ASSOCIATED FIBRE SPACES
James D. Stasheff

From the point of view of homotopy theory, this paper looks at transformation
groups and the association between G-bundles and principal G-bundles. It makes
fundamental extensions to a theory of “transformation monoids,” and it discusses a
correspondence between quasifibrations and associated principal quasifibrations.

1. INTRODUCTION

In the theory of transformation groups, orbit spaces play an important role. It is
particularly helpful if the map X — X/G is a fibre bundle, in fact, a principal G-
bundle. In the theory of fibre bundles, the correspondence between G-bundles with
fibre F and associated principal G-bundles is of crucial importance. If p: E — B
is a (right) principal G-bundle and G is represented as a transformation group on
F, the associated G-bundle q: E X oF — B with fibre F is defined by
E X gF = E X F/G, where G acts via the diagonal action g(e, f) = (eg-!, gf). If G is
a transformation group on X and X — X/G is not a bundle, we can study the Borel
bundle £ X X — £€G XgX = Xg [2], where €g — Bg is a universal principal G-
bundle. [We use the notation €, in contrast to [2] and [4], so that Eg can refer un-
ambiguously to the above construction with X = E. There is no space € in this
paper.] The total space X = € g X X has the same weak homotopy type as X, and if
X — X/G were a principal G-bundle, X would have the same weak homotopy type
as X/G.

Once we have adopted the point of view of weak homotopy type, it is natural to
consider fibre spaces and even quasifibrations [5] instead of bundles, and weak ho-
motopy equivalences instead of homeomorphisms. Since weak homotopy equivalences
do not have precise inverses, it is appropriate to look at monoids of weak homotopy
equivalences rather than groups thereof. This paper is an initial contribution to the
theory of fransformation monoids with particular emphasis on the role of (quasi-)
fibrations.

We begin by fixing some elementary notation and terminology.

Definition 1.1. Let M be a topological monoid. A (left) M-space (X; 1) con-
sists of a space X and a map g: M X X — X such that (with y(m, x) = mx)

1) m(nx) = (mn)x, 2) ex=x.

If p(m, ) X —X is a weak homotopy equivalence of X for each m € M, we say
(X; ) is a vepresentation of M by weak homotopy equivalences of X or simply a
weak representation of M. The adjoint to p is a function M — XX and it is a
homomorphism. For a right M-space, the adjoint is an antihomomorphism. We
then speak of a weak antivepresentation of M.
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For an M-space (X; p), the relation x ~ mx is not necessarily an equivalence
relation on X, This poses problems in defining an orbit space. (If Mx denotes
{mxl me M }, then y € Mx need not imply x € My.) The relation does of course
generate an equivalence relation that can be used to define an orbit space [6], but our
interest will be in constructing an associated principal quasifibration X -X M- The
construction (see Section 3) will be functorial and will agree up to weak homotopy
with the construction for transformation groups. The construction is a generalization
of that due to Dold and Lashof [4] for the special case in which X is a point, giving
the universal principal quasifibration €y; — By;.

The classical construction of X5 as &g X X is a special case of the general
construction of E XX — B. This construction is not possible for monoids, as it
stands, but our construction applies appropriately to a principal quasifibration
r: X — A over M and a weak representation (F; v) of M. We obtain a quasifibra-
tion q: X X \4F — Xy and a weak homotopy equivalence p: X — A. This associ-
ated fibre space behaves well in that it is functorial in the appropriate way and
satisfies Theorems A, B, and C below.

For each quasifibration q: D — A, we define an associated map
Prin q: Prin D — A by

PrinD = {¢: F > D| ¢ is a weak homotopy equivalence with some q-1(b)}

and Prin q(¢) = q(¢(F)). The typical “fibre” looks like the monoid #(F) of all weak
homotopy equivalences of F into itself. In order to ensure that #(F) acts continu-
ously on Prin D, we assume that F is locally compact, and we use the compact-open
topology. It is not known whether Prin q is a quasifibration, except in the case of
bundles and Hurewicz fibrations.

Definition 1.2. Two quasifibrations r: C — A and r': C' — A' are quasi-equiva-
lent if there exists a fibre-preserving map

f

cC —> C'
I‘l lr'
A—f——-> Al

such that f and f are weak homotopy equivalences. If r and r' are principal quasi-
fibrations over M (see Section 3 for the defini_tion), they are structurally equivalent
if £ can be chosen so that in addition f(cm) = f(c)m.

THEOREM A. If q: D — A is a quasifibvation wz~th fibve F and Prinq is a
quasifibration, then q is quasi-equivalent to Prin D X g F — (Prin D) S(F)

THEOREM B. If r: C — A is a principal quasifibration over #(F), then
Prin (C X %(F)F) is structurally equivalent to C.

Since every quasifibration is quasi-equivalent to a Hurewicz fibration, these
theorems show that in the weak homotopy category there is a complete equivalence
between quasifibrations with fibre F (locally compact) and associated principal
quasifibrations over o¢(F), much as in the Steenrod theory of fibre bundles.

Special cases of the construction given here were considered in [15]. There the
emphasis was on a generalization involving nontransitive representation of a monoid
H by homotopy equivalences, in other words, involving a map H — H(F) that is not
a strict homomorphism, but only an appropriate homotopy analogue. Here we
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emphasize the analogies with classical bundle theory, as in the above theorems and
in the following one.

THEOREM C. If Gisa transformation group on F and p: E — B is a principal
G-bundle, then E X gF — Eqg is a G-bundle, and as such it is equivalent to
p* EXF, wheve p: Eg — B is the map induced by p.

Thus we have a satisfactory generalization. Our techniques use locally compact
fibres, and they give rise to weak equivalences and quasifibrations. Some of the re-
sults could be strengthened with more elaborate machinery;* but the construction
given here is already fairly complex. Since it suffices for all applications involving
singular homotopy theory, we avoid further elaboration. At certain points, we as-
sume familiarity with the Dold-Lashof construction, at least with its definition and
conceptual significance. Otherwise the paper is self-contained; but it is closely re-
lated to others involving essentially the same kind of construction [15], [13], [7], [11].

A particularly important application involving singular homotopy theory is the
Eilenberg-Moore spectral sequence [10], which converges to a graded group asso-
ciated with H*(E X oF; k). Under suitable restrictions on the cohomology of the
space (for example, if k is a field), the E,-term is identifiable as

* (Tr. * (e
CoextH*(G;k) (H*(E; k), H*(F; k)).
Eilenberg and Moore derive this spectral sequence by using differential homological
algebra on the chain complexes involved. Several people have noted that the con-
structions by Dold and Lashof and by Milnor give geometric realizations of this
spectral sequence in the special cases where E is universal and G is a group [1] or
F is a point [7], [11]. Our construction substantiates the hint in [1] that the applica-
tion is possible for arbitrary monoids M, principal quasifibrations over M, and weak
representations of M. We sketch details in an appendix, where we also consider
alternate forms of the construction and clear up problems about homotopy type de-
pending on the topologies used.

We are grateful to John Derwent for pointing out these latter difficulties, casually
passed over elsewhere in the literature. An earlier version of this paper was con-
cerned primarily with the above realization. For the present emphasis, we are in-
debted to the insight of the referee.

2. THE BASIC CONSTRUCTION

Given a q.f. p: E — B in which H operates, Dold and Lashof imbed it in a
q.f. p: E — B such that the inclusion E C E is null-homotopic. In the principal
case, this leads by iteration to a total space with the weak homotopy type of a point.
To obtain a total space of the weak homotopy type of X, we alter the construction of
Dold and Lashof.

Definition 2.1. A map q: D — A is a quasifibration if
a,: (D, q-1(a)) — m(4A, a)

is an isomorphism for all i > 0. If A is path-connected, all the fibres q-1(a) have
the same weak-homotopy type, often denoted by F. '

Definition 2.2 (see [4]). An opervation of M in a quasifibvation r: C — A isa
map v: C XM — C such that, with the notation v(c, m) = cm,

* Added in proof: Compare N. E. Steenrod, Milgram's classifying space for a
topological group, Topology (to appear).
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a) ce =c (v has e as unit),
b) r(cm) = r(c) (v preserves fibres),
c) vic, )2 M — r-1(r(c)) is a weak homotopy equivalence.
Our basic construction is applicable if we are given
1) a fixed right M-space (X, u),
2) an operation v of M in a quasifibration r: C — A, and
3) a map ¢: C — X such that ¢(cm) = ¢(c)m.
We shall imbed r in a map f: ¢ - A. Except for the topologies involves,

C=CUCXIXM U XXM and A=AUCXIUZX,
v oX1 r ¢

where the symbols denote identifications with respect to the maps indicated at t =0
or 1, respectively, and where the map f: ¢ - A is induced by r or by projection
onto all but the last factor on the respective pieces.

We use the same notational conventions as Dold and Lashof. A point of ¢ is de-
noted by ¢ |t| m, and a pomt of A by cLlt. Notethat c|l|m=c'|1|m'

cm=c'm', and ¢ |0| m =c'|0| m if ¢(c) = ¢(c'). The topology in C is the strongest
topology such that the coordinate functions

t: € — [0, 1] cltfm — t,

c: t-1(0,1) -» C cltfm - c,

m: t-1(0,1) > M  c|t|m - m,
cm: t~10, 1] = C c|tfm — cm,
¢(x): g-1[0,1) - X  clt|m — ¢fc)

are continuous.

Only the last condition is not given explicitly by Dold and Lashof. Their con-
struction is a special case of ours, namely the case where X is a point.

For A, the coordinate functions that determine the topology are
t: A — [0, 1] clt — t,
c: t-1(0,1) - C cLt — c,
r(c): t-1(0, 1] - A cit — r{c),
¢lc): t71[0,1) > X  cLt — ¢lc).

The main properties of this construction are described in the following theorem.

THEOREM 2.3. The map £ is a quasifibvation. Theve is a commutative dia-
gram
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-

=
P> < QO
>r<—
>

-

where C = t-1(A), and ¢ extends to a map ¢ ¢ - X.

Proof. That T is a quasifibration follows by reasoning similar to that in [4].
The map (,75: ¢ — X is defined by ¢ |t] m — ¢(cm). The equivariance of ¢ shows 55
is well-defined and continuous, since the coordinate functions m, cm, and ¢(c) are
continuous on the open sets on which they are defined.

3. PRINCIPAL QUASIFIBRATIONS

Definition 3.1 (see [4]). A principal quasifibration over M consists of an oper-
ation p of M in a quasifibration r; C — A such that (cm)m' = c(mm'). (It follows
that (C, i) is a weak antirepresentation of M.)

THEOREM 3.2. If r: C — A is a principal quaszfzbmtzon with a map ¢ C —» X
such that ¢(cm) = ¢(c)m for a fixed vight M-space X, then ¥: ¢ — A is a principal
quasifibration with (i: C x M — C defined by {i(c |t| m, m') = ¢ |t| mm', and
(€, m) = L(3(E), m).

The proof is the same as in [4] except for the last statement, which follows from

d(c |t| m) = ¢(c)m.

Thus, if r: C — A is a principal quasifibration over M with a map ¢: C - X
such that ¢(cm) = ¢(c)m, then our construction can be iterated. We topologize the
limit r_: C_ — A_ just as Dold and Lashof do. A is to have the limit topology, but
we give C_, a stronger topology, which can be described verbatim as in Dold and
Lashof [4].

THEOREM 3.3. r.: C — A, is a principal quasifibration over M.

For Dold and Lashof, the limit total space is acyclic. Comparable results are
obtained in our situation in two cases. First, we suppose that C is X itself, in other
words, that r: X — A is a principal quasifibration over M and ¢ is the identity map
on X,

THEOREM 3.4. The equivaviant imbedding

X —> X,

1 -

A—> A,

exhibits X — A as an equivaviant deformation vetvact of X, — A, . The retraction
X, — X is given by ¢, .

Proof. By induction, let C,,+1 =C, UD, XIXMU XXM, and let ¢,: C, — X be
an equivariant deformation retraction. It follows that ¢,.;(c [t| m) = ¢ (c)m is an
equivariant retraction. That it is an equivariant deformation retraction follows by
the usual argument [12, Section 1.4, Lemma 9] from the fact that C,,;; can be equi-
variantly deformed into X, namely by c |t| m— ¢(c) [t+ (1 -t)(1 - s)|m
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For quasifibrations, there are various notions of equivalence. Those given in the
introduction are particularly appropriate for our work here.

Definition 1.2. Two quasifibrations r: C — A and r': C' — A' are quasi-
equivalent if there exists a fibre-preserving map

C_f.).c'

S

A__f__._)Al

such that f and f are weak homotopy equivalences. If in addition r and r' are prin-
cipal quasifibrations, we say they are structurally equivalent if f can be chosen so
that f(cm) = f(c)m.

Remark, In place of the homotopy condition on f or f, we can assume that f in-
duces a weak equivalence between corresponding fibres r-1(a) and r'-1(f(a)).

Theorem 3.4 has the following particular consequence.
COROLLARY 3.5. r and r., are stvucturally equivalent.

Now if X is not given as the total space of a principal quasifibration (for exam- ,
ple, if no orbit space is defined, or if X — X/M is not a quasifibration), we consider
r: XX M — X by projection on the first factor, with ¢ = pu: X XM — X.

This special case is so important that we denote C_, by X and A by Xn.

THEOREM 3.6. If (X, u) is a weak antivepresentation of M, then X has the
weak homotopy type of X.

(What we have constructed resembles a free resolution of X over M.)

Proof. The map X — * (where * denotes a point) is equivariant and hence in-
duces maps

X —> €&y

P

Xy —> By

where €y, — By is the universal principal quasifibration over M given by the Dold
and Lashof construction on M — *. Since the fibre of X — €m is X, the theorem
follows from the next proposition.

PROPOSITION 3.7. If (X, u) is a weak antivepresentation of M, then C, — €,
is a quasifibvation. (Here €, is the nth stage of the Dold and Lashof construction.)

Proof. The usual arguments apply. Notice that C_,{ =C,UC, XIXMU XXM
and €,,1=¢,U €, XIX MU M. We need the fact that ¢: Cn — X 1nduces weak
homotopy equ1va1ences on the fibres of C,, — £,. Since ¢(c |t| m) = ¢(cm) = ¢(c)m,
this follows inductively from the case ¢ = pu: X X M — X, because u is an antirepre-
sentation by weak homotopy equivalences.

If r: X — A is a principal quasifibration over M, we might try to compare

~

r: X > Xy and r: X, — A,. We have the map
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XxM—H>x

b |-

X A

Naturality of the construction gives

~

X — X,

Lo

Xy —> A

THEOREM 3.8. T: X — Xy and r: X, — A, are structurally equivalent.

Pyoof. The inclusion X — X, factors through X by identification of X with
X X e. The map X — X has already been shown to be a weak homotopy equivalence;
therefore X — X, is also a weak homotopy equivalence. Since the corresponding
fibres of 7] and r are mapped by weak homotopy equivalences, the same is true for
the fibres of X — X3 and X, — A, .

4, THE BASIC ASSOCIATED CONSTRUCTION

We turn to the problem of associated fibrations. Suppose we are given a left M-
space F and a principal quasifibration r: X — A over M. If M is a group G, we
can define the associated G-bundle X X oF — A with fibre F by means of a diagonal
action of G on X X F; but this uses inverses. As an alternative, we modify our con-
struction so that it applies to this case, without the assumption that M is a group. In
order to make the construction iterable, we do the principal and associated construc-
tions together. (An alternate noniterative construction is possible, and it gives
spaces of the same weak homotopy type as the construction we are about to exhibit.
We give further details in an appendix.)

We have the same data as before: the right M-space (X, ), the principal quasi-
fibration r: C — A, the equivariant map ¢: C — X. In addition, we have a left M-
space (F, ), a quasifibration q: D — A with fibre F, and an “evaluation” map
¢: C X F — D such that

a) ¢ preserves fibres, that is, q(cf) = r(c),

b) e(c, ): F— q-l{r(c)) is a weak homotopy equivalence. (Think of C as
Prin D.)

We imbed q in a quasifibration §: D — A, where A is as before, and where D,
except for the use of a stronger topology, is given by the expression

A

D=DUCXIXF U XXPF,
€ px1

The topology on D is the strongest topology with respect to which the coordinate
functions

ttD—-1J[0,1], e t}{0,1)—>cCc, ftlo1)—F,
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cf: t-1(0, 1] - D,  ¢(c): t-1{0,1) - X
are continuous.

The principal construction t: ¢ — A is also defined as before. We define an ex-
tension £: C X F — D of ¢ by £(c [t| m, f) = c [t] mf.

THEOREM 4.1. If (F, n) is a weak vepresentation of M, then q is a quasifibra-
tion.

The construction can be iterated, and we pass to the limit as before. If we start
with g XX F — X and r: XX M — X by projection with £(x, m, f) = (x, mf), we de-
note the limit q,, by q: X X MF — Xyj. The main properties of q (to be proved) will
explain and justify the notation.

That the base space is precisely Xjg can be seen directly from the definition.
Alternatively, Xys can now be described as X X ps*, where * is a point.

On the other hand, if we replace X by *, we get a map X X [F —* X ,F. We
might call the latter space p,F to emphasize the sidedness of the operation, but we
continue to use F)p, for both left and right M-spaces. If we replace both X and F
by *, we get precisely the universal base space By of Dold and Lashof. Since maps
of any M-space into a point are equivariant, we obtain the diagram

L

of quasifibrations with fibre F.

Corresponding fibres are mapped homeomorphically. The corresponding dia-
gram for G-bundles exhibits the classifying map for X X 5F — X in terms of the
universal example €5 X oF — Bg. For fibre spaces, a universal example is known
[13] if M is the monoid H(F) of all homotopy equivalences of F.

THEOREM 4.2. The quasifibration Fiygy — Biyg) is a universal example of a
quasifibration with fibve F.

Proof. The universal example u: UE — By(r) is obtained from a quasifibration
Ult(0): Ult(F) — Byy(r) by making it into a Hurewicz fibration in the standard way;
but Ult(F) — Byyr) is precisely Fyyr) — By(r), except for the topologies involved.
The homotopy equivalence necessary to prove the theorem is discussed in the ap-
pendix.

5. THE ASSOCIATION BETWEEN PRINCIPAL QUASIFIBRATIONS
AND QUASIFIBRATIONS WITH FIBRE F
The previous construction associates a quasifibration with fibre F with a princi-
pal quasifibration over M if F is a left M-space. For M = & (F), we can reverse
the process by associating with q: D — A the map Prin q: Prin D — A defined by
Prin D = {d): F - q'l(a)| ¢ is a weak homotopy equivalence} .

We use the compact-open topology and assume henceforth that F is locally compact.
Unfortunately, it is not known whether Prin q is again a quasifibration. However, if
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q is a Hurewicz (Covering Homotopy Property) fibration, then Prin q has the same
property [13], and every quasifibration is quasi-equivalent to a Hurewicz fibration.

THEOREM 5.1 (compare Theorem B). If r: X — A is a principal quasifibration
ovey H#(F), then Prin (X X'%(F)F) — X y(F) iS structurally equivalent to r: X — A.

This follows from a corresponding relation between the basic constructions.

LEMMA 5.2. In tevms of the basic constructions, if r = Prin q is a principal
quasifibration, then so is Prin §, and it is structurally equivalent to T.

Proof. We see directly that if M = & (F), then
Prin( DUCXIXFUXXF) = PrinDUCXIXMUXXM

as sets. The map m — Prin D is determined by (c |t| d){f)=c |t| qb(f) If Fis
locally compact, this map is continuous, because the adjoint Prin D X F — D given by
(c|t|¢, ) —c |t| #(f) is continuous. Since the two spaces agree on Prin D =r-1(A),
some fibres are mapped homeomorphically; from this the lemma follows.

Iterating application of the lemma, we see that Prin (X X MF) — X is structur-
ally equivalent to X — X M, Which we have shown to be structurally equivalent to r.

THEOREM 5.3 (compare Theorem A). A quasifibration q: D — A with fibre F
is quasi-equivalent to Prin D X JK(F)F — (Prin D)Jf F) if Prin q ¢s also a quasi-
fibration.

Proof, X X MmF is obtained by iterating the basic associated construction on
X X F — X. Using the evaluation map €: Prin D X F — D, we can also apply the
iterated basic construction to q: D — A. Since

Prin DX F —> D

R

PrinD —> A
is commutative, we obtain, for X = Prin D, the diagram

XX g07)F 7 Deo

l l

Since fibres are mapped by weak homotopy equivalences and since X y(r) — Asg
is a weak equivalence (provided Prin q is a quasifibration), it is enough to show that
D —> D,

l ' gives a quasi-equivalence. Indeed, both bases and fibres are mapped
Y

A—> A,
by weak homotopy equivalences.

In summary, we have exhibited an equivalence between principal quasifibrations
over #’(F) and quasifibrations with fibre F, much as for bundles. Quasifibrations
with structural monoid M and fibre F (where M is represented by weak homotopy
equivalences of F) can now be defined in terms of our construction.
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Definition 5.4. q: D — A is a quasifibration with fibve ¥ and strvucture monoid
M ‘}f there exists a principal quasifibration r: X — A over M such that
X X mF — Xy is quasi-equivalent to q.

For weak fibrations, that is, for the case where q: D — A is locally fibre-
homotopy trivial, this notion can be investigated via transition functions gjj, as in

the bundle case. The relation gjj = gjk8kj is no longer valid, but must be replaced
by a suitable homotopy condition. This has been done successfully by Wirth [16].

To complete the present study of our construction, we show how this construction
is compatible with the classic construction for groups and bundles.

6. SPECIALIZATION TO GROUPS AND BUNDLES

Dold and Lashof have shown that if G is a topological group and p: E — B is a
principal G-bundle, then p,: Ew — B is again a principal G-bundle. In order to
be able to verify this result, they used the strong topology. The same proof gives
the following theorem.

THEOREM 6.1. If G is a topological group and r: X — A is a principal G-
bundle, then r. : X, — A, ts a principal G-bundle.

COROLLARY 6.2. The principal G-bundle v is principally equivalent to the
pull-back of r .

In fact, r is just the part of r lying over A CA,.

THEOREM 6.3 (compare Theorem C). If r: X — A is a principal G-bundle,
where G acts as a group of homeomorphisms of F, then X X gF — X is a G-
bundle, and it is G-equivalent to the pull-back of X X gF over Xg — A, — A.

Proof. 1t is sufficient to consider the case F = G, with G acting by translation,
because (X XG) X gF is homeomorphic to X X gF. Again, the proof given by Dold
and Lashof shows that X X cG — X is a principal G-bundle. Looking once more at
the map

XX oG —> X,

R

X —> A,

we see that it is a map of principal G-bundles covering the weak homotopy equiva-
lence X5 — A,,. We see that fibres are mapped homeomorphically by looking at the
construction and at the map

XXxG —H> X

Ak

X'T'>A

of principal G-bundles. Since r =r_ | X and since A is a deformation retract of
A, it follows that X X GG — X is the pull-back of r over XGg — A, — A. Now,
applying the operation X gF, we get the desired result.
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Finally we compare our construction of X with that of Borel for an arbitrary
antirepresentation of G by homeomorphisms of X. We notice first that if G isa
topological group, then X — X is given by identification under the action of G, that
iS, X/G = XG .

THEOREM 6.4. 5(/G has the same weak-homotopy type as Borel's space
XG =X X GSG .

Proof. The maps ¢: X — X and X — * are equivariant; hence they induce an
equivariant map X — X X £ and thus a principal map

}N( ————>XXSG

L

X/G —> XX g

Since X C X is a weak homotopy equivalence, since ¢ is a retraction, and since &g
has the weak homotopy type of a point, the map X — X X £ is a weak homotopy
equivalence. Therefore the map X/G — X X c€g is a weak homotopy equivalence.

Our extension of the concepts represented by X and X X cF is compatible with
the original concepts, up to weak homotopy type.

7. APPENDIX. AN ALTERNATE DESCRIPTION

The Dold and Lashof construction has been reworked, reformulated, retopol-
ogized, and even generalized by several people [7], [11], [14], [15]. It is itself a re-
working and generalization of Milnor’s construction [8] Here we give one particu-
larly simple reworking of our construction X X mF that permits a direct rather than
inductive definition. It is closest in form to Milgram’s geometric bar construction
[7]. The topology is not the strong topology, so we do not obtain the full strength of
some of our results this way, but we emphasize the relation to homological algebra.

As before, we consider a principal quasifibration r: X — A over M and a weak
representation of M on F. Let A" denote the standard n-simplex; barycentric co-
ordinates will be used. In AP X X X M™ X F, consider the equivalence relation given
by

(tO, "ty tn, X, mjp, **°, My, f) ~ (t07 Ty tn; X', mi: Tty m;:n f')
if t; =0 and m;m;y] = mjmji;;, where mg=x and m,,; =f. Let D, be the quo-

tient space. Let A, be obtained by replacing F by * throughout, and let
dn: Dp — A, be induced by F — *. An embedding of q, in qn+1 is induced by

(tO’ ...’ tn} X, ml’ .-.) mn’ f) - (tO’ ...’ tn’ 0! X, m].’ '..7 mn, e’ f),

where e € M is the unit. Let q,: D, — Ao be the limit under these inclusions.
THEOREM 7.1. q.: Do — A is quasi-equivalent to X X \F — Xps.

Proof. First we note that D, and X X MF are isomorphic as sets. The induc-
tive step is the observation that D, ;; has the same underlying set as
D,=D,UCLXIXFUXXF. Here Cy, denotes the associated principal quasi-
fibration over M, which can be regarded as obtained from the above construction
with F = M. First, we show that C,+] has the same underlying set as
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Ch=ChUC,XIXMUZXXDM. A specific correspondence Cpt1 — €, is defined
by

"l/(tO’ Ty tn+1; X, Mmj, =, mn+l) = (Xml My, mn+1) if tn-l-l =1,

I

(tb’ T t;l’ X, My, **7, mn)|tn+1| My
if tn+l < 1,With tizti/tn+l'

PROPOSITION 7.7. ¢ is a homotopy equivalence.

Proof. We are confronted with the difference in topologies. The map ¢ from
the weak to the strong topologies is continuous. The topologies agree on the compact
sets of C,4+) but this is nof enough to establish even a weak homotopy equivalence
(as has sometimes been stated). We construct a simple deformation of the identity
to a map { that will be continuous as a map C, — C,,;. The idea is essentially that
of Milnor [9], and it is illustrated by the simple example of the two topologies on SX,
where X = (0, 1).

Let hg: I =1 be a deformation that shrinks [0, 1/4] to 0 and [3/4, 1] to 1. Let
§: C,, — Cp+1 be given by

¢|t|m — yl(c|h,(t)| m).

One verifies directly that { is continuous. The homotopies Y€ ~ id and €y ~ id are
easy to write down.

The same method shows that A, has the same homotopy type as the appropriate
iteration of our construction in the strong topology.

These homotopy equivalences also show that q, is a quasifibration; hence, by a
standard lemma for quasifibrations, the limit q., is also a quasifibration. To verify
the quasi-equivalence between q_ and X - XM, we need only remark that in both
cases, the limit topology is used. The same arguments can now be applied for
X X pqF — Xy

The noniterative description given here reveals the relation to homological
algebra fairly clearly. A preliminary deformation will permit even greater clarity.

Suppose in our iterative construction we “reduce,” as in forming the reduced
cone or reduced join. That is, defining D,,, we further identify

(tO, ) tn, X, m;, =, m,, f)

with (tg, «--, tp, X, m, «=-, m,, ) if m;=e and t;_; +t; =t;_; +t;. That this is
indeed a deformation can be seen by induction, looking at D,;; as

D ,UC,XIXFUXXF.

With our usual representation of points in these spaces, the further identification
corresponds to identifying (c |s| e)|t| f with (c|s'|e)|t'|f if s+t=s'+t". In
Chol XIX MXIX F, this amounts to shrinking line segments given by

s +t = constant.

Let us assume that X X1 F has been reconstructed in this way. We can regard
it as filtered by the reconstructed subspaces D,,. For each generalized cohomology
theory T*, we obtain a spectral sequence with E; =@p T*(Dp, Dp-1)- If T9 (point)
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is trivial for sufficiently large q, the spectral sequence converges to the associated
graded group of T*(X X \4F). Under suitable restrictions (for example, with field
coefficients in singular cohomology), Ell) can further be identified with

T*X)® T*M, e)® «-® T*(M, e) X T*(F).
If X=M and F is a point, E; is recognizable as a standard free acyclic resolution
of T*(M) as a co-algebra. For general X and F, this enables us to identify E, .
THEOREM 7.3. If T*(D,, Dy,.;) is naturally isomorphic with

T*(X) X T*M, e)® -+ Q) T* (M, e)X T*(F),

then
E, =~ Coextpyy (T*(X), T*(F)).

In this way, we regard our construction as giving a geometric realization and
generalization of the Eilenberg-Moore spectral sequence for X X gF.
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