THE BORDISM CLASS OF A BUNDLE SPACE

P. E. Conner

Dedicated to R. L. Wilder on his seventieth birthday.

1. INTRODUCTION

In an earlier note [6], it was shown that if M™ is a closed manifold with even
Euler characteristic, then the unoriented bordism class [Mn]z € N, can be repre-
sented by a mamfold fibred d1fferent1ab1y over the circle with structure group Z- .
Now we shall prove that if M 4m j5 3 closed oriented manifold with index 0, then
modulo an element of order 2 its oriented bordism class is represented by a mani-
fold differentiably fibred over S2 with structure group SO(2) and an oriented fibre.
As a corollary of this, Burdick [2] uses his methods to show that. [M4™] is repre-
sented, modulo tors1on by a manifold differentiably fibred over S! with structure
group Z and an or1ented fibre that bounds.

The proof of the above result appears in Section 6. We shall briefly outline the
steps involved. It was shown by Milnor [9] that Q/pQ, where € is the oriented bord-
ism ring of a point, is for any odd prime p a graded polynomial rlng over Z, witha
generator in each dimension divisible by 4. A bordism class [M%"] is a generator
of Q/pR if and only if modulo pQ2 it cannot be expressed as a sum of products of
lower-dimensional elements.

In Section 2 we discuss a construction of oriented (or weakly complex) bordism
classes. This assigns to a complex (k + 1)-plane bundle ¢ — M21 gver a closed
oriented manifold the total space CP(£) of the associated projective space bundle
with fibre CP(k). In (4.1) we find the formula needed to determine whether
[CP(§)] € 22(ntk) is 2 generator of Q/pQ. This is done by computing a numerical
invariant in terms of the Chern classes of £ — M2n

In Section 4 we obtain a series of corollaries that represent the cases in which an
effective computation is possible. In Section 6 a collection of manifolds fibred over
S2% is described. By means of the results established in Section 4 it is shown that
some of these manifolds are generators of Q/pQ2. The principal result will follow.

Section 5 shows, at least in part, just how effective the construction method of
Section 2 is in finding generators of Q/p2. Previously, several devices have been
used in presenting generators, but as far as we know this is the first attempt at de-
termining the efficiency of a construction.

The computations in Section 3 and for (4.1) appear to be tedious. We hope, how-
ever, that (4.1) sufficiently unifies this problem to eliminate this kind of work in the
future.

Finally, in Sections 2 to 5 we use the weakly complex bordism ring 1 of a point
[10], [7, Chapter 1] rather than ©. It is easier for us to work with, and as we point
out in Section 6, there is no loss of generality.
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2. GENERATORS OF 1u/plu

An element of the weakly complex bordism group U,,(BU(k + 1)) can be inter-
preted as the suitably defined bordism class of a smooth complex (k + 1)-plane bun-
dle m: £ — M2™ over a closed weakly complex manifold. This interpretation stems
immediately from the fact that the (k + 1)-plane bundles over a finite complex X are
in natural one-to-one correspondence with the homotopy classes of maps of X into
the classifying space BU(k + 1).

We shall describe a natural homomorphism U2,(BU(k + 1)) — Uz(n4k). Let
p: CP(¢) — M2™ be the associated complex projective space bundle with fibre CP(k);
then the total space CP({) is itself a closed 2(n + k)-manifold. We define a weakly
complex structure on CP(£) so that the homomorphism is

[ — M?"] = [CP(®)] € Uy -

We denote by 7; — M23? the tangent bundle to the base, and by 7, — CP(£) the com-
plex k-plane bundle of vectors tangent to the fibres. According to [1], the tangent
bundle of CP(¢) is p*(7;)+ 7,; thus we assign to CP({) the weakly complex struc-
ture determined by that on 7; together with the complex structure on 7,. The
reader may verify that this homomorphism is well-defined. The following is one of
our basic results.

(2.1) THEOREM. Ifp is a fixed prime and n < k + 1, then the image of
Uzn(BUk + 1)) — U2(ntk)

contains an element that is indecomposable (mod p\1), except in the four cases
(i) n=1,
(ii) n =1 Gnod p), n <pJ, n+k =apItl +8pl (0 <B <p),
(iii) n+k #pi -1, n<pJ, n+k=apltl+8pi -1 (0<B<p),
(iv) n+k=pl-1and n<pi-l.

Thus we obtain a specific construction for generators of 1 /pll, and we know why
this construction will fail in certain dimensions.

To demonstrate (2.1), we must introduce

m

Mo = ZOD U2,(BU(m - n))

together with
(e o]
Mm = Z; ED22rn'
0

Obviously, M is bigraded; that is, a homogeneous element is a bordism class of a
complex vector bundle [£ — Mzn] whose total degree is the dimension of the base

plus the real dimension of the fibre. We shall agree that 1, (BU(0)) = 1, ; thus
Uom C Mo, as the 0-dimensional bundles over closed weakly complex manifolds.

A product is introduced into MM by setting
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[£; — M*][£, — V™) = [£; x &5 —» MR x V™),

In this way, M becomes a graded commutative algebra over U with unit. The unit
is the O-bundle over a point.

(2.2) LEMMA. As an algebra over U, M is a graded polynomial algebra whose
genevators ave the Hopf line bundles {[n — CP(n)]f

Actually, an alalogous result was proved for orthogonal bundles and unoriented
bordism in |5, Section 28]. wWe shall merely sketch the proof, here. With k+1
fixed, con31der all sequences j; < -++ < jiy = w of nonnegative integers, and with
each assomate the product

w = [m = CPG] " [n — CP(jys1)]
in U,,(BU(k + 1)), where n=j; + *** + jx+1 . Under the Thom homomorphism
p: 1, (BU(k+ 1)) — H(BU(k + 1); Z)

the elements (X, ) provide a homogeneous base for H (BU(k + 1); Z). We argue
just as in [5, (18. 1)] that u_(BU(k + 1)) is a free 1u- module generated by the X, .
Since

[+ 0]

m = 27 1, (BUk+ 1)),

Lemma (2.2) will follow.

3. ALGEBRAIC PRELIMINARIES

If 7: £ — X is a complex (k + 1)-plane bundle over a finite complex, then we
shall denote by p: CP({) — X the associated complex projective space bundle with
fibre CP(k). There is a canonical line bundle 3 — CP(£¢). A point in 77 is a pair
consisting of a line in w-1(x) together with a vector in this line. We shall denote by
t € H2(CP(£); Z) the characteristic class of 1. Via the induced homomorphism
p*, H¥(CP({); Z) is a free graded H¥*(X; Z)-module with base 1, t, ---, t& [8]. Borel
and Hirzebruch in [1] completely determined the structure of the ring H*(CP(%); Z)
by showing that

kt+1

0

b

where vg =1, vy, **-, vi4| are the Chern classes of £. We shall give a formula for
the powers ket analogous to that found for real bundles in [4, Section 2].

For n > 0, there are unique classes Vjn € g2Utnl(x; 7) (1 <j<Lk+1) for
which
k+1

1
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If we multiply this defining equation by -t, we obtain by an elementary calculation the
recursion formula Vj 41 = Vi1 n-VjVy n-

(3.1) LEMMA. In teyms of the dual Chern classes, Vi = -Vpny) and

nt+l

Vintl = %3 ViVnil+j-i-

If we show that V; , = Z)O Vi Vn+1-i, then V; , = -V, since by definition
Vel + 20 ViVnt+1-i = 0. The reader may verify the lemma for n = 0. Proceeding
inductively, we use the recursion formula to write

n+1l

Vin+l = 2;; ViVitjrl-i T ViVner = 27 ViVatl+j-is

which is the assertion of (3.1).

The total Chern class of £ — X can be expressed in the factored form

Ekﬂ (1 + tj), and for each m > 0 we introduce the symmetric functions

S(é) = Ek“ (t;)™. Each S,,,(£) can be uniquely expressed as a homogeneous

polynomial in the Chern classes (the elementary symmetric functions), hence
Sm(é) € H%™(X; Z). For a Whitney sum,

Sm(gl + ‘EZ) = Sm(g 1) + Sm(‘SZ) -

If M2™ isa weakly complex manifold, then in terms of the Chern classes of the
Wea.kly complex structure on the tangent bundle we obtain an S, (2(m - n)R + 7) in
H2n(M2" ; Z2). If 05, € Hyp(M 2n. 73 is the fundamental class determined by the
weakly complex structure, then We set

SpM?®) = (8, (2(m - )R+ 7), 6, ) € Z.

This is an invariant of [M?"] € u,_ . Milnor [9] has announced the following result.

(3.2) THEOREM. If p is a fixed prime, then [M21] is indecomposable mod p if
and only if

(i) S (M?2") # 0 (mod p) andn #pJ - 1,
(ii) sn(MZn) #0 (mod pz) and n = pj -1.

The question of indecomposability must therefore be settled by the computation of
the invariant S, (CP(£)), and that will be carried out in Section 4.

We shall need an elementary result about the S, (£), and since we have no refer-
ence, we include an outline of the proof.

(3.3) LEMMA. For any complex vector bundle and any m > 0,
m-

27 (-1)'8(£)9,,_; = m¥
1

The formula is trivial for a line bundle. Let §;, £, be a pair of bundles over X
for which the formula is valid; we shall show that (3.3) is then also valid for the sum
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£=£& +&. Let %; and §; denote the dual Chern classes of &£; and &, , respec-
tively. We begin with

2 (-1 8, (E) T, s = 20 (F1)PS(E) V5 F ?(-1)isi(£2)vm_i.
1 1

The first sum can be rewritten as

? (-1)'8,(£))¥ 5 = 213 -1)tse | 2 im_i_ﬁj>

m sm-j
Z)( 2 (-1)isi(gl>im_i_j)§r.

0 J

m

27 (m - )&y _;5;-

0

Similarly, 27 (-1)i8;(6,)9,,; = 24 i%Xp,.;¥;, and therefore

m-i m*

m
27 (-1)'8,(8)¥,,_; = m¥
1
From this point the reader may complete the proof by a suitable splitting argument.”

4, COMPUTATION OF Spi+x

The invariant S, (CP(£)) can be evaluated as follows.

(4.1) THEOREM. If § — M2™ is a smooth complex (k + 1)-plane bundle over a
closed weakly complex manifold, then

n

Spt(CP(8) = £ {(k+ 1)V, + 2/ (n+X, 1)8i(§)n4, Ton ) -
1

Thus we see that the answer depends only on the characteristic classes of §. We
recall that the weakly complex structure on CP(&¢) was taken from

p*(2(m - n)R+ 71) + 7.
Now

Sprk(P*(2(m - n)R + 7)) + 73) = p*(Sy(2(m - n)R + T1) +Snti(72)) = S, (75,),

since k > 0. Therefore S,;(CP(£§)) = <Sn+k(72), 02.(n+k)> € Z.

We can compute S_,,(7,), since

T,+C = n & p*(€) and Sn+k(72 +C) = Sn+i<(72) :
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If nlf“ (1 +t;) is the factored form of the total Chern class of &, then
7r11<+1 (1 + p*(f;) - t) is the total Chern class of 7, + C and thus
k+1

Sn+k(72) = Z) (p*(tj) - t)n+k-
1

We use the binomial expansion

k+1 /ntk
Spi(72) = 2\ 2 (DI +k, i)p*(tﬁ‘J’k'i)ti)
1

ntk-1

23 (-1 (n+k, 1) pH(S, s (E)E + (k+ 1) (-1)PHRTE
0

Since Spik-i{72) =0 if i <k, we can replace i by n+ k - i to obtain the relation

n

SniT2) = 20 (-D)PTRE (0 4k, 1) pR(S;(£) 2T 4 (k + 1) (-1)PHReRTE
1

If i<n, wewrite n+k-i=(k+1)+(n-i- 1), so that
k+1
+k-1 +k-i k-j k+1-j
(-7 TSNt T = Z? (-1) Jp*(si(ff)vj,n—i-l)t T

Note, however, that Si(g)vj,n-i-l € HZ(n-1+2)(M2n; Z), so that
(-1)tk-ipk(s,(£)) toHR-1 = (-1)kpH(S(£)¥, ) t*.
A similar argument shows that
(- = (L) RIS,

and since v =1, we may write
n
S )= +p*{ 2 +k, i)S:(8)v. .+ (k+1)%, )tE
n+k(TZ tp (n s 1 1‘E Vn-i Va .
1

The fundamental cycle o 2(n3k) on CP(§) is related to o, by the rule
P(tX N 05 (14x)) =10 2,. From this it follows that

n

Sn+k(CP(€)) = <Sn+k(7 2), 02(n+k)> = 4 <(k + 1)‘711_'_2 (I’l+k, i)Si(g)\—;n_i, 02n> .
1

We let the reader observe that if n = 1, then S1;k(CP(£)) = 0. To obtain some
corollaries of (4.1), we need a few classical facts about binomial coefficients.

(4.2) LEMMA. If p is a prime and
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n+k =ag+a;p+--+agp®, i=bg+bip+ - +b,p°,
where 0 < aj, b;<p-1, then
(n+k, i) = (ag, bg)(a;, by) - (ag, b,) (mod p).

IFn+k=ptl -1, j>o0, then

1 -1,1) = (1)} (modp) (0 <i<pitl-1),
Pt -1, 4) = (-1)! (mod p?) (0 < i< pd),
"1 -1, pd) = (-1)PL(p - 1) (mod p?).

The corollaries we obtain will concern the value of S ., (CP(§)) modulo p or p2.

(4.3) COROLLARY. Let & — M2™ be a smooth (k + 1)-plane bundle over a
closed weakly complex manifold.

(i) l'fn—l—k=apj+1 +,Bpj (>0, 0<B<p)and n<pj, then
Sark(CP(E) = £(n - 1) ¥y, 02n ) (modp).
(i) Fn+k=apil +8pl -1 (@ >0, 0<B<p)and n<pl, then
Sh+k(CP(§)) = 0 (mod p).
(iii) If n +k has the form in (ii) and n=pJ < n + k, then
Snik(CP(E)) = 6V}, 024) (modp).
(iv) If n+k=pitl -1 and n < pJ, then
Sntk(CP(£)) = 0 (mod p?).
(v) If n+k =pitl - 1 and pJ =n, then
SntilCP(8) = +p{ v}, o2n) (modp?).
The first case follows immediately from (4.1), since
(m+k,i) = 0 (modp) for 1<i<n<pl

and n+ k = 0 (mod p) implies that k+1 =1 - n (mod p). In case (ii) we use the fact
that

(mn+k, i) = (p) - 1,i) = (-1)! (mod p) for 1 <i<n < pl;
with the aid of (3.3) we see that

n

27 (n+Kk, 1)Si(E)¥n_i+ (k+1)%n = M +k+1)9, = 0 (mod p).
1
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In the third case, (n +k, i) = (-1)* (mod p) (1 <i<n= J.), but
(n+k,n) =8 -1 (modp).

Again referring to (3.3), we find that

n-1

2 (-1)'8,(8)%,_; = n¥, +S,(§) (mod p);
1

n-i

thus
n

27 (m+k, 1)Si(E) ¥y + (k+1)¥, = (n+k+1)¥,+ (B - 1)S,(¢) = AS,(£) (mod p).
1

Since n = pJ, however, S,(¢) = v} (mod p) Cases (iv) and (v) are similar to (ii) and
(iii), but we should note that pS,(¢) = pv] (mod p 2y if n=pJ.

This corollary concerns only the values of n + k that are congruent to 0 or
p - 1 (mod p). In the description of a list of generators for u/pl, it is these two
cases that present the special problems. To examine those values of n + k that lie
between 0 and p - 1 (mod p), we shall use complex bundles whose only nontrivial

Chern class is vy.

(4.4) LEMMA. Let £ — M2" pe a smooth (k + 1)-plane bundle for which vi=0
if 1> 1; then

" n
S +k(CP(§)) = + 2. (—1)i(n+k, i) +k:’ <v111, 02n>
0
B k-1
= 4| (D™D )itk i) 4k [vB, 0, ).
0

An elementary computation using (3.3) shows that S;(¢)¥,,_; = (- 1)n+1v1 ; there-
fore the first formula is a corollary of (4.1). The second formula follows from the

identity
k-1

Z(-Dim+k 1) = 2 (1) g L x ).
0 0

(4.5) COROLLARY. Let ¢ — M%™ pe a smooth (k + 1)-plane bundle with vi=0
vi>1. I

n+k=apj+l+6pj+r (a20,0<6<p,0§r<p)
and either r <n <pl or r <k - 1< pJ, then
Sn+k(CP(8)) = +k (v}, 0,,) (modp).

Under the hypothesis r <n < pj, we have the relations
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(n+k,i)=(r,i) (modp) (0<i<r) and (n+k,i)=0 (modp) (r <i_<_n<pj).

Thus

n r

E(—l)i(n+k, i) = E(-l)i(r, i) = 0 (mod p),
0 0

and we apply (4.4). A similar argument is used if r <k - 1 <pJ. Note that if
n=pJ -1, then k=r+ 1 (mod p). One more corollary will be pointed out to cover
the case n+k<p - 1.

(4.6) COROLLARY. Let & — M2%" pe a smooth (k + 1)-plane dbundle with vj =0
if j> 1.

(1) Ik =1, S04 1(CP(E) = £[1 + (-D)?]{+}, 02,7

(i) Ifk=2, S, ,(CP(£) =[(-1)"(n+ 1)+ 2] {v}, 05, ).

An important application of (ii) is to the case n+ 2 =p - 1 (p odd), since
Sn+2(CP(£)) = £p < vi, ozn> . For the case (i), the interesting application is to the
value n+1=2) - 1, for here S, [(CP(£)) =42 <vr1‘, 02n>

We fix a prime p and briefly run through a list of generators for 1t /plii. We be-
gin with CP(1). As in Section 2, n — CP(n) is the Hopf line bundle. If

n+k =apfl+ppl+r (0<B<p, 0<r<p-1),
we take £ =71 +kC — CP(pi - 1); then [CP(£)] is a generator, by (4.5). If
n+k=ap5+1+3pj—1 and either a > 0 or 8> 1,

we take £ =7+ kC — CP(p’)) and conclude by (4.3) that [CP(£¢)] is again a generator.
For 1<n+k<p-1, weuse £=7 +C — CP(n) if n+k is odd, and )

£ =7 +2C — CP(n) if n+k is even, and we apply (4.6). Finally, if n+k = pitl -1
(j > 0), then £ =75 +kC — CP(pJ)) supplies the generator. This is about the simplest
set of choices for the generators of 11/pli. The reader will have no trouble in find-
ing other examples.

5. THE INVARIANTS Si(£)¥n.i, G2n )

In this section we shall prove (2.1). In (4.1), we saw how the invariants
<Si(£)§n_i , 02n> enter into the evaluation of S, (CP(£)). The next lemma shows
the degree of latitude we have in assigning values to the (Si( E)Vn i, 02n> .

(5.1) LEMMA. If n <k + 1, then for each sequence of integers N1, **+, A, Ssuch
that Erll (-1)*x; =0 (mod n), theve exists some (k + 1)-plane bundle & — M2 oper
a closed weakly complex manifold for which (Si(i)\’rn_i, 02n> =A; for 1 <i<n.

The requirement that 227 (-1)!x; = 0 (mod n) is necessary, according to (3.3).
To demonstrate (5.1), we shall use the ring structure of M found in (2.1).

For each integer i > 0, we define an additive homomorphism S;: 1,,(BU(m))—Z
by

s;([£ — M?™]) = (-1)' {8i(§)Fn-i, O2n ) -
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Clearly, this only depends on the bordism class of the bundle £ — M2n  and it is
trivial for i > n. Similarly, we define V: 1,,(BU(m)) — Z by

V([ﬁ __)MZn]) = <‘—"2n’ 02n>'

In particular, S;(1,,(BU(0))) =0, V(1,,(BU(0))) =0 (n>0), and V(1) = 1.

(5.2) LEMMA. The homomorphism V: W — Z is a ring homomorphism, and for
each pair [£, — M?2n], [£, — V2m],

S;([&, —» M?P][£, — v2M])
= 8;([&; —» M2™]) (V([£, — VE™])) + V([£] — MZD])(Sy([£, — VE™])).

We shall denote by p; and p, the projections of M2™ X V2™ onto M2" and
V2m and k; and y; will denote the dual Chern classes of £; and £,. Now

Si(&) X &) = Si(p%(&,) +p%(£,)) = p¥(S,(£))) +p%(S,(£,)),

+
and furthermore V., _; En m-i p*(x )p2 (y By an elementary dimen-

n+tm-i- j) :
sional consideration,

ntm-i
pE(S(E NV _, i = %3 PY(S;(E D RIDEG ) = PGS (E DR )IPp*E,)
and
pA(S(E,N% .= pA(x IpXES (E,)F 0.

The formula in (4.2) now follows immediately. That V: 3 — Z is a ring homomor-
phism is trivial.

We showed that ¢ is a graded polynomial ring over 1 whose generators are
the Hopf line bundles {[n — CP(n)]}y. For n — CP(n), Si(n)¥,_;= (-1)2-iv}; thus

Si(ln — CPM)]) = (-1)*{v], 02, ) = V[n — CP(n)]

for 1 <i < n. With an appropriate choice of the orientation of CP(n), we may as-
sume that

Si([n — CP()]) = V[n — CP(m)] =

for 1 <i <n. Note that V[n — CP(0)] = 1.

With each sequence w = (j; < " < jy, ;) of nonnegative integers we have asso-
ciated the product

Xy = [n = CPG I [n = CPGxs D]
In view of (5.2),
S;(Xy) = Si[n — CP@I] +8;[n — CPG2)] + -+ +8;[n — CP>iks1)].

Thus Si(Xw) is the number of entries in w that are at least equal to 1i.
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We now prove (5.1) under the assumption n =k + 1. Each element in
1 2(BU(k + 1)) can be uniquely expressed in the form 2 Xw [M2™] where the sum
is taken over all w with j; + -+ jx+1 <n and

[Mzm] € U, (m=n-@Gy+ - +ixe))-

Again by (5.2), Si(X, [M?™]) =0 if m > 0, so for our purposes we need only con-
sider ay X, , where j; + *** +jx+1 =n and ay is an integer.

Let Y; =X(y1,...,1) (1 repeated k+ 1 =n times), and let
Y; = Xq1,---,1,1) - X(1,-++,1,i-1) for 2<i<n.

Then S1(Y;)=n, Si(Y1) =0 (i> 1), while Si(Yj) = -1 (2 <i <n). Furthermore,
S§(Yi))=0 (i#]j) and Si(Y;)=1 (2<i<n). ¥ A} =ns - (A2 + +- +4p), we form the
linear combination sYj+A2Y2+ - + A, Yy then S; = (-1)* <Si(£)\_rn_i, o 2n>,
evaluated on this combination, has the value A; (1 <i < n). Thus (5.1) is proved for
n =k + 1. The reader can obtain the case n <k + 1 as a corollary. A moment’s re-
flection shows that (5.1) is not true if n > k + 1. We raise the question as to what a
full set of relations among the invariants <Si(£)\7n_i, 02n> must be if n >k + 1,

We apply (5.1) to the proof of (2.1) as follows, under the assumption that
n <k + 1. For each sequence A, A1, A2, ***, A,_; there is a (k + 1)-plane bundle
£ — M?2n guch that

(8i(E)¥n-i, 02n ) =23 (1<i<n-1)

and
n-1

(Sn(£), o2n) = (-1)Pmr + 25 (-1)nHitly,
1

From (3.3) it follows that n <\7n, 02n ) = nx, hence {(¥n, O2n)y =X, and

n

23 (n+k, i) {(Sy&)¥ni, 0zn) + &+ 1){ Ty, 02n)
1

n-1
= 27 [(n +k, i)+ (—1)n+i+1 (m+k, n)]x; +[(-1)"n(n +k, n) + k+ 1]x .
1

The image of U,(BU(k + 1)) — Up(n4x) fails to contain a generator of u/pu if
and only if the above expression is 0 (mod p), or (mod p?2) if n+k =pJ - 1, for
every choice of A, A3, ***, An_1. This assertion is a corollary of (4.1).

(5.3) LEMMA. If n<k+1and n+k=pJ -1 (j >O0), then the image of
u, (BUk+1)) — U (n+k) Sails to contain an element indecomposable (mod pl) if
and only if n=1 or n <pi-1. If n+k #pl - 1, then the image fails to contain an
indecomposable element if and only if

Q) (-D*'(m+k) = m+k, i) (modp) (1<i<n),
(ii) -n(n+k)+k+1 = 0 (mod p).

Consider first the case n+k # pJ - 1; here
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(n+k i)+ D" n+k n) =0 (modp) (1<i<n-1),
(-1)"nn+k,n)+k+1 = 0 (mod p).
Taking i =1, we see that (n+k, n) = (-1 (n + k) (mod p); thus
(n + Kk, i) = (-1 (n + k) mod p for 1 <i<n

and -n(n+k)+k+1=0 (mod p) also.
Next consider the case n+k=p - 1, with 1 <n <k + 1. Just as above,

(p-1,1) = (-1)"" (p-1) (modp®) (1<i<n).

If n> 2, then (p-1)(p - 2)/2.— 1 - p+ p?; in other words, p2 - 3p+2 =2 - 2p + 2p2,
which means that p=0 (modp ) a contradiction.

The case pJ - 1 (j > 1) follows, since by (4.2)

(- 1,07 = (1P - 1) % (1P (mod p?).

The details are omitted.

(5.4) LEMMA. If 1<n<k+1and n+k #0 or p-1 (mod p), then the image of
U,(BU(k + 1)) = Up(nix) contains an element that is indecomposable (mod p).

We can write n+k = apdt! + gp+r, with @ >0, 0<B8<p,and 0<r<p-1.
Assume that the image fails to contain a generator, then, since (n+k, i) = (r, i)
(mod p) for 0 <i < pJ, it follows from (5.3) that

(-1) 1y = (r, i) (mod p) for 1 <i<nm.

Since 1 <n, -r =(r, 2) = r(r - 1)/2 (mod p); but this means that r% = -r (mod p)
or r = -1 (mod p), contrary to our assumption that 0 <r <p - 1.

We have narrowed down the cases in which the image does not contain a genera-
tor of 11/pli. We now proceed to the proof of (2.1). The case n+k=pJ -1 is
covered by (5.3). We consider n+ k # pJ - 1. In the proof of (4.3), we showed that
U,,(BU(k + 1)) — U, y4k) fails to contain a generator of 1/pit in the first three
cases listed under (2.1). We must now show that in all other cases a generator is
present in the image.

If n+k+# pJ - 1 and the image fails to contain a generator of 1I/p11 then
n+k=0orp-1 (modp) by (5.4). If n+k = api*! + gpi and n > pJ, we see by
(5.3) that (n+k, pJ) = 8 =0 (mod p), which is a contradiction; thus n < pJ and
n=1 (mod p), by (4.3). If n+k = apitl +8pl -1 and n > pj, then

(m+k, pd) = B-1=(-1)” (mod p),

which is again a contradiction. This completes the proof of (2.1).

The ring U itself is a graded polynomial ring over Z with a generator in each
even dimension. The generators are characterized by

+1 ifn=#pl-1,
Sn(MZn)= '
4p ifn=p’-1,
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For n < k + 1, we may think of the correspondence

n-1

(A, A1, ", An.) — (1) (n+k, n)+k+ 1A + 217 [(n+k, i)+ (1) + k, n)]ny

as a homomorphism Z"™ — Z. If n <k + 1, then the image of

contains a generator of u if and only if Z" — Z is onto (n+k # pJ - 1) or the image
is pZ (n=pJ - 1). From this viewpoint, we see that U,,(BU(k + 1)) — Up4k) con-
tains a generator of 1 if for every prime p it contains a generator of U /pil.

(5.5) COROLLARY. If n > 1, then the images of U,,(BU(n)) in Uy4,_» and
U2n(BU(n + 1)) in W4, both contain genevators of \.

For each nrime p we can verify that none of the causes of failure listed in (2.1)
can occur.

6. FIBRING OVER S2

Let us first make precise the problem we wish to attack. In [5, Section 21] we
introduced the unrestricted bordism group of all differentiable actions of U(1) on
closed oriented manifolds, and here we shall denote this by I,(U(1)). An element of
I,(U(1)) is represented by a smooth action (U(1), M™) on a closed oriented n-mani-
fold. This action bords if and only if there is an action (U(1), B®*!) on a compact
oriented manifold for which the induced action (U(1), aB™*1) is equivariantly diffeo-
morphic to (U(1), M™). The pair -(U(1), M") is represented by the same action of
U(1), but the orientation is reversed. Although we do not compute I,(U(1)), its
existence will be useful. The weak direct sum L (U(1)) = Bo 1,(U(1)) is given the
structure of a graded Q-module as follows. For any action (U(1), M™) on a closed
oriented n-manifold, together with a closed oriented V™, we set

[v™][u@1), M?] = [U(1), V™™ x M"],

where the action on the cartesian product is given by t(x, y) = (%, ty). We are inter-
ested in an -module homomorphism

1,(U(1) — @

of degree +2, which we shall now define. Given (U(1), M™), we introduce

(u(1), M % Sg) by t(x, z, w) = (t~! x, (tz, tw)), and we consider the quotient manifold
(M™ x 83 )/U(1) that is fibred over S2 = S3/U(1) with fibre M™ and structure group
U(1). This quotient manifold is naturally oriented, and the reader may show that

[u(1), M2] — [(M2 x 83)/U(1)] € Q42

is a well-defined ©Q-module homomorphism. Its image is a homogeneous ideal in £,
and this is the ideal we would like to characterize. As stated in the introduction, we
can do this only up to torsion.

So far, we have only dealt with the complex bordism ring 1; but there is the na-
tural homomorphism 1 — © that ignores the weakly complex structure but preserves
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the orientation defined by this structure. Milnor noted that for any odd prime p, a
generator for 1 /pU in dimension 4n will also serve as a generator for Q/pQ. We
now construct some manifolds, which will actually be complex analytic, and whose
oriented bordism classes lie in the image of I (U(1)) — Q.

For every pair of nonnegative integers n and k we define an action of the
(n + 1)-dimensional toral group T™"1 on the cartesian product S2ktl x (83)n py

(tl’ E tn—!—l)[(hl» T >"k+1)1 (Zzw WZ), R (Zn+1’ Wn+l)]
= [t 650y, £ 0, o, ty M), (6285725, £, WR),

(tntn+1 n? nwn)’ (tn+lzn+17 t1r1+1Wn+l)]'

This is a principal action, and we set V(n, k) = (S2X*1 x (s3)n)/T"*2 {0 obtain a
closed 2(n + k)-manifold. We note that V{(n, 0) = V(n - 1, 1).

Let us refer to a pomt in V(n k) by its homogeneous coordinates
[y, =, Aeg1), (22, W3), - (zn+1 , Wn+1)]; then we can define an action
(u(1), V(n, k)) by

tly, =0y Aer1)s (22, W2), =, (Zn+1, Wnt]
= [(Aq, o A1)y (22, W2), 0, (2, W), (tZn41, Wat)].
It follows immediately that V(n + 1, k) = (V(n, k) X S3/U(1)); thus
[V(n+ 1, k)] € Q2(n1k+1)

lies in the image of Iz(n+k)(U(1)) — Q2(n+k+1)-

Let us describe V(n k) as fibred over V(n, 0) = V(n - 1, 1) with f1bre CP(k).
We consider TP c T?"! as (1, t,, =, t,,,) and let T® act on C X (S3™ by

(t27 Tty tn‘l'l)()\; (227 WZ)) Tty (Zn+l’ Wn—l—l))
= (tél )" (tzt:;lZZ, tZWZ)’ tty, (tn-i-lzn-l-l: tn+1wn+l))-

This produces a line bundle 7 = (C X (S3)%)/T™ — V(n, 0). The reader will see that
V(n, k) = CP(np +kC). Thus we can apply the computations of Section 4; for if
v, € H¥V(n, 0); Z) is the Chern class of 7, then, according to [4, (42. 8)]

<V1’ 02n> +1.
We fix an odd prime p; if

n+k:apj+l+ﬁp‘]+r (0_§_I‘<p'1),

then [V(pi - 1, pi*1 + (8 - 1)pi + r + 1)] is a generator of Q/pQ, by (4.5). On the
other hand, if

n+k =apitl+pgpi-1 (0<B<p)
and either @ > 0 or B> 1, then by (4.3) [V(pJ, pi*1+ (8 - 1)pI - 1)] is a generator

of Q/pf. Similarly, if n+k-= pitl -1 (j > 0), we use [V(pJ, pip - 1) - 1)].
n + k = 2, we cannot get a generator, because n would have to be 1; but if
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2<n+k<p-1,wetake k=1 if n+k isodd and k=2 if n+k is even.

(6.1) LEMMA. For each odd prime p and each n > 1, some bordism class X 4n
in the image of 14, »(U(1)) = Qg, is a generator of Q/pS2.

We take X4 = [CP(2)] to complete the list of generators. An eliment in4 Q4m
can be represented uniquely (mod pS 4,,,) by an expression 20 a, X li.x nm,
where w = (n; < -»- < n, ) is a partition of m into nonnegative integers. The prob-
lem is the computation of a(j 1,...,1), the coefficient of (X4)m, Since X4n for
n > 1 is represented by a manifold fibred over Sz, it follows from the Chern-
Hirzebruch-Serre theorem [3] that index (X4n) = 0. On the other hand, index X4 =1,
Thus the index (mod p) of a bordism class is the coefficient (mod p) of (XH)™ in the
above expansion. Recalling that the image of I (U(1)) — Q is an ideal, we have the
following result.

(6.2) THEOREM. If p is an odd prime and M¥™ is a closed oviented manifold,
then [M*™] lies in the image of L4m-2(U(1)) = Q 4r (mod pQ 41y) if and only if
index M4™ = 0 (mod p).

The reader may show that if n > 1, then the image of 14, _2(U(1)) — Q4,, contains
a generator of Q/Tor. From this we derive the following result.

(6.3) COROLLARY. If M*™ is ¢ closed oviented manifold of index 0, then
modulo an element of order 2, [M*™] lies in the image of 14, U(1)) = Q4.

It seems doubtful that every element of order 2 lies in the image of L (U(1)) — Q.
In particular we are unable to show that the generator of Q5 ~ Z, is in this image.
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