SYMMETRIC SPACES AND PRODUCTS OF SPHERES

P. G. Kumpel, Jr.

1. INTRODUCTION

In this paper we extend to certain symmetric spaces a result of J.-P. Serre [8]
on the comparison of Lie groups and products of spheres. Throughout the paper, G
will denote a compact, connected, simply connected Lie group, ¢: G — G an auto-
morpism of period 2, and K the identity component of the fixed point set of 0. We
shall assume that K is totally nonhomologous to zero in G with real coefficients,
that is, that the inclusion K C G induces an epimorphism in real cohomology. It is
known [4] that under these hypotheses G/K has the same real cohomology as a
product

! 70
X=8 "X X8 (n; <n, <+ <ny; n; odd).

-~

A prime p is regular for G/K if there exists f: X — G/K such that
. . L H*(X-
£*: H*(G/K; Z,) — H¥(X; Z,)

is an isomorphism.

THEOREM 1. If p is an odd prime, p > (ng + 1)/2, and G/K has no p-torsion,
then p is regular for G/K.

This theorem, the proof of which is given in Section 2, extends Proposition 6 in
Chapter V of Serre’s paper [8], which under similar hypotheses gives the above con-
clusion for a Lie group. The converse of Serre’s result on the regularity of primes
for a Lie group was proved by Serre [8] for classical groups, and by the author [6]
for the exceptional groups. Here we give a proof, using the classification of irreduc-
ible symmetric spaces, of a partial converse of Theorem 1 in the case where G is
classical:

THEOREM 2. If G is a classical group and G/K is an irvrveducible symmetric
space diffevent from a sphere, then each prime p < (ng+ 1)/2 is irregular for G/K.

The irreducible symmetric spaces to which Theorem 1 applies are
(i) X xK)/K (K a simple Lie group),
(ii) SU(2n+ 1)/S0(2n + 1),
(iii) SU(2n)/Sp(n),
(iv) Spin(2n)/Spin(2n - 1),
(v) E,/F,.

In Section 4 we show that the only obstacle to the elimination from Theorem 2 of
the hypothesis that G is classical is a proof that the prime 7 is irregular for
E /F,.
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From Theorem 1 and the J. H. C. Whitehead Theorem as stated in [8, p. 276], we
obtain the following homotopy information (the subscript p denotes the p-primary
component of these groups). For all i,

(1.1)  7,(SU(2n + 1)/S0(2n + 1)), ~ 7:(S° x 8 x .. x4 £ b> on+1

i P i P =z ’
(1.2) 7Ti(SU(2n)/Sp(n))p ~ 7ri(S5 XS X e X S4n'3)p for p>2n-1,
(1.3) m (E/Fy), = m (7 x8'7) for p>9.

Theorems 1 and 2 may be combined to yield the following.

THEOREM 3. If G is a classical group and G/K is an irvreducible symmetric
space different from a sphere, then p is vegular for G/K if and only if
p > (ng +1)/2.

We need merely observe that the only torsion in G/K under the hypotheses is
2-torsion.

The author wishes to acknowledge the assistance of Professors Lawrence Conlon,
Bruno Harris, and Henry Tramer in the preparation of this paper.

2. PROOF OF THEOREM 1

Let G, 0, K, p, be as described in the introduction and in Theorem 1. Let
2: G — G/K be the natural projection, q: G/K — G the map defined by
q(gK) = go(g)-1, and w: G/K X G/K — G/K the product defined by

-1
w(g K, g,K) = g;0(g;)" g,K.

Let V be the subalgebra of H*(G; Zp) (which is exterior on odd-dimensional
generators) generated by those primitive generators of H*(G; Zp) that are mapped
to their negatives by o*, Harris [4] has shown that then

q*: H¥G; Zp) — HYG/K; Z)

maps V isomorphically onto H*(G/K; Zp). Moreover, if x is a primitive element of
H*(G; Zp) with 0*(x) = - x, then the generator q*(x) € H*(G/K; Z;) satisfies the
equation ¢*q*(x) = 2x. Let Xn s s Znyp (n; < --- <ny) be the images under q* of

primitive generators of V. Harris also showed [5] that then the product w induces
a map

w*: H*(G/K; Z,) — H¥(G/K; Z,) @ HYG/K; Z},)
whose value on x,, is given by the formula

1
W*(Xni) = g* Q*(Xni) R1+1R Xp, T s,

where d; involves only the generators Xnps s Xng -

Let X=8 1x -+ x84, and let Y be the (n, + 1)-skeleton of G/K (assumed to
be triangulated as a finite simplicial complex). Then H*(X; Zp) ~ H*(G/K; Zp), and
HY(Y; Zp) = H(G/K; Zp) for i <n; (under inclusion). We shall make use of the
following lemma due to Serre [8, p. 288].
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LEMMA 1 (Serre). Let Y be a finite polyhedron, and p an odd prime such that
Y has no p-torvsion. Let n be an odd integer satisfying the inequalities

dimY <n+2p-3 and n <dmY-1.

For each x € H™(Y; Zp), theve exist f: Y — S™ and u € H™(S™; Zp) with £*(u) = x.

This lemma applies to the case where Y is the (n,+ 1)-skeleton of G/K, with
n =n;, and p > (ny +1)/2. To see this, note that n; > 3, since G/K is simply con-
nected, and that therefore dim Y =ng + 1 < 2p < 2p + (n: - 3). Thus, if we denote

(ambiguously) by Xnys» s Xpg the generators of H*(Y; Zp) corresponding to

Xn,» > Xn, € H(G/K; Z), we obtain maps f;: Y — S"i such that

¥, o™i, T o AT
f:: H (S ,Zp) H Y(Y; Zp)

ny,. n: B n:. N
maps a generator U, of H '(87; Zp) ~ Z, onto Xp, ; in fact, ¥ maps H (S '; Zy)
isomorphically onto the subspace of H*(Y; Zp) spanned by Xn, - Define

h: Y — S71x - x8™ py
h(Y) = (fl(Y), t, fﬂ(Y))

Then h™*; Hj(Snl X eer X Snﬂ; Zp) — Hi(Y; Zp) is an isomorphism for j <n,. For

n n n n
H*(S Iy... X S ﬁ; Zp) ~ H*(S l; Zp)®®H*(S Q; ZP)
is an exterior algebra on u, (i=1, ---, £), and up to degree n,, H*(Y; Zp) is the
1
same on the images of these generators, that is, onthe x, (i=1, -, £).
1

The diagram

ll

H (G/K; Zp) ~ Hn(G/K; Zp) — mn(G/K) ®Z,
= T ~ |
H (Y; Z,) Ho (Y5 Zp) — 7, (V) QZ,
¥} = h* | ~ h* | ~
H(X; Z,) H, (X Z,) < 71, (X)® 72,
l 1 1

n;, 1ns ne. ~ jeH]
HYS™; 2,) =~ Hy(S;2,) & 1 (SH®7,

Q

X

Q

commutes (here the first column of isomorphisms is obtained by dualization, and the
second column of maps consists of Hurewicz homomorphisms). The first and third
rows of arrows represent maps induced by the respective inclusions Y < G/K and

s’ c x.

The map H HG/K; Zp) — ﬂni(G/K) ® Z, (the composition of the homomorphisms

forming the left vertical column, the bottom row, and then the right vertical column
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of the diagram) sends the generator X, € Hni(G/K; Zp) to an element

[g1]® 1e ﬂni(G/K)® Zp; where g;: Sni — G/K. The map

1,(6/K) @ Z,, — H, (G/K; Z,) = H (G/K; Z,)

(the top row of the diagram) sends [gi] X1 to Xp,- Then
ne.
gi,: Hy(8 %5 2) — H(G/K; Z))

maps H*(Sni; Zp) isomorphically onto the subspace spanned by 1 and x, . Let
1

f: S°1 x -+ x 8" _, G/K be defined as the composition

gl Weeoe X gﬂ

n1

S * X --><Sn’Z

G/K x -+ x G/K & a/k,

where ¢ is the product

G/K x - x G/K YL G/R % o x G/K — -+ — G/K X G/K % G/K.
Our problem is reduced to showing that f induces an isomorphism in homology with

coefficients Zp .

We state and prove this in a more general setting, primarily for the sake of
notational convenience.

Let A be an exterior algebra over a field of characteristic different from 2, on
generators Xnys Xng n <o < nﬂ), and let A ; be the subalgebra generated by

land x (i=1, -, ¢). In referring to tke basis of A, we shall mean the standard
1

12 Engs and all products xnil'-'xnik (i < - <y,

iJ- € {1, -+, ¢}). A similar interpretation applies to tke basis of A RAR - R A.

Define p: A — A ® A to be the algebra homomorphism sending 1 to 1 ® 1, and
xn to 2x, ® 1+1 ®x + d;, where d; is a linear combination of basis elements

of A@A that involve only Xn s s Xp, - Let : A ARAR - XA
1—

(¢ factors A) be the compos1t10n

basis consisting of 1, x

H p o1

A - ARA ® ARARA — --- - AR --®A (¢ factors A),

and P: A® - ®A (¢ factors A) —» A} X - ® Ay the projection onto the subspace
A @ -X® Ay . Then P is a homomorphism of algebras. This follows from the fact

that the subspace of AR -- XA spanned by basis vectors other than those of
A, ®--®Ay isanideal in A® - QA. Observe that ¥(1) =1 --- X 1, and that

Wixy) = 201%, @1® @1 + 21?1Rx,®1® @1
4 oeee 1(>9..-(>§1€<)xni + D;,
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where D; involves only an’ ey Xn. L This follows from the definition of u, by
1..

induction.
Thus Po y: A — Ay (? - A is the algebra homomorphism sending 1 to

1®---®1,andx to 2811 - R1Qx, ®1® -® 1+ Dj, where D; isa

linear combination of basis elements of A1® -(X Ay involving only
Xnpp xni-l'

An easy inductive argument establishes the following.

LEMMA 2. If « is an algebva over the field ¥ genevated by ay, ---, ay,, dj s
an element of the subalgebra genevated by a, ---,a;_ |, and a;=0;a; +d; (a5 #0,
a; € F), then the elements a,, -+, a, also generate A .

Applying Lemma 2 to A; &) --- (X Ay, we see that

image Poy = A; ® - XAy.
Comparing the dimensions of the vector spaces A and A} X --- ®Aj, we find that
Poyia ™ A @ @A

Duahzmg, we see that ¢* P*: AT (X :-- ® A} — A* is an isomorphism (and that
P AR - QA - A*®) - @A* is the inclusion map).

Ta_kmg A = H¥(G/K; Z;) and ¢: A — A® -+ ®A to be the map induced by
¢: G/K X .- XG/K — G/K we see that the composition

P*

o*
AT@@AE i A*®"'®A* 2. A¥
is an isomorphism, where A; is the subalgebra of H*(G/K; Z,) spanned by 1 and

Xp, - We have seen that gi, maps H*(Sni; Zp) isomorphically onto A¥. Hence
nl nﬂ
gy X Xgp:8 tX e X8 = G/KXr XG/K

maps H,(S "Ly ...xg™, ; Zp) isomorphically onto A¥ X .- X A%, and this in turn is
mapped 1somorphlca11y onto H «(G/K; Z ) by ¢* P*. Smce P* is the inclusion, it
follows that

(g,%-xgy)

ny nﬁ * d)*
f0 Hy (S “ x - X8 %5 Zp) H,(G/K X -+ X G/K; Zp) — H_(G/K; Zp)

is an isomorphism; this establishes Theorem 1.

It should be pointed out that the proof given above follows the suggestion of Serre
[8, p. 292], with modifications appropriate to our case.

3. PROOF OF THEOREM 2

The proof of this theorem rests on the classification of irreducible symmetric
spaces, and it can be shown [7, p. 497] that the only pairs (G, K) satisfying the hy-
potheses are the cases (i), (ii), and (iii) following the statement of Theorem 2. Case
(i), (KX K)/K (K a simple Lie group), reduces to the theorem for groups that is
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established in [6] and [8]. Hence we are left to deal with the cases (ii)
SU(2n + 1)/SO(2n + 1), and (iii) SU(2n)/Sp(n). We shall show that

(3.1) for n>2, each p'rzme p < 2n + 1 is irregulay for SU(2n + 1)/S0(2n + 1) (in
this case, X = 8 x 87 x »« x gintl)

(3.2) for n> 3, each pmme g < 2n - 1 is irvegulay for SU(2n)/Sp(n) (in this case,
X = 85 x §9 X - x §4n- )

Note that SU(3)/SO(3) ~ S° and SU(4)/Sp(2) ~ S°.
Observe that a prime p is irregular for G/K if either

(3.3) for some j, 5 (G/K) and wj(X) have nonisomovphic p-primary components,
or

(3.4) there exists a nonzero veduced power P;: H(G/K; Zp) — pi2ie-1) (G/K; Zp).

(3.3) follows from the J. H. C. Whitehead Theorem [8], and (3.4) from the fact that
reduced powers commute with induced maps and that they are zero for products of
spheres. We use (3.3) to deal with the case p = 2 for both (3.1) and (3.2), and (3.4)
to deal with odd primes.

The prime 2 is irregular for SU(2n + 1)/SO(2n + 1) (n > 2), for it is known that
7,(SU(2n + 1)/S0(2n + 1)) ~ 7,(U(2n+ 1)/0(2n+1)) = Z,,

for n> 2 [1]. Since m,(S® x 87 x --» x §401) = 0, an application of (3.3) completes
the proof. Similarly, recall that

75(SU(2n)/Sp(n)) = 75(U(2n)/Sp(n)) = Z, (n> 3);

hence 2 is irregular for SU(2n)/Sp(n) (n> 3), for m5(S® x 87 x --- x §4n-3) = 7,

We now consider the case of odd primes. It is known that the cohomology alge-
bras (with Zp-coefficients) of SU(2n + 1), SO(2n + 1), SU(2n), and Sp(n) are exterior
on generators in the following dimensions:

SU(2n+1): 3,5, 7, *=*,4n+ 1,
so(2n+1): 3,7, 11, =+, 4n - 1,
SU(2n): 3,5, 7, =+, 4n -1,
Sp(n): 3, 7, 11, **+, 4n - 1.
The map q* carries H*(SU(2n + 1)/SO(2n + 1); Z ) isomorphically onto the subalge-
bra of H*(SU(2n + 1); Z p) generated by the generators of dimensions 5, 9, **+, 4n+ 1.
We shall show that
PL: H¥(SU(2n + 1); Z) — B*(SU(2n + 1); Z,)

sends one of these generators to another of these generators. Then the map

PL: H¥(SU(2n + 1)/80(2n + 1); Z;) — H¥(SU(2n + 1)/80(2n + 1); Z)
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is nonzero, because PII) is natural. Applying (3.4), we see that p is irregular for

SU(2n + 1)/SO(2n + 1). A similar argument shows that p is irregular for
SU(2n)/Sp(n). Hence our proof of Theorem 2 will be completed once the following is
established.

LEMMA 3. (a) Let
2n+1 if pt2n+1,
2n-1 if p|2n+1.

Then Pé maps the genevator of degree 2m - 1 - 2(p - 1) in H*(SU(2n + 1); Zp)
(n> 2) to the genevator of degree 2m - 1.
(b) Let
2n -1 ifp—I'Zn—l,

2n-3 ifp|2n-1.

Then Pll, maps the genevator of degree 2m - 1 - 2(p - 1) in H*(SU(2n); ZP) (n> 3)
to the genevator of degree 2m - 1.

Note that in Lemma 3(a) m is odd and p - 1 is even, so that both
2m - 1 - 2(p - 1) and 2m - 1 are congruent to 1 modulo 4. Similarly in (b). One
can verify that the restrictions on n, p, and m imply that

5<2m-1-2p-1)<2m-1<4n+1,
and
5<2m-1-2p-1)<2m-1<4n-3
in (a) and (b), respectively. Hence the generators in (2) and (b) correspond to gen-

erators of H*(SU(2n + 1)/SO(2n + 1); Zy) and H*(SU(2n)/Sp(n); Zp), respectively.
We also note that SU(n) has no p-torsion.

The proof of L.emma 3 depends on a result of Clark, which we state here in a
form convenient for our purposes. For a proof, see [2] or [6].

LEMMA 4 (Clark). Let G satisfy the conditions in the intvoduction. Let
H*(G; R) be an exterior algebra on generators Xn, (i=1, -, ; deg X, = 2m; - 1).

If p is prime and G has no p-torsion, and if there exists a k (1 <k < 8) such that
(i) my, #0 (mod p),
(11) mk > P,

(iii) the set {mj, -, my} contains exactly one element m; such that
my =1-p (modmy) and my<my,

then Pl = :
en pXij_l *2my -1
Proof of Lemma 3. Consider case (a). Let my = m as defined in Lemma 3(a).
Then (i) of Lemma 4 holds by definition. To prove (ii), observe that
my =m > 2n - 1; since p<2n -1 and p is odd, p < 2n - 1, hence my > p. But my
is not a multiple of p, hence my > p. To prove (iii), note that the only element of
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the set {mj, -, my} = {2, 3, >+, 2n+ 1} of the form 1 - p+ amy is 1 - p + my.
For clearly 2<1-p+mp<2n+1, and if @ > 2, then

1-p+aomy > 1-p+2my = (my - p)+1+m,.
But my - p> 1 (since my > p and both are odd), hence
l-pt+tom >2+my >2+2n-1=2n+1.

Clearly, mj =1 - p + my < mg; hence Lemma 4 applies, and the proof of Lemma 3(a)
is complete. The proof of (b) is similar.

4. IRREGULAR PRIMES FOR E;/F,

Theorem 1 applies to the symmetric space E¢/F,4, for which the corresponding
product of spheres is S? x 817, Therefore each prime p > 9 is regular. Conlon’s
result [3] 7, ¢(E¢/Fy) = 0, together with the fact that 7,,(S? X S17) » Z,45 [9], shows
that the primes 2, 3, and 5 are irregular for E¢/F,. It is clear that for reasons of
degree the reduced powers Pl, are all zero. All homotopy groups of E;/F; known
to the author have 7-primary components isomorphic to those of 8% x S17. 1t would
be of interest to settle the question of the irregularity of the prime 7, since, by the
above argument, this is the only obstacle to the removal from Theorem 2 of the
hypothesis that G is classical.
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