A NOTE ON MANIFOLDS WHOSE HOLONOMY GROUP
IS A SUBGROUP OF Sp(n)-Sp(1)

Alfred Gray

Recently, several authors (2], [3], [5] have studied quaternionic analogues of
Kihler manifolds. There are two possible definitions of such a manifold. Let M be
a connected Riemannian manifold of dimension 4n. Then one can require that the
holonomy group H(M) be a subgroup of either Sp(n) or Sp(n)-Sp(1), where
Sp(n) - Sp(1) = Sp(n) x Sp(1)/(+ identity).

The condition H(M) C Sp(n) is equivalent to the existence on M of parallel,
globally defined, almost complex structures I, J, and K that satisfy IJ = -JI = K. At
first glance, it appears that the condition H(M) C Sp(n) is the more natural general-
ization of the notion of K&hler manifold. However, it turns out that if H(M) C Sp(n),
then M has Ricci curvature zero. For this reason there are no known examples of
compact Riemannian manifolds that are not flat and satisfy the condition
H(M) c Sp(n).

In this paper we consider Riemannian manifolds with H(M) C Sp(n) - Sp(1), and we
call them quaternionic Kdahler manifolds. Examples are the quaternionic projective
spaces and several other symmetric spaces [5]. We show that this definition of
quaternionic Kihler manifolds is equivalent to another, which states that a certain
tensor field Q is parallel.

The notion of quaternionic Kahler submanifold is defined analogously to that of
Kihler submanifold. However, the theory of the former is much simpler than that of
the latter, because every quaternionic Kihler submanifold is totally geodesic (Theo-
rem 5). This shows, for example, that the quaternionic analogue of the theory of
algebraic varieties is trivial.

First we need the following fact about Sp(n)-Sp(1).
PROPOSITION 1. Sp(n)-Sp(l) is a maximal Lie subgroup of SO(4n), for n > 1.

Pyroof. Let Gy be a compact connected Lie subgroup of SO(4n) that contains
Sp(n) - Sp(1). Then G? is transitive on the unit sphere S4n-1 because Sp(n)-Sp(1)
is transitive on S4n-1, If

Sp(n)-Sp(1) € Gp € SO(4n)  (strict inclusion),

it follows from the classification of connected Lie groups acting transitively and ef-
fectively on spheres, that the only possibilities for Gy are U(n), Spin(7), and

Spin (9). We rule out U(n), because Sp(n) is a maximal subgroup of U(n). It is easy
to verify that the inclusion Sp(2)-Sp(1) C Spin (7) is impossible, because both groups
have rank 3. Finally, Spin(9) is eliminated because dim (Spin(9)) = 36 < 39

= dim (Sp(4) - Sp(1)). We conclude that Gg = Sp(n)- Sp(1).
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To complete the proof, it suffices to show that Sp(n)-Sp(1l) is its own normalizer
in SO(4n). Let A € SO(4n) normalize Sp(n)-Sp(1). Since Sp(n)-Sp(1) has no outer
automorphisms for n > 1, there exists B € Sp(n)-Sp(1) such that AB-! is in the
centralizer of Sp(n)-Sp(1). The ordinary representation of Sp(n)-Sp(1) is absolutely
irreducible; hence, by Schur’s lemma, +AB-! is the identity. Thus A € Sp(n)- Sp(1).
This completes the proof.

The author wishes to thank J. Wolf for suggesting this proof.

Next we obtain a useful algebraic description of Sp(n)-Sp(1). Let V be a 4n-
dimensional real vector space. We may regard V as an n-dimensional right
quaternion vector space. It is well known that

Sp(n) = {A € O(4n)| A(xi) = (Ax)i and A(xj) = (Ax)j for all x € V}.

Then Sp(n)-Sp(1) is the subgroup of O(4n) generated by Sp(n) and the IR-linear
maps X — xi and x — Xj.

Define Qx = xi A xj A xk for x € V. As it stands, Q is not a tensor; however, it
can be linearized so that it becomes a tensor of type (3, 3).

PROPOSITION 2. Sp(n)-Sp(1) = {A € O(4n)] QAx = AQx for all x € V}.

Proof. The inclusion of the left-hand side of the equation in the right-hand side
can be verified directly. Moreover, QA = AQ implies det A > 0. Now Proposition 2
follows from Proposition 1.

PROPOSITION 3. Let {i', j', k'} be an orthonormal triple of quaternions that
has the same ovientation as {i, i, k}, and define Q'x =xi' Axj' ANxk' for x e V.
Thern Q =Q'.

The proposition follows from a direct calculation. We are now ready to discuss
quaternionic manifolds.

Definitions. Let M be a differentiable manifold such that each p € M has a
neighborhood U on which there exist three almost complex structures I, J, K such
that IJ = -JI = K. Suppose Q is a globally defined tensor field of type (3, 3) such
that on each U we have the relation Qx = Ix A JXx A Kx whenever m € U and
x € M,,. Then Q is called a quaternionic structure on M. I, in addition, M is
a Riemannian manifold, if [|Qx|| = ||x||?, and if Q is parallel, we say that Q is a
quatevnionic Kadhler structure on M.

Thus the notions of quaternionic structure and quaternionic Kahler structure are
analogous to the notions of almost complex structure and Kidhler structure, respec-
tively. From Proposition 3 it follows that a quaternionic structure is well-defined.
Furthermore, Proposition 2 implies the following proposition.

PROPOSITION 4. Let M be a 4n-dimensional Riemannian manifold. Then

(i) M has a compatible quatevnionic structure Q (that is, || Qx " = ||x[|3) if and
only if the structure group O(4n) of the frame bundle of M can be veduced to
Sp(n) - Sp(1);

(ii) M has a compatible quaternionic Kihley structure Q if and only if the
holonomy group H(M) is a subgroup of Sp(n)- Sp(1).

We note that the existence of a quaternionic Kihler structure does not imply that
H(M) C Sp(n). This is a consequence of the following formula for the covariant de-
rivative of Q:
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V(@Y = Vx(@)Y AJY AKY +IY A Vx(J)Y AKY +IY AJY AVx(K)Y

for vector fields X and Y on M. Furthermore, in [2] we showed that quaternionic
projective space possesses a quaternionic Kihler structure. Our notion of quater-
nionic Kihler structure is equivalent to that of Kraines [3] and Wolf [5].

Next we define the quaternionic analogue of an almost complex submanifold.

Definition. Let M and M be differentiable manifolds, and let Q be a quaterni-
onic structure on M. We say that M is a quaternionic submanifold of M (with re-
spect to Q) provided Qx € A3 M_, , for each m € M and x € M,,,. We again denote
the induced quaternionic structure on M by Q.

The next theorem shows that the theory of quaternionic Kihler submanifolds is
much simpler than that of ordinary Kihler submanifolds.

THEOREM 5. Let M be a quaternionic Kihler manifold, and suppose M is a
quaternionic submanifold of M. Then, with the induced Riemannian stvucture on M,
M is a quaternionic Kihler manifold and is totally geodesic in M.

Proof. Let V and V¥ denote the Riemannian connections of M and M, and denote
by T the configuration tensor of M in M (see [1]). Then, for vector fields X and
Y, we have the relation

V(QY = Vx(Q)Y + Tx(DY AJY AKY +IY A Tx(J)Y AKY +IY AJY A Tx(K) Y.

By assumption, the left-hand side of this equation vanishes. Furthermore, each of
the four terms on the right-hand side is orthogonal to the others. Hence M is a
quaternionic Kdhler manifold, and in addition,

Ty(D(Y) = Ty (@) (Y) = Tx(K)(Y) = 0.
This implies that
TxY + TixIY¥Y = TxY + Ty3xJY = TixI¥ + TyxJY = 0;
therefore TxY = 0. Thus M is totally geodesic in M. The theorem generalizes a

result of [1].

We conclude by giving some necessary conditions in terms of characteristic
classes for the existence of a quaternionic structure.

THEOREM 6. Let M be a CW-complex, and let & = (E, M, p, R*M) be a vector
bundle., Then

(i) a necessary condition for the structure group O(4n) of & to be reduced to
Sp(n) - Sp(1) is that the Stiefel- Whitney classes w;(§) vanish whenevey 1i is diffevent
Sfrom 2 and 3 and is not divisible by 4;

(ii) a necessary condition for the structure group O(4n) of £ to be veduced to
Sp(n) is that the Stiefel- Whitney classes wi(&) vanish for all i not divisible by 4.

We omit the proof, which is similar to the corresponding theorem for almost
complex structures. (See [4, p. 212].)
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