SIMULTANEOUS INTERPOLATION IN H?2
J. T. Rosenbaum

1. INTRODUCTION

In 1961, H. Shapiro and A. Shields [4] investigated weighted interpolation in
several functmn spaces. Our Work is an extension of the part of their paper that
deals with the Hardy space HZ. The author acknowledges gratefully many sugges-
tions communicated orally by Professors Shapiro and Shields.

Let {z 1 denote a fixed sequence of complex numbers such that
0< |z,] £ lz 1| <1, and let L, and L! be the functionals defined on H? by
L f—f(z N) and L'f—f'(z ) (f e HZ, n= 1 2, --+). In [4] it is shown that if |z |
tends to 1 rapidly enough, then for each sequence {w, } in £, , there exists a
corresponding f in H2 satlsfymg the weighted interpolation condition

(1) fz,) = Wy frll -

Our main result is that under a slightly stronger restriction on {z, }, it follows that
for every pair of sequences {wn} and {Wn} in ¢,, there exists a corresponding £
in H2 that satisfies the simultaneous interpolation conditions

(2) Hzp) = o [ Lnll,  f(z5) = wh|Laf

2. NOTATION AND BACKGROUND MATERIAL

For each f analytic in the open unit disc,

1 (27 )
lim 5 S |f(rei®)|2 a6
rTl T 0

exists (possibly as infinity) and equals 2’ |an| where the a, are the Maclaurin
coefficients of f. The Hardy space H? con81sts of the funct1ons f for which the
limit is finite. If f € H2, the radial limit fel ) exists almost everywhere and be-
longs to the Lebesgue space 2?[0, 2n].

H2 becomes a Hilbert space if we define the inner product of any two of its

members f and g to be 2 a, b , where the a and b, are the Maclaurin coeiffi-
cients of f and g, respectlvely The mapping. f(reif) 5 f(ei?) is an isometry from
HZ into £72.

Let K, (z) and K] (z) denote (1 - z,,z)" 1 and z(1 - z, z)"2, respectively (note
that K| is not the derlvatlve of K ) It is easily verified that these functions belong
to H2 and that

(£, K,) = Lf =1£(z,), (K})=Lf=1Y(z) (=12 )
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66 J. T. ROSENBAUM
for all f in H%. It follows from the above that

Lol = IKal = 60 ana LAl = |x4] = 631+ [2,]2)1/2,
where 6, denotes (1 - |z_|2)"1/2. The equations (2) now take the form

& Ko/ 1Ko l) = wy, & KI/IKL]D = wi,.

Some basic facts about HZ can be found in [5] under the heading HP (p > 1).

If A= (aij) is an N X N Hermitian matrix and M is the greatest of the N num-

bers 27 j Iaij| (1 €1 < N), then the norm of A, as an operator on the Hilbert space
Ey, is not greater than M. This follows from Theorem 3.3 in [2] and from the fact
that |A| = max, |[A| (A in the spectrum of A).

We shall say that {zn} approaches the boundavy exponentially if
(Eg) 8,/ 0,41 <o <1 (n=1, 2, --)
for some 0. We shall say that the sequence is a Carleson sequence if

Zr ~ Zp
1 - ank

(Cs) II

k#n

>6 >0 (n=1,2 --)
for some 6.

3. PRELIMINARY RESULTS
In this section we shall establish the relations
(Eg) = (Cg) = (1) is solvable,

the implications being equivalences if the z, all lie on a radius.
THEOREM 1. If {zn} satisfies (Eo)for some O, it salisfies (Ca)for some 0.
The first two theorems in [3] imply this result. The following is a direct proof.

Pyroof. The identity

) I%T—TTZ. IR 'ﬁ'f’g:lg 1% (Ja], o] < 1
implies that
2] el o, ol < o,
I x_ denotes (1 - |z,|)~! and if i < n, it follows that
Z; - Zg |2 - x| oxp-x 2% o1 2 .
1-Z 2z = %X+x,-17 x,+% x, +x; = 1+ o-2li-nl
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Since the extremes are unaffected if i and n are interchanged, the inequality holds
for all i and n with i # n. Thus, for each n,

> II|1- 2 ]

i#n 1+0.—2|i-n|

7 - 7

1-2,2;

II

;i#n

n-1 00 o0

2
= H[1-——3—2—k] H[l_‘ZZk:l > [1-——2—2@].
k=1 1+0” ) (k=1 1+0~ k=1 1+0”

This product is positive, since 24y (1 + 0-2K)-1 < «; therefore we may take & to be
its value. ' This proves that {zn} is a Carleson sequence. W

Shapiro and Shields [4] showed that if (Cg) holds, then (1) is solvable. We in-
clude a sketch of their proof, since we use the elements of the proof in the next sec-
tion.

THEOREM 2. If {zn} is a Carleson sequence, then for every sequence {Wn}
in 0, there exists an f in H? satisfying the interpolation condition (1).

Outline of proof. Let {wn} be a fixed sequence in f, . For 1 <n < N, define

-—.II Z"‘Zk _
BNn(Z) = " T_—E (1Sk_<_N, k?ﬁn), an = BNn(zn)’

N
bpn(@) = BE (2)/(1 - 2, 2208 63, £y = 27 Wydnn-
1

We see that fiy(z,) =w, 6, (1 <n < N). It is shown in [3] that { [fy|} is boundeaq,
from which it follows that {fy} has a weak cluster point, say f. Then, for each n,
{(fn, K,)} has the cluster point (f, X,). But (fyy, K,) = w, 6, for N > n, so that
(f, K,) must equal w,6,, . W

THEOREM 3. If {z,} is a vadial sequence, then the solvability of (1) is equi-
valent to exponential approach to the boundary.

This theorem follows from the identity (3) and the following three lemmas.

LEMMA 1. If, for each sequence {wn} in L, (1) is satisfied by some f in HZ y
then there exists a constant M such that for each sequence {Wn} in the unit ball of
L5, (1) is satisfied by an £ in HZ2 whose norm does not exceed M.

LEMMA 2. Suppose M is a constant, and suppose that for each paiv i, j of in-
dices (i #1), a function f;; in B> exists such that l£; <™ ana

(4) &, K /0D =0, (g5, X;/|K]) = 1.
Let

K; K
_ . -1 51 s=1 _ f _Bi B
& = 1 - 22|70 03! o _<"Ki"’ “Kj")-
Then I‘Eij_ll >1/M2'

A sequence is said to be weakly separated if there exists a constant 0 for which
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Zi_zj
1 - iji

>06 >0 (i#j).

LEMMA 3. If a weakly separated sequence lies on a rvadius, it approaches the
boundary exponentially.

The first and third lemmas are proved in [4] (see p. 517 and p. 529, respectively).
A proof of half of the equivalence in Lemma 2, ostensibly for two particular Hilbert
spaces (neither of them HZ), but actually valid for any Hilbert function space, is
given in [4]. We now present a somewhat simpler proof.

Proof of Lemma 2. For i # j, the function of minimal norm satisfying (3) clearly
has the form

The values c; and c; are readily found from the relations (fij , K;) =0 and
(f5, K;) = |x J“ . Substituting the results into (5) and then taking the inner product of
the members of (5) with themselves, we find that "fij 2= - gij)-l . u

4. THE MAIN RESULT

In the last section we showed that (Eg) implies the solvability of (1), the impli-
cation becoming an equivalence if {zn} is radial. In this section, we shall prove
that (E;) implies the solvability of (2).

" THEOREM 4. If {zn} tends to the boundary exponentially and if {wn} and
{WI;} are sequences in {, , then theve exists an f in H2 satisfying the simultaneous
interpolation conditions (2).

Proof. We shall find two functions F and G in H% such that

(6) F(z,) = w, 6 F'(z,) = 0,

(7) G(z,) = 0, G'(z) = w' 83 (1+ |z |2)1/2,

Then F + G can serve as the desired function.

The determination of F. We shall construct a sequence {FN} in H2 such that
{l|Fll } is bounded and F; satisfies (6) for 1 <n < N. {F } will then have a
weak cluster point that can be taken as F.

For 1 <n <N, let By, , by,, and iy be defined as in Theorem 2. Let

n
bl = Bin(2,) = by Ex 672 (z, - 2,)-1(1 - 2,2z )"1  (k #n),
and let
FNn = aNn(Z - Zn) (1- an)-?’ BIZ\Tn(Z)’
where
= _ =2 -3 (= 1 - -1
“Nn = 2 an Gn (Zn + an 6n2 an) -

N
Finally, let Fy =fyy+ 207 W, Fyn -
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Simple computations show that Fyy satisfies (6) for 1 <n < N. Since
| Foll < Hlel + ENW _Fuoll, it suffices to show that { || ENW Frall} is bounded

(N=1, 2, ---). To do this, we shall show that as operators on EN the matrices
An= ((FNi, FNj)) (1<1i, j < N) have uniformly bounded norms.

The Carleson condition is stronger than weak separation, which in turn is equiva-
lent (see [4, p. 529]) to the existence of a constant ¢ > 0 such that

(8) |zi—zj|6k_>_c for k=1 and for k=j (i#j).
since |1 - Z;z;]6¢ > 1/2 (k =i, j), it follows that the terms on the right side of
PN/ ONp On = 27 1/55{ 6121 (z, -2, )(1 - 2, 2)
k
are dominated by both 62 /6 and 62/6%. Thus they are dominated by o2|k-n| g0

that the sum is dommated by 202 (1 - o) Together with the Carleson cond1t10n this
implies that o, is dominated by 63 ; therefore

M 57’ de

l(FNi’ )I S3o 63 63 ) (z - zj)(l - ijz)(i -2;)(1 - z;2)

(z =eif, 1<i,j<N, i#j),

for some M that is mdependent of N. The integral can be evaluated by residues; it
has the value

2 2
63- z; 0fz

(Zj - Zl)(l - ZIZJ)+ (Zi - ZJ)(]' - ZJZ

By (8), each term in this expression is dominated by 6?' 6Zi / I 1- ZJ- z; | ; therefore

I(FNpF )I <M'/6 6 |1 J 1|

for some constant M' independent of N. A similar computation shows that this is
also the case if i = j. Thus, the terms of our matrix exceed neither 2M'6;/6; nor
2M'6; /8; ; therefore the £; -norms of the rows of Ay do not exceed

2M'(1 + 20 /(1 - ¢)). Thus, the existence of a function F with the desired properties
is assured.

The deteymination of G. The condition (EO.) implies that the terms of

27 (1 - |z,,|) are dominated by o®; therefore, the formal Blaschke product B(z)
formed from the sequence {zn} converges.

Let b, = B'(z,)). A computation shows that

bl = an;ll 6% II Zy 2 1(z -z ) (1 - Zkzn)'l.
k#n

Since { z,} is a Carleson sequence, 8% /b! is bounded, and therefore

{w (1+ |z |2)/262p7}
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is in ¢, . Thus, by Theorem 2, we can find a g in HZ such that
glz,) = w1+ |z |2)/263 b1t

Let G = Bg. Since |B(z)| <1 (|z| < 1), it follows that G is in H%. It is easily
seen that G satisfies (7). This completes the proof of the theorem.
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