VALUE DISTRIBUTION AND POWER SERIES
WITH MODERATE GAPS

L. R. Sons

1. INTRODUCTION

For entire functions it is known (see [1], [3], and [5]) that certain assumptions on
the gaps in the power series expansion of the function about zero imply that the func-
tion has not only one zero (or a-value) but infinitely many. To obtain corresponding
results for functions analytic in the unit disk, it is necessary to link the gap assump-
tion with a growth assumption on the function.

THEOREM 1 (Nevanlinna’s notation [4, pp. 4 and 18]). Let

(1) f(z) = 27 ¢ z &
k=0

be analyltic in |zl <1, with ny =0. Let NO(t) be the number of ny not greatev than
t. If for some fixed B (0<B8 < 1)
(2) NO(t) = O(t1-F)  (t — ),
and if
n(r, 1/f) = o((1 - 1)) (r— 1),
then
log M(r) = O((1 -r)™%) (r—1)

for every a with

(3) @ > max (x, 17;_@).

COROLLARY. Let f(z) be analytic in |z| < 1 and of the form (1), with ny=0
and the n, satisfying (2). If

lim sup 108 log M) (a>1_-_ﬁ),
.1 -log (1 -r) =

then

log n(r, 1/1) S o

lim sup Tlog (1-1) =

r—1

- Theorem 1, which has an elementary proof, extends a theorem stated by F.
Sunyer I. Balaguer [7]. Related problems in the disk have recently been investigated
for larger gaps—Hadamard gaps—by G. and M. Weiss [8] and Ch. Pommerenke [6].
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A function satisfying the gap condition of Theorem 1 is the theta-function
[~} 0
1+ 2 228° = IT (1 +220-1)2-(1 - z2m),
n=1 n=1

It has M(r) = O((1 - r)-1/2),

2. STATEMENTS OF PRELIMINARY LEMMAS

The following two lemmas form the basis of the proof of Theorem 1; we shall
prove them in Section 4.

LEMMA 1. If 0<e <1 and ¢(x) is a continuous, increasing function in
0 <x <1 such that

(4) ¥2) > ey

for some x; (0 <x,< 1), then there exists an x' (xg < x'<(1+x)/2) such that
1 __.____1 I
(5) ¢(x'+ 557 ) < (L+e)ex).

LEMMA 2. Let {nk} be a strictly increasing sequence of integevs satisfying
(2). For each sequence €, €], €, , *** with & =11, theve exists a veal-valued

Sfunction g(t) in 0 <t <1 such that

, 1 ng
(1) aki g)t™at = A_> 0,

1
@ § lew]at < 172,
0
(1t1) inf A p > exp(-K(1 - p)"(1B)/Progt/B(1/(1 - p)))
k

Jor Ro <p <1, where K and Ry ave independent of the sequence {sk}

Lemma 1 goes back essentially to Borel.

3. PROOF OF THEOREM 1

First we estimate

U(r) = sup ]f(u)l
OSuS T

from below. Let
€, = sign (% ck),
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where

1 ifv>0,
signv =
-1 it v<O0.

Construct the function g(t) of Lemma 2 for this choice of {ak} . Then, for
Ry<p<1

exp(-K(l - p)'“‘B)/Blogl/’S(l/(l - p)))- 27| Sﬁck(pr)nk|
< {inf Akp-nk} - 24 | SRck(pr)nk|
k

< 2| m ck(pr)nk| Akp-nk.

The right-hand side is equal to

1 1
> % ckrnkS P gt)dt = B S £(rt) g(t) dt
0 0

1
< 50 |#(rt)| |g(t)] at < U(r) 501 le(t)] at < % U(r).

By the same argument, for Ry <p <1,

6)  exp(-K(1 - p) (=B Brogl/B(1/(1 - p))- T | Seyfor) ¥| < 2 UE).
But
27 l 9N ck(pr)nkl + 27 I i"sck(pr)nkl > 27 |ck(pr)nk| > M(pr).

Therefore, adding (6) and the corresponding inequality for the real parts of the Cc»
we obtain the inequality

(7) U(r) > exp(-K(1 - p) (- Prog VB (1/(1 - p)-M(pr).

By considering f(ueif) in place of f(u) and noting in (iii) of Lemma 2 that X and Ry
are independent of the sequence {sk . we see that if €' > 0, then (7) implies that
there exists a value p, independent of 6, such that the inequalities

sup |f(ueif)| > exp(-K(l - p)-(1-P)/Brogl/B(1/(1 - P)))'M(PI')
(8) u<lr

2> eXp(-K(l - p)‘(l'B)/B '8') * M(pr)

are valid when py <p <1.

Suppose the theorem is false. Then for each ¢ (0 < £ < 1), there is a sequence
of values of r, approaching 1 with



428 L. R. SONS

(log M(xo))Y > -.E(T%J ('y < —1—£_3—§) .

By Lemma 1, there exists for each ry an r' such that

S SR 1/ 1 1
(9) logM(r +(10g M(r|))'y) < (1+¢€)/71og M(r') < (1+ 7n)log M(x").
Let
S S _r
r=r'+ (Tog M(z))? and D gt
Since
1 1 e(l - ry)

< <
(log M(r"))Y = (log M(xy))" 4 7
we find with the aid of Lemma 1 that

1- 1+ 1-
e( I'O) < Iro +8( I‘o)

3
A 3 2 <I'0+Z(1"‘r0).

r0<r<r'+

Consequently

4 S 1/¢ 1

> .
A=x) =y (rgr3-x)) 0

(10) (log M(x))? > (log M(ry)) > &

Also,
1 S 1
(log M(r'))” ~ (log M(x))”’

l1-p)>r-r =

Therefore, by (8) and (9),

sup  [#(ue’®)| > exp(K(log M) -A/BED ). ey (14m).
0<u<lr

Choose &' so small that E =y((1 - 8)/8+¢') < 1. Then

sup If(ueie)i > exp lilg_-l_l\i(i) - K(log M(r))E)
(11) OSuSr n

> exp((1 - €5)log M(r)) = M(r)l'SO,
where €, <%, say, for r sufficiently near 1.
For these values of r, we shall see (using an argument that originated with

P6lya) that the region of |z| < r in which

|#(z)] > (m(r))' %20

encircles the origin. If it did not, there would exist a curve ¢ from the origin to

|z| = r along which |f(z)| < M(r)! %0, Let z, be the first point at which ¢
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intersects |z| = r, and consider the radius R joining the origin to z,. Let € be the
reflection of ¢ across R. Since If(z)l < M(r) on &, the inequality

HEDIIRS M(r)'/2 - M) %0 /2 _ pp)L€o
holds for all z' on R. This contradicts (11). Hence [f(z)l > M(r)l'280 on some
curve K encircling the origin.
Let

n

Pz) = II (1 -2/2),

1

where {z, } is the set of zeros of £(z) in |z| <r, and set

z) _ f£(z)
(12) e?(z) = Pz) -

Clearly, for z on K,

n n
(13) log |P(z)| = 27 log |1 -E—l < 2 10g(1+ lil) <K, 1
1 Zll T Zxt/ = P @-oP

where K, is a positive constant independent of r. We note that

K 1 _ K (1 - r)l/')’-?t
Oi-r el (1-p)fr’

where K; is a positive constant independent of r. Taking values of r( (and thus of
the associated r) nearer 1, if necessary, we see that (10) and (13) together with the
fact that 1/y > A now yield

1

1
: <Lliogm
w1/ S2eE M

for z on K. Hence, with the aid of (12), the minimum modulus theorem, and the
definition of K, we have a sequence of values of r approaching 1 for which we know
the inequality

DO =t

log |P(z)| <

e?(0) > M(r) 1/4.

But this is clearly impossible.

4, PROOFS OF THE LEMMAS

Proof of Lemma 1. Suppose (5) is false for x,. Define x; to be the lower bound
of all x> xy+ l/qb(xo) for which the inequality is false. Inductively, define x  to be
the lower bound of all x> x_ _; + 1/¢(x,_;) for which the inequality is false. Con-
tinuity ensures the falseness of the inequality for the x; also. Then the total meas-
ure of the set of x in [x0 , 1) for which (5) is false is majorized by
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Eo qb()];n) < ¢(>1<0) EO (t53) - ¢(>1g0) (2)-

From (4) we obtain the inequality

1 ( 1+¢ ) 1-x4
#(x,) € 2
this completes the proof.

Proof of Lemma 2. Consider the function

o0
80 mk+1"z

G(z) =
( (z+1)zk=0mk+1+z’

where the m; are the midpoints of the segments (ny, n; 4+;) for which g and £, 4;

are distinct. By (2), we see that 2 1/my < o, which implies 22 1/m; < . Hence
G(z) defines an analytic function in %tz > - 1.

A Laplace inversion theorem (see Churchill [2, p. 178]) implies that G(z) is the
Laplace transform of the function

00+ico

g(e™%) = —1- 5 e?° G(z)dz,
2’”1 Co—ioo

where cg is any real number greater than -1. Therefore the function

1 ™
g(t) = o S e~y logt G(iy)dy

-0Q

satisfies (i), with A, = |G(ny + 1)|.

(ii) follows easily, because

1 1 +00 1 too 1 - mk+1—iy 1
]g(t)ldt_<_——S |Gliy)| dy = 5 ( )II = lay < =.
.S;) 27 27 - 1+y2 =0 my + 1+ iy 2

To obtain (iii), we proceed to estimate |G(nq + 1)| for fixed q > 0. We note that
for positive z

1
E(nk+nk+1)+ 1-2z

2
z+1[ k=0 —;—(nk+nk+l)+1+z

so that

(2]
1 ety - 2nq
(ng+2)? k=0 [PrT Prrr T4+ 20g)"

|G(n, + 1)| >
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Setting py = ny +ny 4, we estimate separately the terms of the products II s II 25
I with py > 4ng, 2ng < py < 4ng, and py < 2ng, respectively.

We have the inequalities

2n
1- 4n_ 2(n,+ 2)
Im, = 1 Pe 1> I exp(- 9.4 )
1 2ng + 2) | < 1
(14) pe >4ng 1+—3——— e > 4ng k e

Zexp( (6n, +4)Z} )

where S' = {k| p, > 4n o - Butsince py =ny +nyy) <2ny, S' is a subset of

s={kfn_,,>2n } so that
1 1 dNO(u) N (n No(u)
(15) 2 ?”‘k < % S S

Therefore, since (2) implies N%(u) < K, ul-B , we find by combining (14) and (15) that

(16) IT, > exp(-K,nlP)

(the K; denote constants).

Next we observe that

1-8
(17) I, > (6n, + g)-(K1(2ng)” T -1-(a-1))
because ny;) < 2n, implies k+1 < Kl(znq)l-ﬁ, by (2).
Finally,
q-1 q-2

H3=H( 2ng - (ny + nyyq) )> H( 2ng - 2ny4] ) _Dg-ng)
=0 2nq+4+(nk+nk+1) ol 2ny + 4+ 20y 3ng+ng_; +4

(18)

q-2
ng - n n
q kil q ~ Ng-1 -(q-1), -1
2 kl_;[o(nq+2+nk+1) 3ng+nqg.; +4 2 (2nq+2) (4nq+4) ’

From (16), (17), and (18) it follows that

1-8

~(ky2! Br2)n) P .

)—K4n

|G(ng + 1)] > (10n,) -exp(-K,n2P) > (Kyn

Let

-Kqu” 7 1

h(u) = (K5u) 5

(u>0);
then
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h! _ ) 1
h((llll)) = -(1 - ‘B)u BK410g(K3U) - K4u B+ IOgE.

Therefore, for u > u,, we find that inf h(u) occurs when

logil)- = (1 - B)K4u"3 (log u).

That is, setting log (1/p) = s, we have the estimate
1/8
=7 'I/B ( —1-)
u Kgs log S .
Returning then to h(u), we see that

inf A, p—nk > exp (—Ks'(1 -B)/B logl/B(l/s))
k

> exp(-K(1 - p) 1-A/10g1/B(1/(1 - p))).

Remavks. The method of proof above yields similar results for other assump-
tions on gaps and corresponding growth. In addition, the proof shows the nonexist-
ence of finite asymptotic paths for such functions.

The theorem of Sunyer I. Balaguer previously mentioned can be stated by replac-
ing (3) in Theorem 1 by the condition

@ > max (A, (- 6)1/2[3+ (1- B)) .

The method of proof of Sunyer I. Balaguer’s assertion is considerably more compli-
cated than that of Theorem 1.
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