MINIMUM CONVEXITY OF A HOLOMORPHIC FUNCTION, II

J. E. McMillan

1. STATEMENT OF RESULTS

Let w = f(z) be a nonconstant holomorphic function defined in the open unit disc D. An arc at $e^{i\theta}$ is a curve $A \subset D$ such that $A \cup \{e^{i\theta}\}$ is a Jordan arc. Let A be an arc at $e^{i\theta}$, parametrized by z(t) ($0 \le t < 1$), and define a family \mathscr{H}_A as follows: $H \in \mathscr{H}_A$ if and only if H is a closed half-plane in the finite w-plane W and there exists a t_0 ($0 \le t_0 < 1$) such that $f(z(t)) \in H$ if $t_0 \le t < 1$. If $\mathscr{H}_A = \emptyset$, set

 $F_A = W$; otherwise, set $F_A = \bigcap H$, where the intersection is taken over all $H \in \mathcal{H}_A$. Note that if f(z) is bounded on A, then F_A is the convex hull of the cluster set of f(z) on A at $e^{i\theta}$. Our first result is the following improvement of an earlier theorem [5, Theorem 1].

THEOREM 1. For each $e^{i\theta}$ there exists an arc α at $e^{i\theta}$ such that $\mathbf{F}_{\alpha} \subset \mathbf{F}_{A}$ for each arc A at $e^{i\theta}$.

If $F_{\alpha} = \emptyset$, f(z) has the limit ∞ on α at $e^{i\theta}$, and, to be sure, in a rather special way. If $F_{\alpha} = \{a\}$, f(z) has the limit a on α at $e^{i\theta}$.

Write f(z) = u(z) + iv(z), where u(z) and v(z) are the real and imaginary parts of f(z). A real or complex-valued function g(z) defined in D is said to have the (finite or infinite) asymptotic value a at $e^{i\theta}$ provided there exists an arc at $e^{i\theta}$ on which g(z) has the limit a at $e^{i\theta}$. For each $e^{i\theta}$, we shall be concerned with the validity of the following proposition:

 $P(\theta)$: If u(z) and v(z) have the finite asymptotic values a and b, respectively, at $e^{i\theta}$, then f(z) has the asymptotic value a + bi at $e^{i\theta}$.

An immediate consequence of Theorem 1 is that for each $e^{i\theta}$, either f(z) has the asymptotic value ∞ at $e^{i\theta}$, or $P(\theta)$ holds. This result contains a theorem of Gehring and Lohwater [4]. We shall prove a considerably stronger theorem, which we proceed to state.

Let $\mathscr L$ be the family of straight lines L in W such that $f(z) \not\in L$ if f'(z) = 0. Note that for each $L \in \mathscr L$, f(z) is one-to-one on each component of the preimage $f^{-1}(L)$. Let $\mathscr L^*$ be the family of all half-lines L^* in W,

$$L^* = \{w + \rho e^{i\phi}: \rho > 0\}$$
 $(w \in W, 0 < \phi < 2\pi),$

such that $L^* \subset L$ for some $L \in \mathscr{L}$. A subset $\mathfrak S$ of the unit circumference C is defined as follows: $e^{i\theta} \in \mathfrak S$ if and only if there exists an arc at $e^{i\theta}$ that f(z) maps one-to-one onto some L^* in \mathscr{L}^* . Clearly, on such an arc f(z) has the limit ∞ at $e^{i\theta}$.

THEOREM 2. With the possible exception of at most countably many $e^{i\theta}$, $P(\theta)$ holds. Any exceptional $e^{i\theta}$ is in \mathfrak{S} .

Received August 1, 1968.

The author is an Alfred P. Sloan Research Fellow. This work was supported by the National Science Foundation (N.S.F. grant GP-6538).

The modular function has the property that $P(\theta)$ fails to hold for each $e^{i\theta}$ in the countable dense set of points at which the function has the asymptotic value ∞ (for a related discussion, see Bagemihl [2]).

2. PROOFS

We first prove three independent lemmas, which will be used in the proofs of both theorems.

LEMMA 1. Suppose that f(z) has a finite asymptotic value w_0 at $e^{i\theta}$. Then either $e^{i\theta} \in \mathfrak{S}$ or $w_0 \in F_A$ for each arc A at $e^{i\theta}$.

Proof. Suppose to the contrary that $e^{i\theta} \notin \mathfrak{S}$ and that there exists an arc A at $e^{i\theta}$ such that $w_0 \notin F_A$. We can choose A so that for some closed half-plane H, $f(A) \subset H$ and $w_0 \notin H$. Let A_0 be an arc at $e^{i\theta}$ on which f(z) has the limit w_0 at $e^{i\theta}$, and such that $f(A_0) \cap H = \emptyset$. Let β be a Jordan arc lying in D that joins the initial points (that is, the endpoints in D) of A and A_0 and intersects $A \cup A_0$ only at these initial points. Let Δ be the bounded domain whose boundary is $\beta \cup A \cup A_0 \cup \left\{e^{i\theta}\right\}$. It follows from an elementary theorem on cluster sets that $f(\Delta)$ - H is dense in W - H (see, for example, [3, p. 91]). Therefore there exists a $z^* \in \Delta$ such that the point $w^* = f(z^*)$ is the finite endpoint of a half-line L^* in \mathscr{L}^* that intersects neither H nor the bounded set $f(\beta) \cup f(A_0)$.

Let ϕ be such that $0 \le \phi < 2\pi$ and $L^* = \{w^* + \rho e^{i\phi}; \rho \ge 0\}$. Let Δ' be Δ minus the set of points z at which f'(z) = 0. Let γ be a Jordan arc such that $z^* \in \gamma \subset \Delta'$, f(z) maps γ one-to-one onto a rectilinear segment Γ that is perpendicular to L^* at w^* , and such that for each $w \in \Gamma$ the half-line $L(w) = \{w + \rho e^{i\phi}; \rho \ge 0\}$ intersects neither H nor $f(\beta) \cup f(A_0)$. Then in particular L(w) ($w \in \Gamma$) does not intersect $f(\beta \cup A \cup A_0)$. For each $w \in \Gamma$, let α_w be the component of the set

$$\{z: z \in \Delta', f(z) \in L(w)\}$$

that intersects γ . Note that with the possible exception of at most countably many $w \in \Gamma$, $L(w) \in \mathscr{L}^*$, and that if $L(w) \in \mathscr{L}^*$, then α_w is an arc at $e^{i\theta}$.

For each $w \in \Gamma$, f(z) maps α_w one-to-one onto a half-open segment (which may be a half-line) on L(w), and $w \in f(\alpha_w)$. Since $e^{i\theta} \notin \mathfrak{S}$, we see that the length $|f(\alpha_w)|$ of $f(\alpha_w)$ is finite if $L(w) \in \mathscr{L}^*$ ($w \in \Gamma$; here and in the sequel, "length" means Euclidean length). By the standard Baire-category argument, there exist a positive number M and an open segment Γ_0 on Γ such that the set

$$\{w: w \in \Gamma_0, |f(\alpha_w)| \leq M\}$$

is dense on Γ_0 . For each $w \in \Gamma_0$, let α_w^0 denote α_w minus its endpoint on γ , and set $U = \bigcup \alpha_w^0$ and $V = \bigcup f(\alpha_w^0)$, where both unions are taken over all $w \in \Gamma_0$. It is easy to see that V and U are open, and that f(z) maps U one-to-one onto V. It is now clear that $|f(\alpha_w)| \leq M$ for every $w \in \Gamma_0$, and consequently that V is bounded.

We now use the well-known method of proof of the classical Gross star theorem [6, p. 292]. Choose a positive number r_0 such that $\{|z - e^{i\theta}| \le r_0\}$ does not intersect γ , and for each r (0 $< r \le r_0$), set

$$c_r = U \cap \{|z - e^{i\theta}| = r\}.$$

Let s(r) denote the length of $f(c_r)$ (0 < $r \le r_0$). Then, by Schwarz's inequality,

$$s(r)^2 = \left(\int_{c_r} |f'(z)| |dz| \right)^2 \le 2\pi r \int_{c_r} |f'(z)|^2 |dz|.$$

Thus, since V is bounded,

$$\frac{1}{2\pi} \int_{\mathbf{r}}^{\mathbf{r}_0} \frac{\mathbf{s}(\mathbf{r})^2}{\mathbf{r}} d\mathbf{r} \leq \int_{\mathbf{II}} |f'(z)|^2 dx dy < \infty \qquad (0 < \mathbf{r} < \mathbf{r}_0; \ z = x + iy).$$

Therefore $\lim_{r\to 0} \inf s(r) = 0$, since $\int_0^{r_0} \frac{s(r)^2}{r} dr < \infty$.

On the other hand, $s(r) \ge |\Gamma_0|$ ($0 < r \le r_0$), because if $L(w) \in \mathscr{L}^*$, then $\alpha_w \cap c_r \ne \emptyset$ and consequently $f(\alpha_w) \cap f(c_r) \ne \emptyset$. This is a contradiction, and the proof of Lemma 1 is complete.

LEMMA 2. Suppose that there exist an $L_0 \in \mathscr{L}$ and an arc A_0 at $e^{i\theta}$ such that $f(A_0) \cap L_0 = \emptyset$. Let H_0 be the closed half-plane bounded by L_0 and containing $f(A_0)$. Let A be an arbitrary arc at $e^{i\theta}$, and let S be any connected subset of L_0 that contains $f(A) \cap L_0$. Then either

- (1) there exists an arc at $e^{i\theta}$ that f(z) maps one-to-one into L_0 , or
- (2) there exists an arc A' at $e^{i\theta}$ such that $f(A') \subset (f(A) \cap H_0) \cup S$.

Proof. Suppose that (1) does not hold. Let J be a Jordan curve such that $e^{i\theta} \in J$ and $J \subset D \cup \{e^{i\theta}\}$, and such that the interior domain Δ of J contains A_0 and A. Then each component of the set

$$\Lambda = \{z: z \in \Delta, f(z) \in L_0\}$$

is a crosscut of Δ that f(z) maps one-to-one onto an open connected subset of L_0 . No such component has $e^{i\theta}$ as an endpoint, because (1) does not hold.

Let U be the component of Δ - Λ that contains A_0 . Then $f(U) \subset H_0$. Note that each arc at $e^{i\theta}$ that is contained in Δ intersects U, since otherwise a component of Λ would have $e^{i\theta}$ as an endpoint. In particular, A intersects U, and we can let A'' be an arc at $e^{i\theta}$ such that $A'' \subset A$ and the initial point of A'' is in U. If $A'' \subset U$, set A' = A''. Otherwise, let γ_k ($k = 1, 2, \cdots$) be the finitely or infinitely many components of Λ that are on the boundary of U and intersect A''. Note that if there are infinitely many γ_k , the diameter of γ_k tends to 0 as $k \to \infty$.

For each k, let γ_k' be the (possibly degenerate) closed subarc of γ_k such that the endpoints of γ_k' are on A" and A" $\cap \gamma_k \subset \gamma_k'$. It is easy to see that there exists an arc A' at $e^{i\theta}$ such that

$$A' \subset (A'' \cap U) \cup (U_{\gamma_k'}).$$

Note that f(z) maps each γ_k^i one-to-one onto a segment whose endpoints are in $f(A'') \cap L_0$, and consequently that $f(\gamma_k^i) \subset S$ (k = 1, 2, ...). Thus (2) holds, and the proof of Lemma 2 is complete.

Set $\mathfrak{A} = \{e^{i\theta}: f(z) \text{ has a finite asymptotic value at } e^{i\theta}\}.$

LEMMA 3. Suppose that $e^{i\,\theta}\not\in\mathfrak{A}$. Let $\{V_n\}$ be a decreasing sequence of domains in W such that for each n

- (i) either V_n is bounded and its boundary ∂V_n is a Jordan curve, or else $\{\infty\} \cup \partial V_n$ is a Jordan curve in the extended plane,
 - (ii) $f(z) \in \partial V_n$ if f'(0) = 0,
 - (iii) there exists an arc A_n at $e^{i\theta}$ such that $f(A_n) \subset V_n$.

Then one of the following three statements holds.

- (3) For some n there exists an arc at $e^{i\theta}$ that f(z) maps one-to-one into ∂V_n and on which f(z) has the limit ∞ at $e^{i\theta}$.
- (4) $e^{i\theta} \in \mathfrak{S}$, and f(z) is bounded on some arc at $e^{i\theta}$.
- (5) There exists an arc α at $e^{i\theta}$, described by z(t) ($0 \le t < 1$), and with the property that for each n there exists a t_0 ($0 \le t_0 < 1$) such that $f(z(t)) \in V_n$ if $t_0 \le t < 1$.

Proof. If for each n there is one and only one component Un of the set

$$U_n^* = f^{-1}(V_n) \cap \{|z - e^{i\theta}| < 1/n\}$$

that contains an arc at $e^{i\theta}$ (there is at least one by hypothesis), then $U_{n+1} \subset U_n$ (n = 1, 2, ...), and it follows readily that (5) holds.

Suppose now that (5) does not hold. Then there exist an n and distinct components U' and U" of U_n^* such that for some arcs A' and A" at $e^{i\theta}$, $A' \subset U'$ and $A'' \subset U''$. Let β be a Jordan arc lying in D, joining the initial points of A' and A", and intersecting $A' \cup A''$ only at these initial points. Let Δ be the bounded domain whose boundary is $\beta \cup A' \cup A'' \cup \{e^{i\theta}\}$. Since $U' \cap U'' = \emptyset$, there exists an arc λ at $e^{i\theta}$ such that $\lambda \subset \Delta$ and $f(\lambda) \subset \partial V_n$.

Suppose now that (3) does not hold. Then since $e^{i\theta} \notin \mathfrak{A}$, we see that V_n is bounded and that f(z) assumes as a value on λ every point of ∂V_n infinitely many times. Choose $L^* \in \mathscr{L}^*$ such that if w^* denotes the finite endpoint of L^* , then $L^* \cap \overline{V}_n = \{w^*\}$ (the bar denotes closure). Let $\{z_k\}$ be a sequence of distinct points of λ such that $f(z_k) = w^*$ ($k = 1, 2, \cdots$). Let α_k be the component of $f^{-1}(L^*)$ that contains z_k . Then $\alpha_k \cap \alpha_{k'} = \emptyset$ if $k \neq k'$. Clearly $\alpha_k \cap (A' \cup A'') = \emptyset$ ($k = 1, 2, \cdots$). By routine arguments, at most finitely many α_k intersect β . Thus some α_k is an arc at $e^{i\theta}$, and since $e^{i\theta} \notin \mathfrak{A}$, $e^{i\theta} \in \mathfrak{S}$. Therefore, since f(z) is bounded on λ , (4) holds. The proof of Lemma 3 is complete.

Proof of Theorem 1. If $e^{i\theta} \in \mathfrak{S}$, we let α be an arc at $e^{i\theta}$ that f(z) maps one-to-one onto some $L^* \in \mathscr{L}^*$, and we note that $F_{\alpha} = \emptyset$. Suppose now that $e^{i\theta} \notin \mathfrak{S}$. If there exists an arc α at $e^{i\theta}$ on which f(z) has a finite limit w_0 at $e^{i\theta}$, then $F_{\alpha} = \{w_0\}$, and by Lemma 1, $F_{\alpha} \subset F_A$ for each arc A at $e^{i\theta}$. Thus we may also suppose that $e^{i\theta} \notin \mathfrak{A}$. Define a family \mathscr{H} as follows: $H \in \mathscr{H}$ if and only if H is a closed half-plane in W and there exists an arc A at $e^{i\theta}$ such that $f(A) \subset H$. We only need to consider the case where $\mathscr{H} \neq \emptyset$, for otherwise $F_A = W$ for each arc A at $e^{i\theta}$. The intersection of any family of closed sets in W is the intersection of some countable subfamily. Thus we readily see that there exists a sequence $\{H_n\}$ of closed half-planes in W such that for each n, $\partial H_n \in \mathscr{L}$ and the interior H_n^0 of

 H_n contains some $H \in \mathcal{H}$, and such that $\bigcap H_n = \bigcap H$, where the last intersection is taken over all $H \in \mathcal{H}$. Set

$$V_n = \bigcap_{j=1}^n H_j^0.$$

We prove by induction that for each n there exists an arc A at $e^{i\,\theta}$ such that $f(A)\subset V_n$. This clearly holds for n=1. Suppose now that there exists an arc A at $e^{i\,\theta}$ such that $f(A)\subset V_{n-1}$ (n>1). Choose an $H\in\mathscr{H}$ such that $H\subset H_n^0$, and let A_0 be an arc at $e^{i\,\theta}$ such that $f(A_0)\subset H$. Choose $L_0\in\mathscr{L}$ such that $L_0\subset H_n^0$. H, and let H_0 be the closed half-plane bounded by L_0 and containing $f(A_0)$. Then $H_0\subset H_n^0$. We set $S=V_{n-1}\cap L_0$, and apply Lemma 2. The possibility (1) cannot occur, because $e^{i\,\theta}\notin G\cup \mathfrak{A}$; therefore there exists an arc A' at $e^{i\,\theta}$ such that

$$f(A') \subset (f(A) \cap H_0) \cup S \subset V_{n-1} \cap H_0 \subset V_n$$
.

The induction is complete.

We now apply Lemma 3. Since $e^{i\theta} \notin \mathfrak{S}$ and $\partial H_n \in \mathscr{L}$ (n = 1, 2, ...), we readily see that (3) cannot hold. Clearly, (4) cannot hold. Thus (5) holds, and it follows that $F_{\alpha} \subset H_n$ for each n. Consequently $F_{\alpha} \subset F_A$ for each arc A at $e^{i\theta}$, and the proof of Theorem 1 is complete.

Proof of Theorem 2. Define a subset $\mathfrak Q$ of C by the rule that $e^{i\theta} \in \mathfrak Q$ provided there exist finite numbers a and b that are asymptotic values (at $e^{i\theta}$) of u(z) and v(z), respectively, while a+ib is not an asymptotic value of f(z) at $e^{i\theta}$. To prove Theorem 2, we prove that $\mathfrak Q \cap \mathfrak A$ and $\mathfrak Q - \mathfrak A$ are both countable subsets of $\mathfrak S$.

First consider $\mathfrak{D} \cap \mathfrak{A}$. Suppose that $e^{i\theta} \in \mathfrak{D} \cap \mathfrak{A}$, and let a, b, and w_0 be finite asymptotic values of u(z), v(z), and f(z), respectively, at $e^{i\theta}$. Then $a+bi \neq w_0$, and there exists an arc A at $e^{i\theta}$ (on which either u(z) has the limit a at $e^{i\theta}$ or v(z) has the limit b at $e^{i\theta}$) such that $w_0 \not\in F_A$. Thus, by Lemma 1, $e^{i\theta} \in \mathfrak{S}$, and we have shown that $\mathfrak{D} \cap \mathfrak{A} \subset \mathfrak{S}$. By Bagemihl's ambiguous-point theorem [1], $\mathfrak{A} \cap \mathfrak{S}$ is countable. Thus $\mathfrak{D} \cap \mathfrak{A}$ is a countable subset of \mathfrak{S} .

Now consider $\mathfrak Q - \mathfrak A$. Let $\mathscr L_1$ be a countable family of horizontal lines in $\mathscr L$ whose union is dense in W, and let $\mathscr L_2$ be a countable family of vertical lines in $\mathscr L$ whose union is dense in W. Define a subset $\mathfrak E$ of C as follows: $e^{i\theta} \in \mathfrak E$ if and only if $e^{i\theta} \in \mathfrak Q - \mathfrak A$ and there exists an arc at $e^{i\theta}$ that f(z) maps one-to-one into some $L \in \mathscr L_1 \cup \mathscr L_2$. Since $\mathfrak E \cap \mathfrak A = \emptyset$, $\mathfrak E \subset \mathfrak E$; and since there exist altogether only countably many components of $f^{-1}(L)$ ($L \in \mathscr L_1 \cup \mathscr L_2$), $\mathfrak E$ is countable. Thus $\mathfrak E$ is a countable subset of $\mathfrak E$, and it suffices to prove that $\mathfrak Q - (\mathfrak A \cup \mathfrak E)$ is a countable subset of $\mathfrak E$. Fix $e^{i\theta} \in \mathfrak Q - (\mathfrak A \cup \mathfrak E)$, and let a and b be finite real numbers such that $\mathfrak U(z)$ and $\mathfrak V(z)$ have the asymptotic values a and b, respectively, at $e^{i\theta}$. Choose a sequence $\{h_n\}$ such that $0 < h_{n+1} < h_n < 1/n$, and such that if we set

$$V_n = \{ |w - (a + bi)| < h_n \},$$

then $f(z) \notin \partial V_n$ if f'(z) = 0.

We prove that for each n there exists an arc A^* at $e^{i\theta}$ such that $f(A^*) \subset V_n$. Fix n. Choose distinct lines L_1' and L_1'' in \mathscr{L}_1 and distinct lines L_2' and L_2'' in \mathscr{L}_2 such that if Ω_1 and Ω_2 denote the open strips whose boundaries are $L_1' \cup L_1''$ and $L_2' \cup L_2''$, respectively, then $a+bi \in \Omega_1 \cap \Omega_2$ and $\overline{\Omega}_1 \cap \overline{\Omega}_2 \subset V_n$ (the bar denotes

closure). Since u(z) and v(z) have the asymptotic values a and b, respectively, at $e^{i\theta}$, there exist arcs A_0 and A_1 at $e^{i\theta}$ such that $f(A_0) \subset \Omega_2$ and $f(A_1) \subset \Omega_1$. Let H_2' and H_2'' be the closed half-planes bounded by L_2' and L_2'' , respectively, and containing $f(A_0)$. We apply Lemma 2 with $L_0 = L_2'$, $H_0 = H_2'$, $A = A_1$, and $S = \Omega_1 \cap L_2'$. Since $e^{i\theta} \notin \mathfrak{F}$, (1) cannot hold; therefore there exists an arc A_1' at $e^{i\theta}$ such that

$$f(A_1') \subset (f(A_1) \cap H_2') \cup (\Omega_1 \cap L_2') \subset \Omega_1 \cap H_2'$$
.

We now apply Lemma 2 again, this time with $L_0 = L_2^{"}$, $H_0 = H_2^{"}$, $A = A_1^{'}$, and $S = \Omega_1 \cap L_2^{"}$, and we see that there exists an arc A^* at $e^{i\theta}$ such that

$$f(A^*) \subset (f(A_1') \cap H_2'') \cup (\Omega_1 \cap L_2'') \subset \Omega_1 \cap \overline{\Omega}_2 \subset V_n.$$

Next we apply Lemma 3. Clearly, (3) cannot hold, because each V_n is bounded. If (5) holds, then $f(z(t)) \to a + bi$ as $t \to 1$, contrary to the assumption $e^{i\theta} \notin \mathfrak{A}$. Thus (4) holds. Again by Bagemihl's theorem, the set of points $e^{i\theta}$ such that (4) holds is countable. Thus \mathfrak{Q} - ($\mathfrak{A} \cup \mathfrak{E}$) is a countable subset of \mathfrak{S} , and the proof of Theorem 2 is complete.

REFERENCES

- 1. F. Bagemihl, Curvilinear cluster sets of arbitrary functions. Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 379-382.
- 2. ——, The Lindelöf theorem and the real and imaginary parts of normal functions. Michigan Math. J. 9 (1962), 15-20.
- 3. E. F. Collingwood and A. J. Lohwater, *The theory of cluster sets*. Cambridge Univ. Press, Cambridge, 1966.
- 4. F. W. Gehring and A. J. Lohwater, On the Lindelöf theorem. Math. Nachr. 19 (1958), 165-170.
- 5. J. E. McMillan, Minimum convexity of a holomorphic function. Michigan Math. J. 15 (1968), 141-144.
- 6. R. Nevanlinna, Eindeutige analytische Funktionen. Springer Verlag, Berlin, 1953.

University of Wisconsin - Milwaukee Milwaukee, Wisconsin 53201