A CHARACTERISTIC PROPERTY OF THE EUCLIDEAN PLANE
H. Wu

1. The euclidean plane IR? has the property that for each family of circles, the
length of each circle is a linear function of the radius. It is less obvious that this
linear-growth condition is satisfied by all curves in the plane, in the following
sense: Let vy be a C®*-curve of finite length and without self-intersection. For each
p € y, let 0, be a line segment lying on a chosen side of v, and perpendicular to y.
The points on o(p) (p € v) whose distance from y is s form a curve yg, which is
also of class C* for all sufficiently small s. Let £(y.) denote the length of yg.
Then {(y ) - £(y) is a linear function of s (see Section 3).

This suggests a natural problem concerning Riemannian manifolds of arbitrary
dimension. Let M be a Riemannian manifold, and let M be a compact, orientable
submanifold of codimension one (possibly with boundary). In short, let M be a com-
pact hypersurface in M. For sufficiently small s, let Mg be the set of points lying
on geodesics normal to M (and on a fixed side of M) at distance s from M. Let 4
denote the area (or volume) function, and consider the real-valued function
#(s) = A (M) - A (M). How does ¢ grow as a function of s?

In general, ¢ is quite arbitrary. Thus if M = RYand M is a sphere, then
¢(s) = csd-1 where c is some constant. On the other hand, if M = S9 (the d-
dimensional sphere) and M is the great sphere in S9, then the growth of ¢ is domi-
nated by a linear function (see the proposition of Section 2). My problem is to deter-
mine all Riemannian manifolds M for which ¢ is a linear function for every com-
pact (orientable) hypersurface M. A Riemannian manifold M with this property is
said to have the linear-growth property. The solution of the problem is exceedingly
simple:

THEOREM. A Riemannian manifold has the linear-growth property if and only if
it is locally the euclidean plane.

The referee has kindly brought my attention to the fact that what I called Mg in
the second paragraph above is usually referred to in the classical literature as a
“parallel-body.” The behavior of the growth of the volume of Mg when the ambient
space M is the euclidean space was first considered by J. Steiner in 1840. For
further details, the reader is referred to H. Hadwiger [3, p. 213]. The paper [4] by
H. Weyl is also relevant here.

2. The proof of our theorem depends on the computation of the second variation
of area. Since the situation is different from the standard one in the theory of mini-
mal surfaces, we shall give complete details.

We deal separately with two cases. In the first case, dim M =2. Here M is a
finite C®-curve, and it is evidently the diffeomorphic image of either [0, 1] or
[0, 1). (We usually do not distinguish between the map of a submanifold and its
image.) For each m € M, let o,, denote a geodesic lying on one side of M,
emanating at m, and normal to M at m. For convenience, we shall require further
that o, : [0, 1] = M is such that ¢,,(0) =m and |o},(0)| =1, where o, denotes
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the tangent vector and || | the Riemannian norm. Then Mg = {0 ,(s): m € M} for
sufficiently small s, and each Mg is a C*-curve. Using the exponential map of the
normal bundle of M in M, one obtains an injective, nonsingular C®-map

f: [0, €] X [0, 1] = M from the rectangle in the ST-plane such that for a fixed s,

M = {f(s, t): t € [0, 1]}, and for a fixed t, 0,{s) = (s, t), where m = £(0, t). We

shall use (s, t) as local coordinates. Let S —ai T —:—t Evidently, if ¢ denotes
the length function and £(s) = ¢(M,), then

1
(1) o(s) = S |T| (s, t)at

0

Let us summarize our hypotheses and their immediate consequences:

(2) <T, S) =0 (< , > is the inner product).
(3) (s,8) =1
(4) DgS =0 (D is covariant differentiation).
(5) [, T] =0

The assertion (2) is a consequence of (3), the Gauss lemma, and the fact that
< T, S> | M = 0. The statement (4) follows because the s-curves are the geodesics

0, and (5) because S and T are coordinate vector fields. Evidently,

1
fz'(s)=50 s |T|) (s, t)dt. Now, by (5),

s|Tll =

S(T T = " (Drs,8).

2!I

1
Therefore £'(s) = S ( Flr_ﬂ_ {Drs,s )) (s, t)dt, and it follows immediately that

0
1
es) = § s~ (D:s, s)) (s, t)at.
§ 8 (g <59
Now
(" "<DTS S>) <DTS s)2 ”;”{<D5DTS,T>+<DTS, DrS)}.

If R denotes the curvature tensor (so that <RST S, T ) is a positive multiple of the
curvature), then

because of (4) and (5). Also, observe that DgT = D S+ [S, T] = Dy S because of (5).
Hence
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S (L (Drs, T))
IT|

-1 < 2

= = (RgrS T>+( —=(DgT, T) *).
I ’ IT] ||

We claim that the expression in the parentheses on the right vanishes. Let

D S = @S + BT; then (2), (3), and (4) imply that @ = (DS, S ) =é— T (S, S)=0.

Also,

(Drs, DrS) -

(DS, T)
oy " e <

B:

Thus, (D1 S, DS =82(T, T) =

1 2 . -
———|—2 <DST, T> , which proves our claim.
Therefore,

IT]
1
n — -1
2"(s) = 3; Tl (RgrS, T) (s, t)dt .

Let K denote the curvature function on the surface M; then

(RgrS, T) = (T, THK,

by virtue of (3). Consequently,
1

(6) (s = - § (IT[ K) (s, tat.
0

Now we consider the second case, where dim M > 3. Since dim M > 2, it makes
sense to speak of the curvature of the induced metric of M. As before, let 0,, de-
note a geodesic issuing from m € M, lying on one side of M, and such that if
0 [0, 1] — M, then

o =m, Jo@] =1, ') LM,

If s is sufficiently small, then My is the set of all am(s) as m varies over M.
Using the normal bundle exponential map, we obtain a nonsingular, injective C*-map
f: M x [0, e] M (¢ small) such that o ,(s) = f(m, s) for all m and for all

s € [0, £]. We denote by Q. the volume form of M, and by (s) the area (or vol-
ume) of Mg. Then

o (s) = SM Q.

To state the formula for ¢ "(s), we need further notation. Let # denote the
Ricci tensor of M (22: M,,, — M,,), and let h: (M), & (M;),,, — R denote the
second fundamental form of Mg (there is only one such form, because Mg is a
hypersurface). The form h admits an extension to
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(1) A M) )@ (M) AM,)_) — R,

which we also denote by h. Let dim M =d, and let {e;, *--, eq_; } be any ortho-

normal basis of (Mg),,. Then it is easy to see that Ei,j h(e; Nej, e; N e) isa
globally defined function on Mg, independent of the choice of {e;, -, eq_] .
Finally, let S denote the unit vector field defined in this neighborhood of M by the
tangent vectors o,,(s) for all m € M, s € [0, ].

PROPOSITION. " (s) = S (Ei,j h(e; Aej, e A e;) - { #(S), S) ) Qs .

MS

COROLLARY. Let rS denote the scalay curvature of Mg in the induced metric,

and let v™ denote the scalar curvature of M. Then

A" (s) = S (x5 - rH)Q

Mg

s *

We first prove the corollary. The Gauss-Codazzi equation states that
™M,
h(e; A ej, eiN ej) = Ks(ei, ej) - K ey, ej),

where K®(e;, e;) and KM(ei, e;j) denote the sectional curvature of the plane
Span {ei, ejr of Mg in the induced metric and in the metric of M. Then

27 he; A ej, ei/\ ej) - <<%(S), S>
i,j

- { D, o) - {Z Moy, 0+ Ziis e
i,] 1

i,]
By definition, these two expressions equal r® and rM, respectively.

Now we proceed to the proof of the proposition. In the neighborhood of a point

m € Mg, we can use the mapping f above to construct coordinates {tl , 0y tgo1, s}
so that (1) the s coordinate curves coincide with the geodesics 0, and (2) for all sg
close to s, the slice {s =sq} is exactly an open set of Mso and {t;, ---, tq_1, S0+

gives a local coordinate neighborhood of MSO when sg is held fixed. Of course,

S= i, and we denote 2 by T;. We summarize our assumptions thus far in the

0s ot;
four statements
(7) (T;,8) =0 fori=1,--,d-1,
(8) (s,8) =1,
(9) DgS =0,
(10) [s,T;] =0 fori=1,--,d-1.

Define g = <T1 N NTgq_1, Ty N\ ANTg ) ; then in this neighborhood



A CHARACTERISTIC PROPERTY OF THE EUCLIDEAN PLANE 145
(11) Qs = Vgdtg A - Adtg_; .

One sees via a partition of unity that «"(s) = S (sSvg)dt; A --- Adtg_;. Therefore

we only need to prove that
(SSvg)dt; A -+ Adtg_

- Ve (D e ney, e nep) (), 8) )ty A Adtgr.
i)

To do this, we need only prove the equality at m and for a special choice of
Ty, =, Tg.1 at m. We can certainly arrange things so that

(12) {T;, T;) (m) = &;.

Then g(m) = 1, and we are left with the task of proving that

1,]

Let DgT; = Z)j vi; T; +v;S. Because of (8) and (10),

Yi = <DsTi, S> = <DTiS’ S> =-%Ti (S, S) = 0.

Hence
(14) DgT; = 2 vij Tj.
j
Now
S\/E = _1_ Z} <T1 /\ e /\DSTl/\ soe /\Td_l, Tl/\ see /\Td_1>
Vg i
1
== (E'Vii) (TyAATq1, T)ANATq1) = Vg (EYii)

Vg ' i

Therefore SSVg=+vg ( 20 YiiVj; + 27 Sy ) . Thus
i,j i
(15) (SSVg)(m) = (Z> YiiVj5 T 2 S)’ﬁ) (m).
i i

On the other hand, h(T;, TJ-) = (DT_ S, TJ- ), in view of (7) and (8). Hence
1

h(T;, T;)h(T;, T;) - h(T;, T;)h(T;, T;)

(Dr,S, T;) (DTjS, T;) - (D1, S, Tj) (DTjs, T;) .

h(T; A T, T; A Ty)
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By (12) and (14), this gives the equation

Zih(T A T;, T; A T;)(m) = (123 Yiivjj " Yij?’ji) (m).

Next, if R denotes the curvature tensor of M, then by definition and (12),

(#(s), 8)(m)

2 (Rgr 8, T;) (m) = 2 {(-DgDy, +Dr, Dg+D[g 1,])S, T; Y (m)

i

- 27 (DgDy;8, T; ) (m),

because of (9) and (10). Using (10) and (14), we obtain the equation

<=%(S), S>(m) = - E <DSDST1, Ti>(m) = - E (S'yii+'yij7ji) (m).

Hence, (Ei,j h(T; AT;, T; ATy) - { &), s) ) (m) = ( 225,5 viivij + 201 Svii )(m),
which together with (15) proves (13) and thus establishes the proposition.

3. We can now prove the theorem. First of all, let dim M = 2. If
#(s) = £(s) - £(0) is linear for every such curve M, then £"(s) = 0 for every admis-
sible curve M (see the Introduction) and for all s € [0, €]. By (6), K =0, and there-
fore M is locally the euclidean plane. Of course, if M is locally the euclidean
plane, then K = 0 and (6) implies £"(s) = 0. Then ¢(s) = £(s) - £(0) = £'(0)s, and ¢
is linear.

It remains to prove that no Riemannian manifold with dimension exceeding 2 can
have the linear-growth property. As before, ¢(s) = A(s) - A#(0) is a linear function
of s if and only if #"(s) =0. By virtue of the proposition, «"(s) = 0 for every
orientable compact hypersurface if and only if

27 h(el/\eJ, e; N\ ej) - <.%"(S) S>
i,j

on every orientable, compact hypersurface M of M. We shall show that this is im-
possible. First pick any point m € M and construct a system of geodesic coordi-
nates around m; call it {x;, **+, Xq}. We can of course assume that
0
ax1
form {(xl, s+, Xq): X9 = 0}. Since My near m consists of geodesms through m,

o)
o%;’ ax (m) = 0 for all

> (m) = 613 Let My be a compact hypersurface which near m has the

its second fundamental form is zero at m. Hence h (

i, j # £. Therefore

d 0 0 0 ) _ o
h(axiAaxj’axiAan (m) =0 forallij+#¢.

Consequently, <5€’ ( aixg) , £z> (m) = 0. Since this is true for every £ and every
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m, M must have identically vanishing Ricci curvature. Consequently,

Zi,j h(e; Nej, e; Aej) =0 on every compact, orientable hypersurface M of M. If
we can find one such M with positive-definite second fundamental form, then clearly
h is also positive-definite on M, A M, for every m € M, and we shall arrive at a
contradiction. Therefore the following lemma concludes the proof.

LEMMA. Sufficiently small geodesic spheves all have a positive-definite second

Jundamental form; that is, if X, -+, Xq ave geodesic coordinates avound m and
Sg = Ei x% = 82} , then Sg has a positive-definite second fundamental form if €
is small.
Proof. Let g;; = < :d—i—, a—i— > in this geodesic-coordinate neighborhood. It is
i J
clear that
(16) gi;(0) = 0yj,
08ij ..
(17) —=(0) =0 foralli,ijk.
an

The unif radial vector field is
_a = __a = ( P . . ) "'1/2
a7 = @ {)Xkaxk’ where o = 123) gijXiX;j

Pick a point p € S; such that x(p) # 0. The vectors

2 d .
ui=X£a—xi—-Xim for all i #¢

clearly form a basis of the tangent space to S; at p. Therefore

_ d d . . ) 2 -1/2
vi = B (xﬁé_x_i— Xl@) for all i # ¢ with B = (xgg;; +X{gpy - 2X;Xg8;)

is a basis consisting of unit vectors. If h denotes the second fundamental form of
Sg , then

h(vi, v () = {Dy; =, vi Y ()

_ L2, o« , 2, oo
=B Xﬂa_xi (Xﬂ %xkgik'xi %ngﬂk) +8 Xia_}q(xif? Xk8pk - X£§ ngik)

+ op? (ngii + xizgu) + remainder,

where the remainder approaches zero as p — 0 (we have used the positive definite-

ness of Z‘/i’j gi;XjX;, together with (16) and (17)). It is then clear that

1/2
(2 gijxixj) h(vy, v)(p) — 1 as p— 0.
i,j
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Thus h(vi, vi)(p) — +« as p — 0. Consequently, since Sg is compact, there exists
an gg such that h is positive-definite on Sg whenever ¢ <gp. Q.E.D.

REFERENCES

1. W. Ambrose, The Cartan structural equations in classical Riemannian geometry.
J. Indian Math. Soc. (N.S.) 24 (1960), 23-76.

2. R. L. Bishop and R. J. Crittenden, Geometry of manifolds. Academic Press,
New York, 1964.

3. H. Hadwiger, Vorlesungen iiber Inhalt, Oberfliche und Isoperimetrie. Springer-
Verlag, Berlin-Gottingen-Heidelberg, 1957.

4, H. Weyl, On the volume of tubes. Amer. J. Math. 61 (1939), 461-472.

University of California
Berkeley, California 94720



