A COMPLETE DETERMINATION OF THE COMPLEX
QUADRATIC FIELDS OF CLASS-NUMBER ONE

H. M. Stark

1. INTRODUCTION

Let h(d) be the class-number of the quadratic extension of the rationals of dis-
criminant d. In the case of complex quadratic fields, it has long been known that

h(-p)=1 for p=3, 4, 17, 8, 11, 19, 43, 67, 163.

Heilbronn and Linfoot [5] have shown that there is at most one more value of p for
which h(-p) = 1, and the author has shown [7] that if such an additional value p
exists, then p > exp (2.2-107). Heegner [3] attempted to show that the above nine
values of p give the only complex quadratic fields of class-number 1. Unfortunately,
it is thought that there is a gap in Heegner’s proof, possibly traceable to one of his
references, Weber [8]. Nevertheless, it will be instructive to examine briefly
Heegner’s method.

Put

[ee]

f(w) = q—1/24 I a +q2V -1,
v=1

where q = eTi® and Sw > 0. Also, put y,(w) = f(w)1® - 16 f(w)-8. It is known [8,
Section 125] that when p =3 (mod 4) and h(-p) =1, v, (L—I—z_—_p_) is a rational in-
teger. Thus for p =3 (mod 4) and h(-p) =1, f(i—%—jz) satisfies an equation of
degree 24 with integral coefficients,
x24 -9,x8-16 = 0.
Heegner reduces this equation to one of degree 12,
x12 4+ 2ex8+2¢2x%-4 =0,
with the relation
-4L(E +4) = v,.
This equation in turn is reduced to an equation of degree 6,
x®+20x%+28x%2-2 =0,

with the relations
¢ =28 -a%), & =28 +20a).

These relations can be combined to give the equation
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(1) . (B - 2a%)% = 2a(a3 +1).

The surprising thing about all this is that for p =3, 11, 19, 43, 67, and 163, «
and B turn out to be rational integers. Heegner in fact claims that when
p =3 (mod 8) and h(-p) =1, @ and B must be rational integers (this is the point
where the gap, if one exists, must occur). He then proceeds to find all integral
solutions to (1). There are exactly six solutions to (1), corresponding to the six
values of p listed above.

We should mention that if the numbers o and B satisfying (1) were not integers,
but merely exceptionally close to integers, then equation (1) would still be satisfied
by the integers nearest to @ and 3. In this paper, we describe a technique for pro-
ducing numbers which, if not integers, are sufficiently close to integers to yield
Diophantine equations that can be solved. As a result, we prove the following
theorem:

THEOREM. If h(-p) =1, then p < 200.

In view of the remarks at the end of the first paragraph, I have deemed it advis-
able not to introduce elliptic functions into this paper. However, the reader familiar
with Kronecker’s limit formula will see elliptic functions lurking in the background.

2. NOTATION AND NECESSARY LEMMAS
From this point on, the letter p will denote an integer (p > 19) such that
h(-p) = 1. As a result [1, Vol. 3, p. 184], p is a prime =3 (mod 8), and 3 is a non-
residue of p. Thus p =19 (mod 24). We set

Qx, y) = x2+xy+pzly2-

Throughout, the letter k is reserved to be either k=8 or k =12, and x(n) = (%)

(Kronecker symbol) is a real character modulo k. By ¢(s) we denote the Riemann
zeta function, and if d is the discriminant of a quadratic field, we put

o0

Las) = 2 (2)n-e,
n
n=1

For convenience, we write e(x) = e2Mix

LEMMA 1. For s > 1,

iy k-1 42725¢(2s - 1)(-1 + 22729) if k=8,

(2) 27 y'"% 20 x@G, =1 ,_,. . )2

y=1 j=0 2 €(2s - 1)(-1+2 )(-1+3 )  if k=12,

k-1
Proof. Put S(y) = Ejzo x(Q(@, y)). From Table 1, we see that x(n+1—§) = =X (n),
both for k = 8 and k = 12, Thus, if y is odd,

x(@(i+5,v)) = x(Q4, »+Ey) = -x@4, v,
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and hence S(y)=0. If y is even, then
2 2
x@G, v =x((i+3) +e(3)"),

k-1
2
and therefore S(y) = 2 X.(jz + p(%) ) ]
j=0

Making use of Table 1, we see that for k = 8,
S(2) = 8(6) = 2x(3) + 4x(4) + 2x(7) = 0,

S(4) = 2x(4) + 4x(5) + 2x(0) = -4,
S(0) = 2x(0) + 4x(1) +2x(4) = 4.

Thus for k=8 and s > 1,

- B = 1
2 ylv2 2 x(QG, ) = 4-41-2s 2 o
y=1 j:O n=11
o 0] o0
=42-ZS _E n1-25+2 E (2n)1—Zs
n=1 n=1 !
= 42725 g(25 - 1) (-1 + 22725)
k=8
=0 1 2 3 4 5 6 7 n=0 1 4
x(n)=0 1 0 -1 0 -1 0 1 Rgn)=2 4 2
k=12
'n=0 1 2 3 4 5 6 7 8 9 10 11 n=0 1 4 9
x@)=0 1 0 0 0 -1 0 -1 0 0 O 1 R,n)=2 4 4 2

TABLE 1. R, (n) is the number of solutions of x% =n (mod k) (0 <x<k).

From Table 1, we see that for k =12,

S(2) = S(10) = 2x(7) + 4x(8) + 4x (11) + 2x(4) = 2,

S(4) = S(8) = 2x(4) + 4x(5) +4x( 8) +2x(1) = -2,
S(6) = 2x(3) + 4x(4) +4x( 7) +2x(0) = -4,
S(0) = 2x(0)+ 4x(1) + 4x( 4) +2x(9) ='4.
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Thus, for k=12 and s > 1,

© k-1 )
1-2 _ ) i 9
2 y'% T x@G, y) = 2272 I ol-2s.5C0)
Y:I j:O n=1
oo . . -
= 92-2s ¢ 2% 1-2s _ o > (2n)1-2s -3 23 (3n)1-2s 1+ 6 2 (6n)!-2s
n=1 n:l ‘ n=1 n=1

- 22-25 g(zs - 1)(1 _ 22—28 - 32-28 +62—25)

= 22728 p(2g - 1) (-1 + 22728) (- 1 + 32-28)

o0 ~-iwv
LEMMA 2. Let I(s) = S —Z——-—dv. For 1<s <2 and w2>wg > 0, there
—-00 (V + l)s

exists a constant ¢ such that |I(s)} < cwe-W.

Proof. We shorten the proof by appealing to known formulae involving Bessel
functions [2, pp. 50-52]. For 1 <s <2 and w> wg> 0, we have the identities,

I(s) = 2 Sow—(:gs+v;‘;s dv = 2w?s-! S (VZCC_)I_SJZ)S
=1"(s)( ) )=F(-STZ—7TES_—IW- -WS —vs1(1+—)dV

where K, _; /z(w) is a modified Bessel function of the second kind and I'(s) is the
Gamma function. But now, for 1 <s <2 and w> wy> 0, it is easy to see that
there exist constants ¢; and c¢ such that

1 o]
|I(s)| < ¢, weW S e‘V(l +L)dv+5 ve 'V (1 +L)dv <cwe™VW,
1 A 2w ) 2wo

LEMMA 3. h(-8p) =2 (mod 4), h(- 12p) = 4 (mod 8). (Thus, there exist nonnega-
tive integers M and N such that h(- 12p) = 8M + 4 and h(-8p) = 4N + 2.)

Proof. We recall the formula for the class-number of a quadratic field of dis-
criminant d < 0 [6, Satz 897],
4]

(3) h(d) = [ ( )] <l

2

where w=6 if d=-3, w=4 if d=-4, w=2 if d<-4. Put p=8r +3. Then

(4) {the relations in the upper half of the next page constitute equation (4)}
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1 g (:@E)
2 =1\ m

h(-8p) =
1 4p 4p 4p 4p '
= § . Z) - Z) - E + Z) (E)
m=1 m=1 m=1 m=1 p
m=1l (mod 8) m=3 (mod8) m=5(mod8) m=7 (mod8)
P P P P
= % 2o - 22 - 27 + 27 (ﬂ)
m=1 m=1 m=1 m=1 b
m=1,6,3,0(mod 8) m=3,0,5,2(mod8) m=5,2,7,4(mod 8) m=7,4,1,6(mod 8)
P P
-z (5 =z (%)
m=1 b m=1 b
m=1,6 (mod 8) m=2,5 (mod 8)
P P P
.3 (@ B (e=m)y., B (m),
m=1 p m=1 p m=1 p
m=1,6 (mod 8) m=1,6 (mod 8) ms=l,6 (mod 8)

The last sum contains 2r + 1 numbers, each odd. Therefore h(-8p) = 2 (mod 4).

Now put p = 24r + 19. In particular, p =3 (mod 8) and p =7 (mod 12). Thus,

6
1 -12
h(-12p) = 5 2 (22)
m=1
6p 6p 6p 6p
-1 > . 0z . = + = (=)
m=1 m=1 m=1 m=1 p
m=1{modl2) m=5{modli2) m=7(modl2) m=11(modl2)
P P
-1 > ] >
m=1 m=1
m=1,6,11,4,9,2(mod 12) m =5, 10,3,8,1, 6 (mod 12)
P P
- 27 + 27 (—n—l)
m=1 m=1 b

m=7,0,5,10,3,8(mod 12) m=11,4,9,2,7,0{(mod12)

P p
) - > (Z)
m=1 m=1 P
m=2,4,9,11 {mod 12) m =3,5,8, 10 (mod 12)
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P P
R (R o T L R A
m=2,4,9,11 (mod12) m=2,4,9,11(mod 12)
Now
P m P m P +
- m-p
mZ:)l (F> - ni)l (F)_F mZ=>1 ( p )
m=4,9 (mod 12) m=4 (mod 12) m=9 (mod 12)
iy m > 2m > m
-z Bz G-z (3)
m=4 (mod 12} m=2,8 (mod 12) m=2,8 (mod 12)
p o P b-m
- mzz;l (3)- n§=)l ( p )
m=2 (mod12) m=11l (mod12)
° m > m
-z Gz G)
m=2 (mod 12) m=11 {(mod 12)
Thus,
P
(5) h(-12p) = 4 - 21 (-r—;‘—) .

m=11{mod12)

m
p

There are 2r + 1 terms in this sum, each odd. Therefore h(-12p) = 4 (mod 8).

LEMMA 4. Put

=

_Tr k-1
27 k T 1 . jr/y
(6) B. = e -e(——) 22 = 22 x(QG Y))e(*).
r k"/B 2k eryj=0 ) k
. p+1_
i) Wher k = 12 and yaie 1 (mod 4), then
_1Vp _1vp
B — _Me 12 B =0 B = - 47r“/_§e 4
1 3‘/-1—) s 2 ’ 3 9‘/3
p+1_
When k = 12 and——4—- = 3 (mod 4), then
_mVp _aVp
1=27”/—2-e 12, B, = 0, B3=47”/-§e 4
3Vp 9vp

) -
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_mVp
+1 il 8
ii) When k = 8 and 2 =1 (mod 8), Bl =———= € Bz =0.
) g Tlmd® BitTE TR o
TVp
+ 1 7 T8
Whenk=8andp—55(mod8)B=————-————e B, =0
1 SRt s A
TVp
v 2 2
When k = 8 andpzlE3(mod8), Bl=—7”/_2 +Fe 8 , B=0
2vp
7Vp
p+1 av2V2+ V2 "3
When k = 8 and 2 =7 (mod 8), B; = e e , B2=0.

Proof. We show first that B, = 0 for both k = 8 and k = 12. We recall that
X (n +%) = - x(n). Thus,

2 2|:]_|_l<.
2, . p+1) (_2_1) D .. k p+1 2
X(J ti+ g~ el ) tx j+5 |+ i3 |+ e' T 0.

Il

Therefore
k-1 o
(7) 2 x@G, Me(3F) = o.
j=0
Likewise,
k
. 2 it+t5
X(JZ+ 2j +p+ 1)6(;—{) + x([]+l-§:| +2(:]+§:I+p+ 1)e I_:._.E_z_J) = 0,
and hence
k-1 ]
(8 2 x@G, 29e(L) = o.
. j=0

From (7) and (8) we see immediately that B, = 0.
We may cut the remainder of our job in half. Consider first the case k=12. In

D 1— 1 p;“ 1 — 5 (mod 12), and hence

this case, =1 (mod 4) implies

QG, 1) = j%2+j+5(mod 12), Q(, 3) = jZ+3j+ 9 (mod 12).

p+1

On the other hand, p+1_ 3 (mod 4) implies i

4

=11 (mod 12), and hence

QG, 1) = j2+j+11 (mod 12), Q(, 3) = j%+ 3j + 3 (mod 12).
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Consequently, as we go fro p_l—___l_ =1 (mod 4) to P I 1_ 3 (mod 4), x(Q(, 1))

merely changes sign for every value of j, and the same is true of x(Q(j, 3)). Asa
result, the same is true for B; and B3. For k = 8, a similar situation arises as we

go from

E%;—l = 1(mod8) and Q(,1) =ij2+j+1 (modS8)

to

Pl =5(mod8) and QG 1) =§%+j+5 (mod 8).

Here again, B; merely changes sign. This is again clearly the case when we go
from

p—l‘—l- =3 (mod 8) and Q(,1) = j2+j+3 (mod 8)

to

PXl=7(mod8) and QG, 1) =j%+j+7 (mod8).

It remains to verify the values of B; and B3 for k =12, p—z—l =1 (mod 4) and

the values of B; for k = 8, %1 =1, 3 (mod 8). Table 2 will aid the reader in

checking the arithmetic. Simplified values of e (—;E) may also be useful:
(15)

16
e (31)

24

LEMMA 5. The only solutions in integers of 8x® +1=y2 gre

%(\/2+w/_2+iw/2— v2),

]

1 .
'2—‘/_2[(1/3+ 1) +i(vV3 - 1)].

x=0, y=%41, [x|=1, |y|=3.

The only solutions in integers of x®+1 =2y2 are |x| =1, |y| =0, 1.

Proof. The first equation is classical. Euler [1, Vol. 2, pp. 533-534] solved the
equation x3 + 1 = y2 and found that x = -1, 0, 1, 2 give the only solutions. I am un-
able to find a complete solution of the second equation in the literature; but Dickson
[1, Vol. 2, p.538] notes that L. Aubry and E. Fauquembergue proved that x3 + 1 = 2y?2
has solutions only for x = -1, 1, 23. We therefore solve the second equation here.
The same techniques work for the first equation with the plus sign; the first equation
with the minus sign has no solutions (mod 4). We first treat the equation
x6=1+ 2y% . Here

(9) (x2)3 = 1+yvV=2)(1 - yV=-2).

The field Q(V -2) has unique factorization of integers. Further, the units of Q(+v -2)
are +1 and thus are cubes in Q(v -2). Finally, if 7 € Q(vV -2) is a prime and divides
both factors, then 7 divides their sum and thus 7 =4+ -2. But +Vv -2 does not divide
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k=12, 9—2;-151 (mod 4)
i Q(j, 1) (mod 12) x(Q(j, 1)) Q(j, 3) (mod 12) x (Q(, 3))
0 5 -1 9 0
1 7 -1 1 1
2 11 1 7 -1
3 5 -1 3 0
4 1 1 1 1
5 11 1 1 1
6 11 1 3 0
7 1 1 7 -1
8 5 -1 1 1
9 11 1 9 0
10 7 -1 7 -1
11 5 -1 7 -1
QG, 1) =2 +j+5(mod12), Q(,3) =ij% +3j+9 (mod 12)
k=8, 2T1 =1 (mod 8) k=8, 21 =3 (mod8)
j Q(, 1) (mod 8) | x(Q(, 1)) j Q(j, 1) (mod 8) | x(Q(@, 1))
0 1 1 0 3 -1
1 3 -1 1 5 -1
2 7 1 2 1 1
3 5 -1 3 7 1
4 5 -1 4 7 1
5 7 1 5 1 1
6 3 -1 6 5 -1
7 1 1 7 3 -1
QG, 1) = 3 +j+1 (mod 8) QQ, 1) = §% +j +3 (mod 8)
TABLE 2

either factor. Thus there are rational integers a and b such that

1+yvy=2 = (a +bv=2)>.

Therefore

1 = a(a? - 6b2),

Consequently, a=1, b=0, y=0, x=+1.

Now consider the equation x©+1 = 2y2,

(10) (x2+1)(x*-x%2+1) = 2y “.

y = b(3a2 - 2b2).

Here

2

We note that the first factor must be even and the second odd. Also, since
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x¥-x24+1 = (x%2+1)2-3(x%+1)+3,
x%2+1 and x* - X% +1 can have no common factor other than 3; but this can not oc-
cur, since 3 never divides x% + 1. Finally, x x¥-x2+1 is pos1t1ve and thus it fol-
lows that there exists an integer z such that
(11) x* - x24+1 =22,
We note that for xZ > 1,

(x2 - 1)2 <xt-x¥+1< (x‘?')2

Hence, the only solutions to (11) are x =0, +1. Of these, only x =41 gives solutions

to x0+1 = 2y2.

3. DERIVATION OF DIOPHANTINE EQUATIONS
FOR SUFFICIENTLY LARGE p

For s> 1,
Lo - B, 7 (%) (30)"
(12) i
- 3 B (&) (R)ewr = Z (9 2,(2)

Let eq, denote the number of representations of d by the form Q. Heilbronn [4,
p. 156] showed that if h(-p) = 1, then

(13) > (2) =3ean-

m|d

Landau [6, Satz 204] proves (13) under the additional hypothesis that (d, p) = 1. It
should be noted that (13) contains the assumption that h(-p) = 1, since ordinarily the
right-hand side of (13) would be summed over all forms belonging to a complete
representative system of forms of discriminant -p. In fact, this is the last point
where we need to use the assumption that h(-p) = 1.

From (12) and (13), we get (at z = 1/2) the relation

Li®) Lipls) = 3 x y xé%gcy;rg)

(14) =

1 > x(x2) Z) > x(Qx, ¥))
2 =x#0 (XZ) y;so x Q(x, y)®

e2zs) II @1-q7%%)+ z; » x(Q, y)) _
al i y=1 x [(X+Zy)2+%y2]

q prime

il
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!
The symbol 27 in the first line means that (x, y) = (0, 0) is to be excluded from the
summation. For fixed s > 1, the last function is continuously differentiable in z and
periodic in z with period k, and we therefore expand it in a Fourier series. For
s>1and z=1/2,

Li®) L) - §28)  IL (1-a29) = I Ays)e(32)

alk r=-oo
(15) q prime
= Ay(s)+2% 331 Ar(s)e(g,rg) ,
where
1 0% < Q(x, ) -rz
Ar( ) _ 1 Z) E X » ¥y S e dz
) ki’ y=1 x [(x+zy)2+p3’2] ( « )
(16)
o rz
1 Z; e(_ k
== X (Q(x, y)) s dz
ky:]. X ‘S(‘) I:(X+ZY)Z+ZYZ:|

The interchange of the integral and summation signs is justified by the absolute and
uniform convergence in z of the double series. We change variables in (16) by put-

ting x+ zy = ywé_ﬁ u; this gives the equation
w 2(x+ky) I‘\/Bu
1/(Vp 1-2s -2 rx - yVp e( 2k )"
As) = = (=R 2; y-2s Ex(cxx e( du.
r k( 2 ) y=1 ) S (u + 1)
Y\/TJ
Now replace x by m +kyn (0 <m <Kky - 1); then
2[m+k ( +1)]
1(*/5)1-25% 2 kgl rm ES = Vn e(_r\?fkﬁu)
A_(s) =+ |5 y~°® (Q(m, ))e —————— du
i k2 y=1 m=0 X Y ) 2{(mtkyn) (uZ +1)°
(17) yVp
co co ky-1
vp\l2e e( 2k ) rm
du 27 y=2s 25 , =) .
( ) S T@Zrne uyzly m=0x(Q(m y))e(ky)

If we put m =g +kj (0 <g<k - 1), then we see that
ky-1 k-1 y-1 .
Imy _ Ieg LY ]
Z x@am, ye(i2) = g?ox@(g,y»e(ky) z (F)

m=0
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k-1
" )y Z e e(BE) uylr,
0 if y,|fr.
It follows from (17) and (18) that
1(Vp)!-2 e (- ——rgu) B /
_1(N¥P mas 1-2s gr/y
(19)  As) = 3 (B2) S_w el ? vz x(@Qg, y)e( L) .
y>0

When r > 0, this last formula has meaning even for s =1. For r > 0, we write
(20) A = A1),

By elementary residue theory,

- o (- T () TR
S > du = -27i lim - = e (r>0)
J o u“+1 Wi u-1
Thus, for r > 0,
_azVp k-1
27 k 1 . jr/y
(21) A, = e 27 =27 x@G, y))e(— :
kVp er Y j=0 k )
y>0
By (19) and Lemma 1, when s > 1,
42725 (25 - 1) (-1 +2%7%%) k=8),

1 _\/B 1-2s ©o du
Ayis)==(5" T3 s
0'® k( 2 ) S_oo W% +1)° | 92-2s ¢(95 - 1) (-1 + 22725) (-1 + 32725%) (k = 12).

Thus we may define

9 -log2 (k=28),
(22) AO = lim Ao(S) = ‘1:‘_"

s— 1F Ve | o (k = 12).
F > r .
rom (19) and Lemma 2, we see that ~=1A(s)e o5 ) converges uniformly for

1 < s < 2 and hence is continuous from the right at s = 1. Thus, combining (15) and
(22), we see that

(>0}
2
T 7 log 2 r
23 Lg(1)L_g (1) =X T 082,959 27 A e(——),
(23) s()L_gp(1) = 3 e = Arel1g
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2 [>e)
T . r
(24) Lz Loizp) = 3 +28 2 Ae(3

We shall evaluate the left-hand sides of (23) and (24) by Dirichlet’s formula ([6,
Satz 209]; here Landau is speaking of class-numbers for quadratic forms and units of
norm +1; he makes the connection with class-numbers for quadratic fields and funda-
mental units in Teil XI, Kap. 3). Dirichlet found that

log (1 + V2) log (2 +V3) mh(-kp)

Lg(1) = 75 ,  Lipp(1) = 73 > L) = Vkp

We therefore see from (23) and (24) that

h(-8p)log (1 + v2) 1, 5 _ 13/_5+_2_%§ ni> Are(i) (k = 8),

(25) 4 2 8

(26) h-12p)log (@ + V3) _ 2¥p  3VR g ) 3 4,0 (& } (k = 12).
p

+1

It will be necessary to consider equation (26) in the cases =1, 3 (mod 4),

4
and equation (25) in the cases
p%;l =1, 5 (mod 8) and 9—4-+1 = 3, 7 (mod 8).

For each of these three pairs, it will turn out that the values of A, differ in sign
only, for the two cases in the pair. In this section, we shall consider in detail only
the first case from each grouping, and we shall state the result for the second case.
In Section 4, when we consider the error terms, we shall consider the second case
from each grouping. Thus the reader will ultimately see each of the Diophantine
equations (51) to (54) completely derived; but at first he will not need to worry about
the error terms.

Put
(27) q=e7”/—§,
and
(28) r,=2+v3, r,=2-+V3.

Further, let

(29) W, = _1_4-2_*/3 rog L _zﬁ

n
ry,
so that w, is an integer and satisfies the recursion relation

(30) Xpt2 = Xpy) - Xp.
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We now assume that k = 12 and —9—1—15 1 (mod 4). By (26), (21), and Lemmas 3
and 4,

1 7Vp - 2\/_ - -
(31) '(M+§)log r) = 5k - V2ql/1Z - a-1/%+0(q-1/3).
Thus,
A M+l
M1+v3 M /2+V3 _ 1 2
s —3 =TI 2 Jar
(32)
1 ‘ - - - -
=ﬁ_q1/12[1 - ﬁq l/lZ_I_q 1/6 _ v3gq 1/4+0(q 1/3)]-
As a result,
M(y3 - 1) = ( M1+wf— VEq-1/12[1 4 y3q-1/12 4 o(q-1/6)]
and therefore
M1-V3 - 1 _1/12 -1/12 -1/6
(33) ry 5 = -5 [1++v2q + O(q ).

In view of (29), we are led to combine (32) and (33); in the case of l'%l- =1 (mod 4),

we therefore define the integer

a=wytl= rll\’il;ﬁ+r12\’11'2‘/_§+1

(34)
1 1/12 -1/4 -1/3
= 7= 1-2V2 +0 .
ok [ q (q )]
In particular,
3 = 1/4[ -1/4 -1/3
a’ = 1-6v2 +0 1,
and hence
(35) a3 +3 = —L_ql/4 4 0(q1/12),
2v2
In the case that 1- L =3 (moa 4), we get (31) with two sign changes,

(M+%)logr1 = 1‘:/2_+ w/_q’1/12+2ﬁ qa-17/% +0(q-1/3).

We then define the integer a in the case of D Z L. 3 (mod 4) as

(36) a=wy-1= % q!/12[1 + 24 2q-1/4 + O(q-1/3)].
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We then see that

(37) 2’ -3 = —=q'/*+o@/1?).
Put

(38) Ry =1++vV2, R,=1-+2,

and let

1
(39) Yn =575 (R) - Ry), 2 =5 (R] +Rp).

2»/—

We see that y, and z, are integers and satisfy the recursion relation

(40) Xnt2 < 2Xn+I + Xp.

We now assume that k = 8 and 2 Z 1. 1 (mod 8). By (25), (21), and Lemmas 3
and 4,

1 1 7Vp 2
(41) N+5)logR;+51log 2 = + q-1/8 + 0(q-3/8).
( 2) 4 8 /Rlﬁ
Therefore,
42 VR, vz RY = l/8|:1+ 2 ~1/8 4 o(q-1/4 ]
(42) Rl q \/El_w/:q (a )

Together, equations (41) and (42) imply that

JERZNFL - (1/4 -1/8 8 q-1/4+0(q-3/8):|

FEEEE
vR1V2 Ry V2

= q1/4+4R1§+0(q'1/8).

(43)

Thus

1 2N+l _ N_ 1 1/4 -1/8
2Rl \/ERI = 2\/_2q + O(q ),

and since RIZ\T = O(q‘”s) by (42), we see from definition (39) that

(44) Zon+l ~ 4YN T 2\/— ——ql/4 +0(CI'1/8) [ =1 (mod 8)] .

In the case p_:_l =5 (mod 8), we get equation (41) with a sign change:

7Vp 2
5 TR

and we are then led to the analogue of (44):

at/8 +0(@3®),

l) 1 -
(N+2 10gR1+410g2 =

__1 174 -1/8 p+1_
(45) Zon+1l T 4YN ok +O(q ) =4 =5(mod 8) |.

15
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Now we consider the case £ 1_ Ly 3 (mod 8). By (25), (21), and Lemmas 3 and 4,
1 1 _7vp -1/8 -3/8
(46) N+3 )log Ry+7log 2 = 3 -vY2RV24q + O(q ).
Therefore
(47) VRIVZRY = ¢!/8[1 - V2R V2 ¢"1/® + O(q" /)]

Combining equations (46) and (47), we find that
VERT = q1/4[1 - 2V2R V2 ¢ 1/8 + 4R | V3q /% + O(q-3/8)]

(48) 1/4 1
= q'/% - 4R+ 0(q"1/8).
Thus
1 __2N+1 N+1 1
=R +V2ZR = ——ql/4 + O(q-1/8
9 V1 1 ZW/Eq (a ):
and as a result,
-1 1/4 -1/8 p+1_
(49) Zon+1 T4V N+ _mq/ +0(q1/8) ——4——=3(m0d.8) :
p+1_ . .
In the case = 7 (mod 8), we get (46) with a sign change:
(N+7)10g R1+71-10g2 - ﬂ?+J2Rlﬁq‘l/8+O(q‘3/8),

and we are then led to the analogue of (49):

- _ 1 1/4 -1/8 p+1_
(50) Z2N+1 - 4YN+L = 554 + O(q ) I: 3 =7 (mod 8):|-

Combining equations (35), (37), (44), (45), (49), and (50), we see that if p is suf-
ficiently large, then one of the following equations is satisfied:

p+1

(51) ZoNsl - 4yn = a3+ 3 = =1(mod8) [,
(52) zZN+1+4yN=a3+3 F%—lEﬁ(mod 8) |,
- a3 [ p+1_ il
(53) ZonelF 4Vey =20 - 3 | 2 =3 (mod 8)_ ,
(54) ZoNe1 - 4Ynel = 20 - 3 R-l;l =7 (mod 8)

In (51) and (52), a is defined by (34); in (53) and (54), a is defined by (36).

Equations (51) to (54) have been derived under the assumptions that h(-p) = 1,
p =19 (mod 24), and p is sufficiently large. Except for this last condition, the
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values p = 19, 43, 67, and 163 satisfy these assumptions. For each of these values
of p, the corresponding equation is actually satisfied; for example, when p = 163,
both sides of (51) are equal to 8,003. We present the pertinent numbers:

For p=19, h(-12p)=4, h(-8p)=6, M=0, N=1, a =2, z3 =1, y1=1.
For p=43, h(-12p)=12, h(-8p)=10, M=1, N=2, a =4, zg = 41, y3=95.
For p =67 h(-12p)=12, h(-8p)=14, M=1, N=3, a =6, z7 =239, y3=>5.

For p = 163, h(-12p) =20, h(-8p) =22, M=2, N=5, a =20, z;; = 8119, y5 = 29.

4. PROOF THAT p > 200 IS SUFFICIENTLY LARGE

The results of this section are that if p > 200, then equations (51) to (54) are
valid and a > 20. This estimate on a will be crucial, since we show, in Section 5,
that there exist no solutions to equations (51) to (54) with a > 20. We shall assume
throughout this section that p > 200. With the exceptions of the estimates (56) and
(57) on q-1/k, all of the estimates in the section will be sufficiently relaxed so that
the reader can verify them without recourse to tables or calculating devices. We
shall use the following four relations: for |x| <1,

g r
(55) nx™® = ———i—z [r - (@ - 1)x];

n=r (1 - X)
for p > 200,

-1/12 -nv 200/12 3.7 1
(56) q Le <e < 5
and
(57) q-l/8 < o-TV200/8 o -5.5 _ '27116;
for r > 0, it follows from (21) that
_mrVp
2nr k

58 Al <——e
58) ] < 2

\IIVeI let 6 denote a number (not necessarily the same each time it occurs) such that
g| <1,

p+1

Assume that k = 12 and 4

and then (55) and (56),

=3 (mod 4). By (568), (26), (21), Lemmas 3 and 4,

0
(M +%) log r; =l1§@+ w/'§q'1./12+——2g_2q'1/4+39 >0 r(q~1/12%)"
r=4

(59)

_1/12+2g§q-1/4 -1/3.

It
+
~
fle]

+150 ¢q

Note that
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\/—q-1/12+2\/— -1/4 1 150 q-1/3 = v3q-1/12 (1 + 6 q-1/6)
and therefore
|\/_2-q"1/12+%_—2-q"1/4+156q'1/3| < 2q-1/12
These relations imply that

1
M1+VE _ oy [24 73 _ 1 M+3
1

2 Tl 2 !
= _ﬁql/lz, 1+‘(‘/_2‘q-1/12+£q-1/4+ 159q-1/3) +q-l/6(1+ 9q'1/6)2
-1/12
(60) +_~ézq-1/4(1+9q-1/6)3 Lo 2 (a n{ yn

n=4

-1/12y4
/12 {1+ VZqrl/12 4 - 1/6 4 -l 4 180713 + 2 (2_01__)_}

vz 247 _gq-1/12
= _\/1=2q1/12 (14 v2q- 124 q-1/6 4 y3q-1 /% 1904 1/3) |
Since
la=1/6+ v3q-1/%t+190q-1/3| < 2q-1/6
and

it follows from (60) that

(V3 - 1) = (e} +2‘/§

= v2q 11241 - v2q /12412097640 > (2q-1/12)°

n=2
= v2q-1/12{1 - yZq-1/12 y 79 4-1/6},
in other words,
(61) rg&l -:-aﬁ _ __jzzq-lflz{l - VEq-l/12 qgq-l/6}

If we combine (60) and (61) and apply the definition of a in (36), along with (29), we
find that

_ M1+ V3 M1-V3 L1 /12 -1/4 -1/3
(62) a=wy -1=rM=—"F"=+r} -5 1=7q {1+2/2q +266q-1/3},

Using the inequality
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|2vZq-1/%+266q-1/3| < aq-1/4,
we see from (62) that

3= Va{1+6v2q /4 +180q /3 +30(aq /42 +0(aq1/%)3}

& zfq
= ——ql/*{1+6v2q /4 +796¢"!/3
zv— { 2q q 1,
and thus
3 = 1/4 -1/3
2a3-3 = — 1+796
2‘/_q ( q ).
1 2V 2
Since 19 =—7=-179 <— 80 = 30,.
2v2 8
(63) |a3 - 3 - —1—q1/4| < 30q-1/12 < 3,
2v2 4

which incidentally verifies (37).

In the case p—-;—-—l =1 (mod 4), there are occasional changes of sign in the main

terms; but the error terms (those containing the factor 6) are identical with the
above. Thus we have a more exact statement of (34) and (35):

1/12{1 _ qu-1/4+26 gq—1/3}

(64) a
\/——q
65 a3+3--— 1/4] < 30q-1/12 < 3
Since 1+ 2V2q-1/4+260q-1/3 >? , we see from (62) and (64) that in all
cases
(66) a>%q1/12> 20  (p> 200).
Assume that k = 8 and £ Z ! = 5 (mod 8). By (58), (25), (21), Lemmas 3 and 4,
and then (55) and (57),
(> o]
1 1 _1¥p ___2 -1/8 _1/8\F
(N+2)10gR1+410g2— 8 Rlﬁq +40 _Eg,r(q )
r_.
(67)
7Vp 2 -1/8 -3/8
= = - q +136¢q .
8 VR, V2

Since VR; V2 = V2 + V2, we see that

(68) V2 <VR;V2 < 2, thatis, 1<——2———<v_2,
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and thus
2 -1/8 -3/8 2 -1/8 -1/4
-—_—q +136q = - === 1+136q ),
VR, V2 R;V2

2 -1/8 -3/8 -1/8

-— +136q < 2q .

VR, V2

1

It follows from (67) and (68) that

Z - - -3/8 2
mR%I:ql/S 1+’(———2 q1/8+139q3/&-’)+"—'——‘ql/4

VR V2 R, V2
e -1/8yn
c(+136q/42 e D C )
=3 n!
(69)
= q1/8;{1 S a4 r140q3/8+ 8 (2q-1/8)3 }
| VR, V2 R, V2 6 1-(29-1/8)
= o1/8 {{ { -2 ,-1/8 q—1/4+169q-3/8} ]
d JRlﬁq R, V2
Since
VR V2 R; V2 YR V2
we see, after squaring (69) and then using (69) again, that
2N+1 1/4, 4 -1/8 4 -1/4 -3/8
3 = 1 - —— b +320
VRRT = a { 2 ‘R3¢ a
+__il__q—1/4(1+ Qq—l/S)Z}
R, V2
=ql/4{1_ 4 q—l/8+ 8 q—1/4+379q-3/8}

1/4 1+376 -3/8 _—4'_ 1/8 1_—2_ -1/8
/810 - et atlt (1 s e

= ql/%(1+370q73/8) - =2— (VYR  VZRY + 20 q"!/%)
q ( q ) \/1_:{—]_—1/__2- 1 1

=ql/%-4rY +450q7 /8,
As a result,

(71) %R%N+1+w/'§R11\I=——1— 1744 9304
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By (68), (69), and (70),

\/Rl\/_z'
ZRY| = VI =—=—g5 < V2-2-2q"}/8 < 6q"1/8
|V2R7| rJRlJ—Zle d d
and
_1_ 2N+1 1 1 -1/4
|2R2 =V VERaw <240

Combining these inequalities with (71) and using (39), we see that

1/4 -1/8

1
ZZN+1+4yN=—2“/—_2'q +300 q s

that is,

1 1/4 -1/8 1
(72) z2N+1+4yN-mq/ < 30q 18 < 2.

This also verifies (45).

In the case £ 1_ L 1 (mod 8), there are occasional changes in sign of the main
terms from the case 2 Z 1 5 (mod 8); but the error terms are identical. Thus we

get an improvement of (44):

(73)

1 1/4 -1/8 1
ZZN+1'4YN'2_ﬁq/ <30q7® <.

p+1

Assume that k =8 and i

and then (55) and (57),

=7 (mod 8). By (58), (25), (21), Lemmas 3 and 4,

o0
(N+—;—)logR1 +—i—log2 =—“‘é—p_+ Ver1 v2q V8140 20 r(q l/8)"
(74) r=3
= ”?JF V2R, v2q /8 +1306q"3/8,

Since V2R V2 = V4 + 2V 2, we have the inequalities
(75) 2 < V2R V2 < VT < 3,

and thus

VeR, v2q 8 +130q73/% = V2R vaq M@ +10q7 Y,
| V2R v2q-1/8+136q-3/8| < 3¢-1/8,

It follows from (74) and (68) that
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VR VEZRY = ¢!/81+ (V2R V2q71/8+130q3/8)+ R V2q-1/4 (1 + 70 q 1/4)2

e -1/8\n
+0 2 ———(Sqn' )
(76) n=3
. -1/8)3
= q1/8‘{1+x/2R1\/_2q'1/8+R1w/§q“1/4+146q'3/8+£ (8q"" ") }
, 6 1-(3q-1/8)
=ql/8 {1+ /2R, V2q /8 + R v2q 1/ +1906q-3/8},
Since

V2R, v2q 8+ R v2q 1/%+196¢"3/8 = V2R, V2q-1/8(1 +206¢-1/8),
we see, after squaring ('76) and then using ('76) again, that
V2RI o o V/4{1+2V2R, v2q 8+ 2R, v3q /4 +3806¢q-3/8
+2R, v2q /41 +20q71/8)2}
q1/4{1+2f21:{7—§q’1/8+4R1 v2q-1/4+676q-3/8}
ql/4{1+670q"3/8} +2V2R, V2q!/8 {1+ V2R, V2q-1/8}

=ql/4{1+676q3/8} +2V/2R; V2 {VR; V2R + 4 6 ¢-1/8}

77)

= gq'/*+ 4R\ +916q71/8,

As a result,

1 _2N+1 N+1 1 1/4 -1/8
78 =R - V2R = — +476 .
(78) 5 R1 1 573 4 q
From (75), (76), and (77), we get the inequalities
|VERY| = g <3-2a-1/8 < 2q-1/8,
R) VR, v2R) 23 -
and
1 2N+1 1 1
=R = . < 2q-1/4,
2 2
|2 V2 VZRN*I

Combining this with (78) and using (39), we see that

1 _
ZoN+l - 4YN#1 S —2ﬁq1/4+509q 1/8,

or

q1/4

(79) < 50q-1/8 < 7.

1
z - 4y -
2N+1 N+1 23
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This verifies (50).

p+1
4

P%:—l =7 (mod 8), but the error terms are identical. Thus we get an improvement
over (49):

In the case = 3 (mod 8), there are occasional changes in sign from the case

1 1/4 -1/8 _ 1
(80) Z + 4y - q < 50q <=
2N+1 N+1 V3 S )

We are now in a position to verify (51) to (54) for p > 200: equation (51) follows
from (65) and (73); equation (52) follows from (65) and (72); equation (53) follows
from (63) and (80); equation (54) follows from (63) and (79).

5. SOLUTIONS OF EQUATIONS (51) TO (54)

The following relations will be useful: for all integral values of n,

(81) Zontl = 4VnVne1 + (-1)7,

(82) Yon = 2YnZn,

(83) Vono1 = 4y2 - 2y,z, + (-1)® = 222 - 2y,2, - (-1)7,
(84) ZIZ1 = 2y121+ (-1)",

(85) z_ = (—l)nzn,

(86) Vo = ((1)Ptly

(87) Yn-1 = Z2n =~ Yn,

(88) Z,.1 = 2Y, - Zp-

These relations follow immediately from the definitions (38) and (39). The linear
relations (85) to (88) also follow from the recursion relation (40), by induction. In
addition, the relations are not independent; for example, (84) follows from (83).
Define N' and a' by

N ifB—Z—lsl,s(mod 8),
(89) N' =
SN-1 ifp—l—'—ls3,7(mod8),
a ifP—Z-.lsLs(mods),
(90) a'=

-a ﬁ-‘%l-s& 7 (mod 8).

The definition of N in Lemma 3 shows that
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N'> 0 E—{—lsgs(mods)],

(91)
N'<0 [2;;_153, '7(mod8):|.

From (85), (86), and (89), it follows that if E—E—l =3, 7 (mod 8), then

_ 1+1
Zonel T 4VNEL T Zo(2Nt1) £ AN = - Zanren £ 4CDN Ty
= - (zpNr41 4(—1)N'YNI)

and thus all of equations (51) to (54) can be put into the form

(92) @) +3 = zonipg + dEYNts
where
-1 if%l-sumod 8),
1 if %l =5 (mod 8),
(93) £ =
DN f QZ—I = 3 (mod 8),
GON' i REL 27 (moa ).
By (81) and (92),
(94) @) +3 (-1 = zyn0pq - CION + ey = dyp e FE).
This shows that a' is even, say
(95) ‘ a' = 2b,
and as a result, N' is odd, say
(96) N' = 2N" - 1.

Things now simplify considerably. Since N' is odd, (93) becomes

. p+1
-1 lfp—4——51,3(mod 8),

(97) g =
1 if pZIES,'?(modB).

Also, (91) and (96) show that
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N" > 0 [p+1 1, 5 (mod 8)],
(98)
N" <0 pZl=3 7(mod8)]
Equations (94) to (96) yield the equation
3 -
2b” +1 =y, n_y (Vone T €,
and in view of (82) and (83), this becomes

(99) 2b3 + 1 = (4yl2\]'“ - 2yN|| ZN" + (_I)N“) (zyN"ZNI! + 8),

or equivalently,

3 2 N"
(100) 2b” + 1 (2zN,, - 2yN,, Zogn - (-1) )(ZyN,, Zogn + £).

When 2 —Z 1 1, 3 (mod 8) and N" is odd, or when L Z 1. 5, 7 (mod 8) and N" is

even (in other words, by (97), when € = (—l)N"), we see from (99) in conjunction with
(84) and (87) that

2 3 2 2 N
b3 = 4yl3\InZNn - zylz\plzlz\pl + ZSYN.- = 4YN"ZN" - 2yNu (ZN" - (—1) )
(101)
4 3 3
= 4y?\IHZNH - 4yNn = 4yNn (ZN" - yN..) = 4yN,, yN"—l .
p + 1 - L + 1 -— " s
When T = 1, 3 (mod 8) and N" is even, or when P——4 =5, 7 (mod 8) and N" is

odd (in other words, by (97), when & = -(-1)N"), we see from (100) in conjunction with
(84) and (88) that

b3

(102) zyNn Z13\T" - 2y12\1u ZZ u+ SZIZ\]'H = zyNn Z%n - le\]'u (zylz\l'n + ("l)N")

= ZYN" le\]'n - Zﬁ]'u = Z]_?(]'n (2yNn - ZNn) = leiln FANEI

Since |R;| # |Ry|, we see from (39) that y, = 0 if and only if n = 0. Thus, ex-
cept when N" = 0, equation (101) leads us to solve the equation
(103) Vn = 203

’

where n = N" - 1. Equation (84) shows us that
8cl+ (-1)" = 22
By Lemma 5, this happens if and only if ¢ = -1, 0, 1. Since |y_n| =yn> 2 for
n > 2 (by (86) and induction on the recursion relation (40)), the only solutions to
(103) are
vz = 2(-1%,  yo =207, 1y, =20,

Thus, recalling that the case N" = 0 had to be handled separately, we see that the
only solutions to (101) are
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(104) N"=-1,b=-2; N"=0,b=0; N"=1,b=0; N"=3,b=10

(see Table 3 for values of y, with |n| < 3).

We proceed to equation (102). Since |R1| # |R2| and zg # 0, we see from (39)
that z_ # 0 for all n. Thus in solving (102) we are led to solve

(105) zn = d7,
where n = N" - 1. Equation (84) shows that
ab - (-1)* = 2y2,

Thus, by Lemma 5, d =+1. Since |z_,| =2z,>1 for n > 1 (by (85) and induction
from (40)), the only solutions to (105) are

z_; = (-1)>, zo=(1)3, z;=@1)>3.
Hence the only solutions to (102) are
(106) N"=0,b=-1; N'=1,b=1; N"=2,b=3,

as can be seen from Table 3.

n -3 -2 -1 0 1 2 3
Yn 5 -2 1 0 1 2 5
Zn -7 3 -1 1 1 3 7

TABLE 3

We have now completely solved equations (101) and (102), the solutions being
exhibited in (104) and (106), respectively. From the two sets of conditions on N" in
(101) or (102) and in (98), given a solution to (101) or (102), we can tell exactly to

which of the cases p: 1o 1, 3, 5, 7 (mod 8) it corresponds. For example, by (104),

N"= -1 gives a solution to (101). Since N" is odd, we see from the conditions for

(101) that we must have £ 1- 1oy or 3 (mod 8). Also, by (98), P Z L 3 or 7 (mod 8).

Therefore £ Z 1 3 (mod 8), and we are dealing with equation (53). We then deter-

mine N from N" by (96) and (89) and a from b by (95) and (90). In this way we see
that for N> 0

the only solutions to (61)are N=1, a=0; N=3, a=6; N=5, a = 20;
the only solution to (52) is N=1, a = 2;

the only solutions to (53) are N=0, a=2; N=2, a = 4;

the only solution to (54) is N=0, a=0.
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(In solving (51) to (54) we introduced the assumption that N> 0 in (91). This is suf-
ficient for our purposes, since N > 0 by its definition in Lemma 3.) Note that the
largest value of a listed above is a = 20.

6. PROOF OF THE THEOREM, AND CONCLUSION

In Section 4, we proved that if p > 200 and h(-p) = 1, then one of equations (51)
to (54) must hold with a > 20 (equation (66)), and N > 0 (definition of N in Lemma
3). But we have just seen in Section 5 that no such solution exists. Thus the hy-
pothesis that p > 200 and h(-p) = 1 is unténable. This proves the theorem.

We noted at the beginning of Section 2 that if p > 19 and h(-p) =1, then p is a
prime and p =19 (mod 24). The only primes congruent to 19 (mod 24) in the range
from 1 to 200 are 19, 43, 67, 139, and 163. The only maverick among this list is
139, which can easily be eliminated. For example, x% + xy + 35y% and
5x2 + Xy + 7y2 are two inequivalent quadratic forms of discriminant - 139. Thus we
see that the list of possible values of p > 0 for which h(-p) = 1 may be quickly re-
duced to the nine values given in the introduction.
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Addenda. A. Baker has recently established another method of finding, in prin-
ciple, an upper bound for the numbers p such that h(-p) = 1. See his paper, Linear
Jorms in the logarithms of algebraic numbers, Mathematika 13 (1966), 204-216.

It should also be noted that a result similar to Lemma 1 can be established for
any k such that either k =1 (mod 4) and k is square-free or k =0 (mod 4) and k/4
is square-free. Further, most of the arithmetic in Lemma 4 can be eliminated. For
details see my paper, L-functions fov quadvatic forms -(to be published).
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