VON NEUMANN ALGEBRAS WITH A SINGLE GENERATOR

R. G. Douglas and Carl Pearcy

A von Neumann algebra is a weakly closed, self-adjoint algebra of operators on a (complex) Hilbert space with the property that the identity operator on the Hilbert space belongs to the algebra. If $\{A_1,A_2,\cdots\}$ is a finite or countably infinite collection of operators acting on the Hilbert space \$, then the von Neumann algebra generated by the collection $\{A_1, A_2, \dots\}$ is by definition the smallest von Neumann algebra that contains each operator A_i ; we denote this algebra by $\mathcal{R}(A_1, A_2, \dots)$. It is known [1, p. 33] that if \$\sigma\$ is separable, then every von Neumann algebra \$\mathscr{A}\$ acting on \mathfrak{S} may be written as $\mathscr{A} = \mathscr{R}(A_1, A_2, \cdots)$ for some countable family $\{A_1, A_2, \cdots\}$ of operators in \mathscr{A} . A von Neumann algebra \mathscr{A} is said to have a single generator if there exists an operator A in \mathcal{A} such that $\mathcal{A} = \mathcal{R}(A)$. (It is easy to show that $\mathcal{A} = \mathcal{R}(A)$ if and only if \mathcal{A} consists of the weak closure of the set of all polynomials p(A, A*) in A and A*.)

Problem. Does every von Neumann algebra A acting on a separable Hilbert space have a single generator?

This problem has been before us for some time. The first result bearing on it is the theorem of von Neumann [4] that if ${\mathscr A}$ is abelian, then ${\mathscr A}$ has a single Hermitian generator. Further progress was made by Pearcy, who showed in [5] that A has a single generator if it is of type I, and who introduced in [6] a certain matricial technique that has turned out to be useful in subsequent work on this problem. Next, Suzuki and Saitô proved in [10] that if ${\mathscr A}$ is hyperfinite, then ${\mathscr A}$ has a single generator (see [3, footnote 68]). Finally, Wogen [11] recently extended certain important results of Saitô [9], and he used the extensions to prove that if A is properly infinite (that is, if A contains no nonzero finite central projection), then A has a single generator.

In most of these papers, von Neumann algebras 🖋 having the property

(T) algebra
$$M_2(\mathcal{A})$$
 of all 2×2 matrices over \mathcal{A}

play a central role.

The problem of identifying the von Neumann algebras with property (T) is difficult. In particular, it is known [3] that certain von Neumann algebras of type Π_1 have property (T), but it is not known whether every von Neumann algebra of type II_1 has property (T).

The purpose of this note is to prove the following two theorems.

THEOREM 1. Suppose that ${\cal A}$ is a von Neumann algebra of type II $_1$ acting on a separable, infinite-dimensional Hilbert space §. Suppose also that every von Neumann subalgebra of ${\cal A}$ that is of type Π_1 (acting perhaps on a smaller space) has property (T). Then A has a single generator.

Received October 29, 1968.

The authors acknowledge support from the NSF and from the Alfred P. Sloan Foundation.

THEOREM 2. If every von Neumann algebra of type II_1 acting on a separable Hilbert space has property (T), then the answer to Problem 1 is affirmative.

LEMMA. Let n be a positive integer, and suppose that for $i = 1, 2, \dots, n$, \mathcal{A}_i is a von Neumann algebra with a single generator A_i . Then the direct sum $\mathcal{A} = \sum_{i=1}^n \bigoplus \mathcal{A}_i$ has a single generator.

Proof. It is easy to see that since A_i generates \mathscr{A}_i , the same is true of every operator of the form A_i - λ , where λ does not belong to the spectrum of A_i . Therefore we may assume that there exist mutually disjoint open discs Δ_1 , Δ_2 , \cdots , Δ_n in the complex plane such that the spectrum of A_i is contained in Δ_i $(1 \le i \le n)$. We define $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$, and we show that A generates \mathscr{A} . Clearly, it suffices to fix an integer j $(1 \le j \le n)$ and to show that the operator

$$B = B_1 \oplus B_2 \oplus \cdots \oplus B_n$$

belongs to $\mathcal{R}(A)$, where $B_i = 0$ for $i \neq j$ and $B_j = A_j$. For this purpose, we employ a theorem of Lavrentiev [2], to assert the existence of a sequence of polynomials $\{p_n(z)\}$ that converges uniformly on every compact subset of $\bigcup_{i=1}^n \Delta_i$ to the analytic function

$$\mathbf{f}(\mathbf{z}) = \begin{cases} \mathbf{z} & (\mathbf{z} \in \Delta_{\mathbf{j}}), \\ 0 & \left(\mathbf{z} \in \left[\bigcup_{j=1}^{n} \Delta_{\mathbf{i}} \right] - \Delta_{\mathbf{j}} \right). \end{cases}$$

It follows (see [8, p. 432]) that the sequence $\{p_n(A)\}$ converges in the uniform operator topology to f(A) = B; since B clearly lies in $\mathcal{R}(A)$, the proof is complete.

Proof of Theorem 1. Let $\mathscr A$ satisfy the hypotheses of the theorem, and let ϕ be an algebraic * - isomorphism of $\mathscr A$ onto $M_2(\mathscr A)$. We begin the argument by defining (for each positive integer n) a * - isomorphism ϕ_n of $\mathscr A$ onto the von Neumann algebra $M_2^n(\mathscr A)$ of all $2^n \times 2^n$ matrices with entries from $\mathscr A$. (Obviously $M_{2^n}(\mathscr A)$ acts on the direct sum of 2^n copies of $\mathfrak P$.) Let $\phi = \phi_1$. Assuming that ϕ_j has been defined for $1 \le j \le k$, let X be in $\mathscr A$, and suppose that

$$\phi_{k}(X) = \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1,2^{k}} \\ X_{21} & X_{22} & \cdots & X_{2,2^{k}} \\ & \ddots & & \ddots & \ddots \\ X_{2^{k},1} & X_{2^{k},2} & \cdots & X_{2^{k},2^{k}} \end{pmatrix},$$
where to A . We now define A , (X) to be the 2^{k}

where each X_{ij} belongs to ${\mathscr A}$. We now define $\phi_{k+1}(X)$ to be the $2^{k+1}\times 2^{k+1}$ matrix

$$\phi_{k+1}(x) = \begin{pmatrix} \phi(x_{11}) & \phi(x_{12}) & \cdots & \phi(x_{1,2^k}) \\ \phi(x_{21}) & \phi(x_{22}) & \cdots & \phi(x_{2,2^k}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi(x_{2^k,1}) & \phi(x_{2^k,2}) & \cdots & \phi(x_{2^k,2^k}) \end{pmatrix}.$$

By induction, we obtain a * - isomorphism ϕ_n : $\mathscr{A} \to M_{2^n}(\mathscr{A})$, for each positive integer n.

To show that $\mathscr A$ has a single generator, it suffices (by virtue of [11, Theorem 1]) to show that there exist operators A and B in $\mathscr A$ such that $\mathscr A=\mathscr R(A,\,B)$. The construction of these operators A and B is somewhat complicated, and it goes as follows. We know [1, p. 33] that there exists a countable collection $\{A_1,\,A_2,\,\cdots\}$ of operators in $\mathscr A$ such that $\mathscr A=\mathscr R(A_1,\,A_2,\,\cdots)$. For each positive integer k, let

$$\phi_{k}(A_{k}) = \begin{pmatrix} C_{11}(k) & C_{12}(k) & \cdots & C_{1,2^{k}}(k) \\ C_{21}(k) & C_{22}(k) & \cdots & C_{2,2^{k}}(k) \\ & & & & \\ C_{2^{k},1}(k) & C_{2^{k},2}(k) & \cdots & C_{2^{k},2^{k}}(k) \end{pmatrix},$$

where the entries $C_{ij}(k)$ belong to ${\mathscr A}$, and denote by ${\mathscr C}_k$ the von Neumann algebra

$$\mathscr{C}_{k} = \mathscr{R}(\{C_{ij}(k)\}_{i,j=1}^{2^{k}})$$

(acting on §). Clearly, \mathscr{C}_k is contained in \mathscr{A} , and we know that \mathscr{C}_k can be written as a direct sum $\mathscr{C}_k = \mathcal{E}_k \oplus \mathscr{F}_k$, where \mathcal{E}_k and \mathscr{F}_k are finite von Neumann algebras of types II and I, respectively. (Of course, either direct summand may be absent.) Since \mathscr{C}_k is finitely generated, the same is true of the algebra \mathcal{E}_k , and since we assume that \mathcal{E}_k has property (T), it follows from [11, Theorem 1] that \mathcal{E}_k has a single generator. Since \mathscr{F}_k has a single generator (by [5]), it follows from the lemma that \mathscr{C}_k has a single generator—say $\mathscr{C}_k = \mathscr{R}(D_k)$. Multiplying by a suitable scalar, we may assume that $\|D_k\| \leq k^{-2}$. The desired operator A will be constructed from the sequence $\{D_k\}$, and, roughly speaking, it will be the infinite matrix

properly interpreted.

More precisely, we define the operator A as the sum of an infinite series $A = \sum_{n=1}^{\infty} T_n \text{ of operators } T_n \text{ in } \mathscr{A}. \text{ The sequence } \{T_n\}_{n=1}^{\infty} \text{ is defined as follows.}$ Let T_1 be the unique operator in \mathscr{A} such that

$$\phi(\mathbf{T}_1) = \begin{pmatrix} \mathbf{D}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Let T_2 be the unique operator in \mathcal{A} such that

In general, for each positive integer n, we define T_n as the unique operator in \mathscr{A} for which the matrix $\phi_n(T_n)$ in $M_{2^n}(\mathscr{A})$ has D_n as its $(2^n - 1, 2^n - 1)$ th entry and zeros elsewhere. Since each isomorphism ϕ_n is norm-preserving [1, p. 8], we have the inequality

$$\|T_n\| = \|D_n\| \le n^{-2} \quad (1 \le n < \infty),$$

and thus the series $\sum_{n=1}^{\infty} T_n$ converges in the uniform operator topology to some operator A in \mathcal{A} .

We assert that for each positive integer n, the $(2^n$ - 1, 2^n - 1)th entry of the matrix $\phi_n(A)$ is the operator D_n . To prove this, it suffices to show that for every positive integer k different from n the $(2^{n-1}, 2^{n-1})$ th entry of the matrix $\phi_n(T_k)$ is 0. The argument splits into the two cases k > n and k < n. Suppose first that k < n. Then the $(2^k, 2^k)$ th entry of the matrix $\phi_k(T_k)$ is 0, and this implies that both the $(2^{k+1}-1, 2^{k+1}-1)$ th and the $(2^{k+1}, 2^{k+1})$ th entries of the matrix $\phi_{k+1}(T_k)$ are 0. By a finite induction argument, one readily concludes that the $(2^n-1, 2^n-1)$ th entry of the matrix $\phi_n(T_k)$ is 0. Suppose now that k > n, and suppose, contrary to our assertion, that the $(2^n-1, 2^n-1)$ th entry of $\phi_n(T_k)$ is not 0. Then at least one of the four entries with indices

$$(2^{n+1}-2, 2^{n+1}-2), (2^{n+1}-2, 2^{n+1}-3), (2^{n+1}-3, 2^{n+1}-2), (2^{n+1}-3, 2^{n+1}-3)$$

in the matrix $\phi_{n+1}(T_k)$ is not 0. Again by a finite induction argument, we conclude that the matrix $\phi_k(T_k)$ contains at least one nonzero entry in a position other than the $(2^k$ - 1, 2^k - 1)th position; this is a contradiction. Thus we have shown that for each positive integer n, the $(2^n$ - 1, 2^n - 1)th entry of the matrix $\phi_n(A)$ is D_n .

We next show that there exists an operator B in \mathscr{A} such that $\mathscr{A} = \mathscr{R}(A, B)$. To obtain B, we first construct a hyperfinite subfactor \mathscr{B} of \mathscr{A} as follows. Let $\mathscr{B}_1 \subset \mathscr{A}$ be the subfactor of type I_2 such that $\phi(\mathscr{B}_1)$ consists of all linear combinations of the four matrix units

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

In general, for each positive integer n, let \mathscr{B}_n be the type I_{2^n} subfactor of \mathscr{A} such that $\phi_n(\mathscr{B}_n)$ consists of all linear combinations of the 2^{2n} different matrices in

 $\mathbf{M_{2^n}}(\mathscr{A}),$ each having one entry equal to $\mathbf{1}_{\mathfrak{H}}$ and all other entries equal to 0. Note that

$$\mathcal{B}_1 \subset \mathcal{B}_2 \subset \mathcal{B}_3 \subset \cdots \subset \mathcal{B}_n \subset \cdots$$
.

If \mathscr{B} denotes the smallest von Neumann algebra containing each of the factors \mathscr{B}_n $(1 \le n < \infty)$, then \mathscr{B} is a hyperfinite subfactor of \mathscr{A} [1, p. 290]. Therefore, by virtue of [10, Theorem 1], it follows that $\mathscr{B} = \mathscr{R}(B)$ for some operator B in \mathscr{B} .

We complete the proof of the theorem by showing that $\mathscr{R}(A, B) = \mathscr{A}$. Since $\mathscr{A} = \mathscr{R}(A_1, A_2, \cdots)$, it suffices to show that each operator A_n lies in $\mathscr{R}(A, B)$. Since each ϕ_n is an isomorphism, this can be accomplished by showing that $\phi_n(A_n)$ lies in $\phi_n(\mathscr{R}(A, B))$ $(1 \le n < \infty)$. To this end, fix a positive integer n, and note first that

$$\phi_n(\mathscr{R}(A, B)) \supset \phi_n(\mathscr{R}(B)) = \phi_n(\mathscr{R}) \supset \phi_n(\mathscr{R}_n).$$

Thus every $2^n \times 2^n$ matrix having a $1\mathfrak{H}$ for one entry and all other entries equal to 0 lies in $\phi_n(\mathscr{R}(A,\,B))$. Since $\phi_n(A)$ is in $\phi_n(\mathscr{R}(A,\,B))$, since the $(2^n$ - 1, 2^n - 1)th entry of $\phi_n(A)$ is D_n , and since $\mathscr{C}_n = \mathscr{R}(D_n)$, we see that $\phi_n(\mathscr{R}(A,\,B))$ contains the algebra $M_{\mathfrak{P}^n}(\mathscr{C}_n)$ and therefore the matrix $\phi_n(A_n)$. Thus the proof is complete.

Proof of Theorem 2. If \mathscr{A} is a von Neumann algebra acting on a separable Hilbert space, then we can write \mathscr{A} as the direct sum $\mathscr{A} = \mathscr{A}_1 \oplus \mathscr{A}_2 \oplus \mathscr{A}_3$, where \mathscr{A}_1 is a finite von Neumann algebra of type I, \mathscr{A}_2 is a von Neumann algebra of type II₁, and \mathscr{A}_3 is a properly infinite von Neumann algebra. By [5], \mathscr{A}_1 has a single generator, by Theorem 1 \mathscr{A}_2 has a single generator, and by [11, Theorem 2], \mathscr{A}_3 has a single generator. Thus we conclude from the lemma that \mathscr{A} has a single generator.

Remark. We wish to acknowledge the contribution made by Professor David Topping toward the solution of Problem 1. Topping directed Wogen's thesis [11], and he was co-author of the joint paper with Pearcy [7] that led to the important paper of Saitô [9].

REFERENCES

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann). Cahiers scientifiques, Fascicule 25. Gauthier-Villars, Paris, 1957.
- 2. M. Lavrentiev, Sur les fonctions d'une variable complexe représentables par des séries de polynomes. Actualités Sci. Indust. no. 441, 1936.
- 3. F. J. Murray and J. von Neumann, *On rings of operators*. *IV*. Ann. of Math. (2) 44 (1943), 716-808.
- 4. J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Math. Ann. 102 (1929), 370-427.
- 5. C. Pearcy, W*-algebras with a single generator. Proc. Amer. Math. Soc. 13 (1962), 831-832.
- 6. ——, On certain von Neumann algebras which are generated by partial isometries. Proc. Amer. Math. Soc. 15 (1964), 393-395.
- 7. C. Pearcy and D. Topping, Sums of small numbers of idempotents. Michigan Math. J. 14 (1967), 453-465.

- 8. F. Riesz and B. Sz.-Nagy, Functional Analysis. Ungar Publ. Co., New York, 1955.
- 9. T. Saitô, On generators of von Neumann algebras. Michigan Math. J. 15 (1968), 373-376.
- 10. N. Suzuki and T. Saitô, On the operators which generate continuous von Neumann algebras. Tôhoku Math. J. (2) 15 (1963), 277-280.
- 11. W. Wogen, On generators for von Neumann algebras. Bull. Amer. Math. Soc. 75 (1969), 95-99.

University of Michigan Ann Arbor, Michigan 48104