VON NEUMANN ALGEBRAS WITH A SINGLE GENERATOR
R. G. Douglas and Carl Pearcy

A von Neumann algebra is a weakly closed, self-adjoint algebra of operators on
a (complex) Hilbert space with the property that the identity operator on the Hilbert
space belongs to the algebra. If {A], Ay, ...} is a finite or countably infinite col-
lection of operators acting on the Hilbert space §, then the von Neumann algebra
generated by the collection {Al , Ap, oo } is by definition the smallest von Neumann
algebra that contains each operator A;; we denote this algebra by &% (Ay, Az, =* ).
It is known [1, p. 33] that if § is separable, then every von Neumann algebra A
acting on § may be written as & = R(Ay, Ay, *-+) for some countable family
{A,, Ay, -} of operators in «. A von Neumann algebra £ is said to have a
single generator if there exists an operator A in «f such that « = ®R(A). (It is
easy to show that «# = 22(A) if and only if consists of the weak closure of the set
of all polynomials p(A, A*) in A and A*.)

Problem. Does every von Neumann algebra £ acting on a separablé Hilbert
space have a single generator?

This problem has been before us for some time. The first result bearing on it is
the theorem of von Neumann [4] that if «/ is abelian, then «/ has a single Hermitian
generator. Further progress was made by Pearcy, who showed in [5] that « has a
single generator if it is of type I, and who introduced in [6] a certain matricial tech-
nique that has turned out to be useful in subsequent work on this problem. Next,
Suzuki and Saitd proved in [10] that if « is hyperfinite, then -« has a single genera-
tor (see [3, footnote 68]). Finally, Wogen [11] recently extended certain important
results of Saitd [9], and he used the extensions to prove that if «f is properly infinite
(that is, if «/ contains no nonzero finite central projection), then « has a single
generator.

In most of these papers, von Neumann algebras « having the property

o+ is (algebraically) * - isomorphic to the von Neumann

(T)
algebra M,(sf) of all 2 X 2 matrices over

play a central role.

The problem of identifying the von Neumann algebras with property (T) is diffi-
cult. In particular, it is known [3] that certain von Neumann algebras of type II;
have property (T), but it is not known whether every von Neumann algebra of type
II; has property (T).

The purpose of this note is to prove the following two theorems.
THEOREM 1. Suppose that A is a von Neumann algebra of type 11, acting on a
separable, infinite-dimensional Hilbert space $. Suppose also that every von

Neumann subalgebra of € that is of type 11} (acting perhaps on a smaller space)
has property (T). Then A has a single genevator.
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THEOREM 2. If every von Neumann algebra of type ILy acting on a separable
Hilbert space has property (T), then the answer to Problem 1 is affirmative.

LEMMA. Let n be a positive integer, and suppose that for i=1, 2, ==+, n, A,
is a von Neumann algebra wilh a single genevator A;. Then the divect sum

n
oA = Ei:l @ ; has a single generator.

Proof. 1t is easy to see that since A; generates «;, the same is true of every
operator of the form A; - A, where A does not belong to the spectrum of A; . There-
fore we may assume that there exist mutually disjoint open discs A, Az, -+, A, in
the complex plane such that the spectrum of A; is contained in A; (1 <i<n). We
define A=A P A, D - @DA,, and we show that A generates . Clearly, it suf-
fices to fix an integer j (1 < j < n) and to show that the operator

B=B ®B® OB,
belongs to 2(A), where B; =0 for i #j and Bj = Aj. For this purpose, we employ
a theorem of Lavrentiev [2] to assert the ex1stence of a sequence of polynomials
n
{p,(z)} that converges uniformly on every compact subset of Ui:1 A; to the ana-

lytic function

Z (z € AJ-),

n,
0 (Z€ U Ai —AJ‘).
j=1

It follows (see [8, p. 432]) that the sequence {p (A)} converges in the uniform
operator topology to f(A) = B; since B clearly lies in #(A), the proof is complete.

Proof of Theorem 1. Let o satisfy the hypotheses of the theorem, and let ¢ be
an algebraic * - isomorphism of « onto M(.#). We begin the argument by defin-
ing (for each positive integer n) a * - isomorphism ¢, of . onto the von Neumann
algebra M n(.,d ) of all 21 X 2 matrices with entries from . (Obviously Mzn(al )

2
acts on the direct sum of 2" copies of $.) Let ¢ = ¢;. Assuming that ¢; has been
defined for 1 <j <k, let X be in #, and suppose that

X1 X2 e X

1,2k
X X X
22 2 2k
(ibk(x) - ’ ’
X X - X
2k, 1 2k,2 2k, 2k
where each X;; belongs to . We now define ¢y 1(X) to be the 2kl okt 1l matrix
¢(X 1 1) ¢(X 1 2) ¢(Xl Zk)
WXz WXy o HX, )
$rer1(X) = ’
WXy ) HX ) HX 1k 5
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By induction, we obtain a * - isomorphism ¢,: & — Mzn(.,d ), for each positive in-
teger n.

To show that ¢ has a single generator, it suffices (by virtue of [11, Theorem 1])
to show that there exist operators A and B in « such that « = #Z(A, B). The con-
struction of these operators A and B is somewhat complicated, and it goes as fol-
lows. We know [1, p. 33] that there exists a countable collection {A;, A,, -~} of
operators in « such that &« =%(A;, A,, - ). For each positive integer k, let

C“(k) Clz(k) Cl,Zk(k)

Cy; (k) Cy, (k) Cz Zk(k)
¢r(Ay) = ’ s

Cox, ) Cor e G )

where the entries Cjj(k) belong to «, and denote by &) the von Neumann algebra
k
, 2
?k = '%({Cij(k)}i,j=l)

(acting on ). Clearly, €y is contained in #, and we know that €} can be written
as a direct sum @) = & ) Fy, where &, and ¥ are finite von Neumann algebras
of types II and I, respectively. (Of course, either direct summand may be absent.)
Since ¥ is finitely generated, the same is true of the algebra £y, and since we as-
sume that €, has property (T), it follows from [11, Theorem 1] that €} has a single
generator. Since &y has a single generator (by [5]), it follows from the lemma that
%1 has a single generator—say %) = #(Dy). Multiplying by a suitable scalar, we
may assume that ||Dy|| <k-2. The desired operator A will be constructed from the
sequence {Dy}, and, roughly speaking, it will be the infinite matrix

- N

\_ ° 1
properly interpreted.

More precisely, we define the operator A as the sum of an infinite series

oC
A=2J _, T, of operators T, in «. The sequence {Tn}o-; is defined as follows.
Let T; be the unique operator in -+ such that
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D, 0
¢(T1) = ( )
0 0

Let T, be the unique operator in # such that
¢ 0 O 0

0 0 O 0

$2(T5) =
0O 0 D, O

O 0 O 0

In general, for each positive integer n, we define T, as the unique operator in
for which the matrix ¢,(T,) in Mzn( &) has D, as its (2™ - 1, 2™ - 1)th entry and

zeros elsewhere. Since each isomorphism ¢, is norm-preserving [1, p. 8], we have
the inequality

ITall = IDn] <072 (1<n<=),

(2o}
and thus the series Enzl T, converges in the uniform operator topology to some
operator A in .

We assert that for each positive integer n, the (2" - 1, 2™ - 1)th entry of the
matrix ¢n(A) is the operator D, . To prove this, it suffices to show that for every
positive integer k different from n the (27-!, 20-1)th entry of the matrix ¢,(Ty) is
0. The argument splits into the two cases k > n and k < n. Suppose first that k <n.
Then the (2k, 2k)th entry of the matrix ¢x(Ty) is 0, and this implies that both the
(2ktl _ 1 2k*+1l _ 1)th and the (2K*1, 2Kk*1)th entries of the matrix ¢, ;(Tx) are O.
By a finite induction argument, one readily concludes that the (2™ - 1, 2" - 1)th entry
of the matrix ¢,(Ty) is 0. Suppose now that k > n, and suppose, contrary to our as-
sertion, that the (2™ - 1, 2™ - 1)th entry of ¢,(T)) is not 0. Then at least one of the
four entries with indices

+1 +1 +1 +1 +1 +1 +1 +1
(2™ - 2,277 _2), (@™ -2,2™-3), @™ -3,2"" -2), (2" -3,2""" -3)

in the matrix ¢,;1(Ty) is not 0. Again by a finite induction argument, we conclude
that the matrix ¢, (Ty) contains at least one nonzero entry in a position other than
the (2K - 1, 2K - 1)th position; this is a contradiction. Thus we have shown that for
each positive integer n, the (2" - 1, 2™ - 1)th entry of the matrix ¢,(A) is Dy,.

We next show that there exists an operator B in « such that « = #(A, B). To
obtain B, we first construct a hyperfinite subfactor # of 4 as follows. Let
$B1 C « be the subfactor of type I, such that #(98;) consists of all linear combina-
tions of the four matrix units

( 1 0 ) (0 1 ) ( 0 0 ) ( 0 0)
0O O 0 o 1 0 0 1
In general, for each positive integer n, let %, be the type I‘Zn subfactor of .« such

that ¢,(#,) consists of all linear combinations of the 227 different matrices in
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Mzn(d ), each having one entry equal to 1g and all other entries equal to 0. Note
that
By C By C By C === C By C =,

If # denotes the smallest von Neumann algebra containing each of the factors #,
(1 < n < ), then & is a hyperfinite subfactor of « [1, p. 290]. Therefore, by vir-
tue of [10, Theorem 1], it follows that & = #(B) for some operator B in &.

We complete the proof of the theorem by showing that #(A, B) = . Since
A =R(A;, Ay, -+ ), it suffices to show that each operator A, lies in #(A, B).
Since each ¢, is an isomorphism, this can be accomplished by showing that ¢,(Ap)
lies in ¢ (#(A, B)) (1 < n < ). To this end, fix a positive integer n, and note first
that

¢n( Z2(A, B)) D ¢n(R(B)) = ¢n(B) DO ¢d(Bn).

Thus every 2" X 27 matrix having a 1g for one entry and all other entries equal to
0 lies in ¢,(#(A, B)). Since ¢,(A) is in ¢,(R(A, B)), since the (2™ - 1, 27 - 1)th
entry of ¢,(A) is D,, and since €, = #(D,), we see that ¢,(%(A, B)) contains the
algebra Mzn( @,) and therefore the matrix ¢,(A;). Thus the proof is complete.

Proof of Theorem 2, If .« is a von Neumann algebra acting on a separable Hil-
bert space, then we can write « as the direct sum & = &1 D A2(P 3, where
| is a finite von Neumann algebra of type I, +, is a von Neumann algebra of
type II1, and 3 is a properly infinite von Neumann algebra. By [5], «; has a
single generator, by Theorem 1 2 has a single generator, and by [11, Theorem 2],
«£3 has a single generator. Thus we conclude from the lemma that «# has a single
generator.

Remark. We wish to acknowledge the contribution made by Professor David
Topping toward the solution of Problem 1. Topping directed Wogen’s thesis [11],
and he was co-author of the joint paper with Pearcy [7] that led to the important
paper of Sait6 [9].
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