,(e, X, n, m) defined by the inequality If(x) - mx| < & (mod 2") is therefore con-
current; hence, there exists an m in *R such that, for every x € S and every finite
positive integer i,

£(x) £ mx (mod 2!).

This conclusion implies that f(x) = mx (mod K), and the proof is complete.

Since the elements of K are fairly numerous, in the sense that each interval of
infinite length in *R contains infinitely many elements of K, it is natural to ask
whether, for each infinite m € *R, mx is necessarily finite modulo K for every
x € R. The following theorem answers this question in the negative.

THEOREM. Theve exists a point y € *R such that the distance from y to each
element of K is infinile.

Proof. Consider the sequence of numbers defined inductively by the conditions

yi=1, ynt1 =27 -yn. If ”x"n denotes the distance from x to the nearest integral
multiple of 2™, then a straightforward induction argument shows that

"yn”i =Yi (i = 1: 27 Ty Il)

for each n. Hence the relation T3(n, y) defined by the statement ||y|, = y, is con-
current; therefore there exists a y € *R such that ||y||, = yn for every standard

positive integer n. Now suppose y is within a finite distance, say 2k , of some ele-
ment of K. This element is evidently a multiple of 2ktj for each standard j, and
since the sequence {yi} (i=1, 2, ---) increases without bound, eventually we would
have the contradictory inequalities

”Y”k+j <2F< Victj -

Thus y is infinitely distant from each element of K.

The following problem remains open: to characterize the group of elements
m € *R such that mx is finite modulo K for all x € R.
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