MINIMUM CONVEXITY OF A HOLOMORPHIC FUNCTION, II
J. E. McMillan

1. STATEMENT OF RESULTS

Let w = 1(z) be a nonconstant holomorphic function defined in the open unit disc
D. An arc at eif isa curve A C D such that A U {ei®} is a Jordan arc. Let A
be an arc at el parametrized by z(t) (0 <t < 1), and define a family H p as fol-
lows: H € o, if and only if H is a closed half-plane in the finite w-plane W and
there exists a tyg (0 <ty < 1) such that f(z(t)) € H if tg <t < 1. If #p =P, set

Fp = W; otherwise, set Fy = nH, where the intersection is taken over all

H e o¢p. Note that if f(z) is bounded on A, then Fj, is the convex hull of the clus-
ter set of f(z) on A at e, Our first result is the following improvement of an
earlier theorem [5, Theorem 1].

THEOREM 1. For each elf there exists an arc a at €9 such that Fy CFa
for each arc A at eif,

If Fy =, 1(z) has the limit » on a at eif, and, to be sure, in a rather special
way. If Fo = {a}, f(z) has the limit a on a at eif.

Write 1(z) = u(z) + iv(z), where u(z) and v(z) are the real and imaginary parts of
f(z). A real or complex-valued function g(z) defined in D is said to have the (finite
or infinite) asymptotic value a at eif provided there exists an arc at eif on which
g(z) has the limit a at eif. For each eif, we shall be concerned with the validity
of the following proposition:

1?(6): If W(z) and v(z) have the finite asymptotic values a and b, rvespectively,
at €9 then £(z) has the asymptotic value a +bi at eif,

An immediate consequence of Theorem 1 is that for each eie, either f(z) has the
asymptotic value « at eie, or P(6) holds. This result contains a theorem of
Gehring and Lohwater [4]. We shall prove a considerably stronger theorem, which
we proceed to state,

Let & be the family of straight lines L in W such that f(z) ¢ L if £'(z) = 0.
Note that for each L € &, f(z) is one-to-one on each component of the preimage
f-4L). Let £* be the family of all half-lines L* in W,

L* = {w+pel®: p>0} (weWw, 0<¢<27),

such that L* Cc L, fgr some L € Z. A subset & of the unit circgmference C is de-
fined as follows: eif ¢ © if and only if there exists an arc at eif that f(z) maps
one-to-one onto some L* in £*. Clearly, on such an arc f(z) has the limit « at
eib,

THEOREM 2. With the possible exception of at most countably many eie, P(8)
holds. Any exceptional eif is in ©.
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The modular function has the property that P{6) fails to hold for each eif in the
countable dense set of points at which the function has the asymptotic value « (for a
related discussion, see Bagemihl [2]).

2. PROOFS

We first prove three independent lemmas, which will be used in the proofs of
both theorems.

LEMMA 1. Suppose that f(z) has a finite asymplotic value wq at eil. Then
either el € & or wo € Fp for each arc A at elif.

Proof. Suppose to the contrary that eif ¢ & and that there exists an arc A at
eif such that wg ¢ Fao. We can choose A so that for some closed half-plane H,
f(A) c H and wg ¢ H. Let Ag be an arc at eif on which f(z) has the limit wq at
eif | and such that f(Ag) N H = #. Let 8 be a Jordan arc lying in D that joins the
initial points (that is, the endpoints in D) of A and A( and intersects A U Ay only
at these initial points. Let A be the bounded domain whose boundary is
BUAUAgU {eif}. It follows from an elementary theorem on cluster sets that
f(A) - H is dense in W - H (see, for example, [3, p. 91]). Therefore there exists a
z* € A such that the point w* = f(z*) is the finite endpoint of a half-line L* in £*
that intersects neither H nor the bounded set f(8) U f(A().

Let ¢ be such that 0 < ¢ < 27 and L* = {w* + pei?: p>0}. Let A' be A minus
the set of points z at which f'(z) = 0. Let y be a Jordan arc such that z* € y C A',
f(z) maps y one-to-one onto a rectilinear segment I' that is perpendicular to L* at
w*, and such that for each w € T the half-line L(w) = {w +p ei%: p > 0} intersects
neither H nor f(8) U f(Ag). Then in particular L(w) (w € T") does not intersect
f(B U A U Ag). For each w € T, let @, be the component of the set

{z: z € A", 1(z) € L{w)}

that intersects y. Note that with the possible exception of at most countably many
w € T, L(w) € £*, and that if L(w) € £*, then oy is an arc at eif.

For each w € T, f{z) maps ay one-to-one onto a half-open segment (which may
be a half-line) on L(w), and w € f(a,,). Since eif ¢ &, we see that the length
lf(aw)l of f(ay,) is finite if L(w) € £* (w € T'; here and in the sequel, “length”
means Euclidean length). By the standard Baire-category argument, there exist a
positive number M and an open segment I'j on I' such that the set

{w: we Ty, |fla,)] < M}

is dense on I'y. For each w € I'g, let a?,v denote @, minus its endpoint on y, and

set U = Ua% and V = U f(agv), where both unions are taken over all w € I'g. It
is easy to see that V and U are open, and that f(z) maps U one-to-one onto V. It
is now clear that |f(aw)| < M for every w € I'g, and consequently that V is
bounded.

We now use the well-known method of proof of the classical Gross star theorem
[6, p. 292]. Choose a positive number r( such that {|z - el®] <rp} does not
intersect v, and for each r (0 <r <rg), set

¢, =un{|z-elf|=r}.
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Let s(r) denote the length of f(c,) (0 <r < r(). Then, by Schwarz’s inequality,

2

s(r)? = (S‘C |£'(z)| |dz|) < 27r S‘

r (o4

|£1(z) | |az]| .

Thus, since V is bounded,

o

0
2
1 ‘S‘ —-———S(i) dr < SS |£'@)|%dxdy < © (0<r<rg; z=x+iy).
U

2'1Tr

r

0 s(r)2
Therefore lim inf s(r) = 0, since S ———dr < .
r—0 0 r

On the other hand, s(r) > || (0 <r < rg), because if L(w) € £*, then
0w N ¢ # @ and consequently f(aw) N f(cr) # @. This is a contradiction, and the
proof of Lemma 1 is complete.

LEMMA 2. Suppose that theve exist an Lo € & and an arc Ag at eif such that
f(Ag) N Ly =@. Let Hy be the closed half-plane bounded by L and containing
f(Ag). Let A be an arbitrary arc at ei9, and let S be any connected subset of Lo
that contains f(A) N Lg. Then either

(1) there exists an avc at et that £(z) maps one-to-one into L,
or
(2) theve exists an avc A' at ei® such that £(A') c ((A) N Hy) U S.

_Proof. Suppose that (1) does not hold. Let J be a Jordan curve such that
eif € J and J c D U {eif}, and such that the interior domain A of J contains Ag
and A. Then each component of the set

A= {z:z¢€ A, £f(z) € Lo}

is a crosscut of A that f(z) maps one-to-one onto an open connected subset of Lg.
No such component has eif as an endpoint, because (1) does not hold.

Let U be the component of A - A that contains Ag. Then f(U) C Hg. Note that
each arc at eif that is contained in A intersects U, since otherwise a component of
A would have eif as an endpoint. In particular, A intersects U, and we can let A"
be an arc at eif such that A" ¢ A and the initial point of A" isin U. If A" C U,
set A'= A". Otherwise, let y, (k =1, 2, ---) be the finitely or infinitely many com-
ponents of A that are on the boundary of U and intersect A". Note that if there are
infinitely many 7)., the diameter of y) tends to 0 as k — o,

For each k, let y, be the (possibly degenerate) closed subarc of y) such that
the endpoints of y; areon A" and A" N y; C yi.. It is easy to see that there exists
anarc A' at eif such that

A'c(A"NU)U (U'yl'{).

Note that f(z) maps each 7y} one-to-one onto a segment whose endpoints are in
f(A") N Lg, and consequently that f(yy) € S (k =1, 2, ---). Thus (2) holds, and the
proof of Lemma 2 is complete.
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Set % = {eif: f(z) has a finite asymptotic value at e'%}.

LEMMA 3. Suppose that e'9 ¢ U. Let {V,} be a decreasing sequence of do-
mains in W such that for each n

(i) either V. is bounded and its boundary 9Vn is a Jovdan curve, or else
{~} U 9V, is a Jordan curve in the extended plane,

(ii) £(z) € 8V, if £'(0) = 0,
(iii) there exists an arc A, at €9 such that f(A,) C V.

Then one of the following thvee statements holds.

(3) For some n there exists an avc at el® that f(z) maps one-to-one into 9Vy
and on which £(z) has the limit « at el

(4) eif € ©, and 1(z) is bounded on some arc at eif.

(5) There exists an arc a at eil, described by z(t) (0 <t < 1), and with the
property that for each n theve exists a ty (0 < tg < 1) such that £(z(t)) € Vy

if to<t<1.
Proof. If for each n there is one and only one component U, of the set

u* = £ vy n {|z - ei?] < 1/n}
that contains an arc at eif (there is at least one by hypothesis), then Upt1 € Up
(n=1, 2, :--), and it follows readily that (5) holds.

Suppose now that (5) does not hold. Then there exist an n and distinct com-
ponents U' and U" of U¥ such that for some arcs A' and A" at eif, A'C U' and
A" CU" Let B be a Jordan arc lying in D, joining the initial points of A' and A",
and intersecting A'U A" only at these initial points. Let A be the bounded domain
whose boundary is BU A' UA" U {eif }. Since U' N U" = ¢, there exists an arc A
at eif suchthat A C A and f(A) C ovV,.

Suppose now that (3) does not hold. Then since eif ¢ %, we see that vV, is
bounded and that f(z) assumes as a value on A every point of 3V, infinitely many
times. Choose L* € £* such that if w* denotes the finite endpoint of L*, then
L* NV, = {w*} (the bar denotes closure). Let {zx} be a sequence of distinct
points of A such that f(z)) = w* (k =1, 2, ---). Let ay be the component of f-1(L*)
that contains zx. Then ap N o=@ if k #k'. Clearly ogc N (A" UA") =@

(k =1, 2, -..). By routine arguments, at most finitely many «, intersect . Thus
some @y is an arc at eif, and since eif ¢ %, el® € ©. Therefore, since (z) is
bounded on A, (4) holds. The proof of Lemma 3 is complete.

Proof of Theorem 1. If eif ¢ &, we let @ be an arc at eif that f(z) maps one-
to-one onto some L* € £*, and we note that Fo = §. Suppose now that el ¢ &. If
there exists an arc o at eif on which f(z) has a finite limit wq at eig, then
Fy = {wo}, and by Lemma 1, Fy C F for each arc A at eif. Thus we may also
suppose that eif ¢ %. Define a family o as follows: He o ifandonly if H is a
closed half-plane in W and there exists an arc A at el such that f(A) C H. We
only need to consider the case where o # @, for otherwise Fa =W for each arc A
at eif., The intersection of any family of closed sets in W is the intersection of
some countable subfamily. Thus we readily see that there exists a sequence {H,}
of closed half-planes in W such that for each n, 9H, € & and the interior HJ of
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H, contains some H € &, and such that ﬂ H,= ﬂ H, where the last intersection is
taken over all H € &#. Set

n
- N H; .
j=1

We prove by induction that for each n there exists an arc A at eif such that
f(A) € V,,. This clearly holds for n = 1. Suppose now that there ex1sts an arc A at
e19 such that £(A) C Va.; (n> 1). Choose an H € & such that H C H, and let A
be an arc at el? such that f(Ag) C H. Choose L € £ such that Ly ¢ HO - H, and
let Hp be the closed half-plane bounded by Lg and containing f(Ag). Then Hg C Hg.
We set S=V,_1 N Lo, and apply Lemma 2. The possibility (1) cannot occur, be-
cause eif ¢ & U u; therefore there exists an arc A' at el? such that

f(A') C (f(A) n Ho) UusS C Vn—l N HO C Vn

The induction is complete.

We now apply Lemma 3. Since eif ¢ & and 0H, € £ (n=1, 2, ---), we readily
see that (3) cannot hold. Clearly, (4) cannot hold. Thus (5) holds, and it follows that
Fy C H, for each n. Consequently F, C Fp for each arc A at elf and the proof
of Theorem 1 is complete.

Proof of Theorem 2. Define a subset 2 of C by the rule that eif € n provided
there exist finite numbers a and b that are asymptotic values (at el?) of u(z) and
v(z), respectively, while a + ib is not an asymptotic value of f(z) at eif. To prove
Theorem 2, we prove that £ N % and £ - % are both countable subsets of &.

First consider £ N . Suppose that eif € £ N %A, and let a, b, and wg be
finite asymptotic values of u(z), v(z), and 1(z), respectwely, at e19. Then
a + bi # wg, and there exists an arc A at eif (on which either u(z) has the limit
a at ei® or v(z) has the limit b at eif) such that wo ¢ Fp. Thus, by Lemma 1,
eif ¢ &, and we have shown that 2 N 4 C 6. By Bagemihl’s amblguous point
theorem [1], % N & is countable. Thus £ N % is a countable subset of &.

Now consider £ - %. Let &1 be a countable family of horizontal lines in £
whose union is dense in W, and let &£, be a countable family of vertical lines in &
whose union is dense in W. Define a subset & of C as follows: eif € & if and only
if ei € © - A4 and there exists an arc at eif that f(z) maps one-to-one into some
Le 2 UZ;,. Since G N 4 =@, & C &; and since there exist altogetlier only
countably many components of f-}(L) (L ¢ £ U £3), € is countable. Thus € isa
countable subset of &, and it suffices to prove that £ - (% U €) is a countable sub-
setof . Fix el e n - (% U €), and let a and b be finite real numbers such that
u(z) and v(z) have the asymptotic values a and b, respectively, at eif. Choose a
sequence {h,} suchthat 0 <h,,;<h,<1/n, and such that if we set

= {|w- (@a+bi)] < h,},

then f(z) ¢ 9V, if £f'(z) =0
We prove that for each n there exists an arc A* at elf such that f(A*) c V,,.
Fix n. Choose distinct lines L] and L] in #; and distinct lines L} and L3 in £,

such that if ©; and 22 denote the open strips whose boundaries are Lj ULYJ and
Ly U L3, respectively, then a+bi € Q1 N Q2 and ©] N £ C V, (the bar denotes
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closure). Since u(z) and v(z) have the asymptotic values a and b, respectively, at
eif there exist arcs Ag and A; at e!? such that f(Ag) C Q2 and f(A}) C ©;. Let
H> and H2 be the closed half-planes bounded by L) and L3, respectively, and con-
taining f(Ay). We apply Lemma 2 with Ly =L}, Hp=H), A=A;,and S=§; NL5.
Since eif ¢ @, (1) cannot hold; therefore there exists an arc A} at eif such that

f(A])) € (f(A)) NHR) U (@, NL,) € @, nH;.

We now apply Lemma 2 again, this time with Lg=LJ, Hg=H,, A=A}, and
S=8; N L3, and we see that there exists an arc A* at el such that

f(A*) ¢ (f(A)NHYU (@, NLY) c e, N, C V,.

Next we apply Lemma 3. Clearly, (3) cannot hold, because each V, is bounded.
If (5) holds, then f(z(t)) — a +bi as t — 1, contrary to the assumption el ¢ .
Thus (4) holds. Again by Bagemihl’s theorem, the set of points eif such that (4)
holds is countable. Thus £ - (% U &) is a countable subset of &, and the proof of
Theorem 2 is complete.
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