NORMS OF POWERS OF
ABSOLUTELY CONVERGENT FOURIER SERIES

G. W. Hedstrom

1. INTRODUCTION

For an absolutely convergent Fourier series

f(t) = ch eikt

we use the norm
l£) = Zeyl,

and we seek estimates of " 2 || as n — «, Such estimates are important for the
study of the behavior of the solution of the difference equation

m=1,2 +;k=0,+1 -)

.y w = Do

with preassigned values v0 (k =0, +1, 2, *-). This difference equation is some-
times used to approximate a hyperbolic or parabolic partial differential equation
(see [9], [11]). The solution of equation (1.1) can be written in the form

where ¢, is determined by the formula

(t) = ?ckneikt m=1,2 ).

Thus we have the inequality

sup [vi| < [l sup [vg],

and equality is attained if v) = exp {i argc_y ,}.

The behavior of H fn|| as n — « has been the subject of several investigations.
Beurling [7, pp. 428-429] proved that lim [[£®|1/® = max |f| (since f is necessarily
continuous, max |f| exists). Beurling and Helson [1] and Leibenzon [6] proved that
if |£(t)| =1 and [[f™| is bounded, then £(t) = exp {i(ag + kt)} for some integer k
and some real a;. Also, it follows easily from their work that if If(t)l =1 onasetS
of positive measure, |£(t)] <1 on the complement of S, and ||| is bounded, then
f(t) = exp {i(a0 + kt)}, where a; is real and k is an integer. (The author is indebted
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to the referee and to J. Korevaar for this remark.) In fact, with the notation
g, = || 2, the norms | g,|| are bounded and

1 (te8s)),

0 (t¢gs).

lim gn(t) =

But it follows from Lebesgue’s dominated-convergence theorem that a punctual limit
of functions of bounded norms has a finite norm. Therefore S either has measure
zero or is the interval [0, 27].

Before describing more precise estimates of Il fn" , we introduce some condi-
tions.

(A) We say that f satisfies condition (A) on an interval T = [t;, t,] if f=¢€'?,
where ¢ is real and piecewise linear on T.

(B) We say that condition (B) holds on T if lf(t)l =1 on T and there exist a
tp € Tanda 6 >0 suchthatif {5 <t <ty+ 0 <t,, then

(1.2) £(t) = exp {i(ay +a(t - ty)) +a,(t - £5)% +v(t)},

where a; #0, ag, a;, a, are real, and v is a real-valued function in c3 satisfying
.inequalities of the form

w5 vt)| < Ct -1, [v®] < Cilt -tg)?, |v'®)] < C,t - ty)
' (t, <t < ty+0).

(C) Condition (Cg) (R for “right”) is said to hold at t; if If(to)l =1 and if, for
some 6 > 0,

(1.4)  £(t) = exp {iag +ia (t - t5) - vt - t)N +v(t)}  (t, < t < ty+6),

where N is a positive integer, ay and a; are real, %y > 0 (if N = 1, we require
that ¥ > 0), and v is a function of bounded variation satisfying inequalities of the
form

[v(t)| < C(t - N1 (t; <t < ty+0),
(1.5)
var vSClaNﬂ (0 < a < d).
[to,to’f‘a]

(D) Condition (Dg) is said to hold at tg if lf(to)l =1 and if there exista 6 > 0
and integers M and N (2 < M < N) such that

N
£(t) = exp {ia0+ it - t,) + i ZB a(t - tg¥ - ot - tO)N+V(t)} (kg St <t +0),

where ajisreal (j=0,1, M, M+1, -, N), apy #0, ¥ >0, and v satisfies (1.5).

Conditions (Cy,) and (D) are analogous to (Cg) and (Dy), the only difference
being that they are imposed to the left of to .
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Remavk, When we say that an estimate of the form (1.2), (1.4), or (1.6) holds in
neighborhoods of two different points or to the right and left of one point, we do not
mean to imply that the N, M, a;, v, and so forth are the same.

THEOREM. Let f be absolutely continuous on the civcle, and let f' be of
bounded variation. Let lf(t)l < 1, and let lf(t)l =1 on a finite number of disjoint
closed intervals 1; (j =1, 2, J J > 0) and at a finite number of isolated points

m M =1 2 e s n> 0) On each L (=1, -, J), let either condition (A) or
(B) hold, Let a condition (C) or (D) kold at each end of an intevval 1j and at both
sides of each t_,. Then theve exist positive constants C, C' such that

(1.7) C'g(n) < [£7| < Cgln) ®m=2 3, ),

where g(n) is determined in the following way.
(i) If (B) holds on some interval, then g(n) =V n.

(ii) If (B) never holds but (D) holds at least once, then g(n) =nb, where
b = max (N - M)/2N, the maximum being taken over the finite set of points where
(D) holds.

(iii) If (B) and (D) never hold and if I > 0 (so that (A) holds) but |f(t)| <1 for
some t, or if J=0 and p > 0 and theve is a point t, such that at least one of the
numbers ay and N on the vight of t,, differs from the corresponding ay or N on
the left, then g(n) =log n. Also, g(n) = log n if £ = eib, with ¢ piecewise linear but
not linear.

(iv) If 3=0 and p. > 0, and if (C) holds at each ty, in such a way that on both
sides of t,, either N=1 or N>'1 and the a;, N are the same, then g(n) = 1.

Remarks. The upper estimate in case (i) is due to Kahane (see [5, p. 103]), who
also proved the lower estimate for analytic f [4]. We shall show in Section 6 that the
lower estimate is valid under our weaker conditions.

Case (ii) has been considered by several authors. Serdjukova [8] proved that if
f is analytic, then
e > cnl/2(M+1)-€

Thomée [11] proved that under the conditions of the theorem,

l£2] > cal/M-1/N,
Hedstrom [3] proved inequality (1.7) when N =M + 1 and f is analytic. Most of the
present paper is devoted to case (ii).

Kahane [4] has discussed (iii) when f = ¢1® and ¢ is piecewise linear on [0, 27].
The estimate for-case (iv) is due to Strang [10].

Finally, we remark that the behavior of || fnll is determined by the local behavior
of f. We use a smooth partition of unity

T+

1= ? pj(t)’

where D; :(t) =1 on a neighborhood of one and only one component of S. Then locali-
zation follows from the inequality



396 G. W. HEDSTROM

p; £°] phly :
A< 2 oyl m 2, .
“pj" j=1

2. OUTLINE OF THE PROOF OF THE THEOREM

We shall make estimates of
1 T ik
Crn = —255 () e ™ at
-

for large n and for -« <k < «, We first consider large values of |x|.

LEMMA 2.1. Let f be absolutely continuous on the civcle, and let ' be of
bounded variation. Let lf(t)l <1 for all t. Then there exist constants C and |
such that

2 Joml <€ @-1

2, - ).
k| > pn

s

Proof. Since f is continuous and f' is essentially bounded, it is possible to
divide the circle into sets R and S, each a finite collection of intervals, such that
|£(t)] > 1/3 for t in R and |£(t)] < 2/3 for t in S. Let (t;, t,) be an interval in
R, and define the logarithm so that g(t) = log f(t) is continuous on this interval.
Then, by integrating by parts twice on the right side of the equation

t . t
S £2(t) e~ Ktgt = S exp {ng(t) - ikt} dt,
t £
we obtain the inequality
t

2
t2 . ng,\ -ikt
S (t) e ikt gt —f—(tlg—————j' < var
t
1

t ng'(t) - ik = 'R ng'-ik

Note that g is absolutely continuous and g' is of bounded variation, because f has
these properties. If we require that

(2.1) |k| > 2n ess sup |g'| = 2n ess sup -f-l‘ = jun,
R rR I

then
1

var———,——.E<ggvarg'.
R g -1 — k% R

Consequently, if (t; , t,) C R and k satisfies (2.1), then

‘2 n ikt £2(t) e 1Kt 2 Cn
2.2 S () e-iktqy - =22 0 m=1, 2, ).
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Let (t;, t,) be an interval in S. Two consecutive integrations by parts of

t2 i
S f(t) e Xt gt give the inequality
f
t2

t ikt n

2 -ikt o f(D)e Cn n-1y  Cn (2

(2.3) ‘S; ' t) e dt - —— :] < 2 vg,r £ < ) (3)
1 tl

m=1,2 ).

Denote the endpoints of the intervals in R and S by t; i=1,2,:-,J). From
(2.2) and (2.3) it follows that if k satisfies (2.1), then

1

Cn _ C'n
ng'(tj) - ik

1
+1—k'l +—

k2 = k2 n=1,2 ).

3
27 |, | < 27 |17t
j=1

Therefore 27 |ckn| <C (n=1, 2, ---), and the lemma is proved.
|| pn

If the condition (Cg) or (D) holds at t =0 and if [f(t)| <1 for 0 <t <7, then,
for |k| < un, we use the decomposition

T . Cl!n . T .
(2.4) S fn(t) e-lktdt = S fn(t) e-lkt dt + S fn(t) e -ikt dat,

0 0 a,

where o = n'l/(N+1) . It follows from (1.4) or (1.6) that if n is large, then

w .
(2.5) S ) e iktat| < 7| )| < 7exp{-Ry'n /L (0 <y < y).

(44

n

If (Dg) holds at t =0, we split the first integral on the right in (2.4) into two
integrals:

oy . oy N
S (t) e iktg = S exp{-i(k - nap)t +in 2J a ti - nytN}dt
0 0 M
o, N N j
(2.6) +S [®® _ 1]t exp (i -(k - naj)t+n 27 a;t )dt
0 M

= a (w) + b, (w) (w=%-a1)-

We use complex-variable methods to estimate an(w), and the method of stationary
phase to estimate b, (w).

If (Cz) holds at t =0 and |f(t)] <1 (0 <t < 7), we write



398 G. W. HEDSTROM

an s C‘!1'].
S 2(t) ekt gt = S exp {-i(k - na )t - mtN}at
0 0

an
(2.7) + S [env(t) - 1] e‘n(m”)tN exp {i(-(k - na; )t + nS9tN) } it
0

= A (w) + B, (w) (w=1—;-al).
The methods that are used to estimate a,(w) and b, (w) also give us estimates of
A (w) and B (w) as n — « (|k| < un).

We shall examine a,(w) in the next section. Then, in Section 4, we discuss b, (w)
and B, (w). In Section 5 we prove the theorem for cases (ii), (iii), and (iv). In Sec-
tion 6 we use similar methods to prove case (i).

3. ESTIMATES OF a_(w) AND A_(w)

o
n
Consider a_(w) = S exp n¢(t)dt, where a = n-1/(N+1) anq
0

N
(3.1) o) = -iwt +i 2o ajtj - ptN
M

for some integers M and N (2 < M < N), for y > 0, for a); > 0, for real values aj
(j=M+1, --, N), and for a real parameter w (- < w < «). The methods used to
estimate a_(w) as n — « will also be used to estimate

an
Auw) = | exp nyat
0

as n — o, where
(3.2) Y(t) = -iwt - ptN

(-0 <w <, N a positive integer, %y > 0, Sy <90; if N =1, we require that
Sy =0).

For an(w), the most important region is

(3.3) An)n-M-D/M < < n-(M-1)/(N+1)
where
(3.4) A(n) = (log n)>(M-1/M

LEMMA 3.1. In (3.1), let w satisfy (3.3). Then for some nonzero complex con-
stant Cqo depending on M and ayp, the relation
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a,(w) = - nl_w + O(n‘Mw'(MH))

(3.5)
+C, n-l/zw_(M-Z)/z(M-l) exp {n¢(ty) } {1+ O((log n)-3/4)}

holds uniformly with vespect to w as n— . As w— 0+,

(3.6)
Slty) = - (May)~ /M1 (1 - L) M/BE-1) 4 o (MH)/ (ML)

Proof. Since ¢ is an entire function, we may deform the contour so that it
passes through a saddle point of exp n¢(t). Thus we seek a point ty such that
¢'(ty) = 0. We find that as w — 0+, the saddle we want is given by
W ) 1/(M-1)

MaM

’

(3.7) ty = (1+5)(

where we have taken the positive (M - 1)th root, and where

ne = O(w!/(M-1))

1l

(3.8)

Fg = - ﬁzlil—]_. (MaM)'(N‘l)/(M'l)W(N'M)/(M'l) {1 + O(Wl/(M-l))}

as w — 0+. Note that if w satisfies the inequality (3.3), then 0 <t; < Ca,, . Note
also that the substitution of this estimate of t; yields (3.6).

We use a contour consisting of a segment Iy from 0 to —i|t0| , a segment I,
of length 3]t0| from —i|t0 I through t; into the first quadrant, and a segment I';
from the end of T', to @ . On I}, the function exp n¢(t) differs from
exp {-nw|t|} by a function that is bounded by
Cn [t|M exp {-nw]|t|}.

Thus, using the first inequality in (3.3), we obtain the estimate

(3.9) ‘S]; exp né(t)dt = % +0m-My-(Mt1)) (4 - ),
1

Expanding ¢ about t; we get the relation
N -
- J
o) = dlto) + 2 B(W(t - 1),

where

Ba(w) = 1) a1/ (-1 (M-2)/(M-1) 4 0

as w — 0. From estimates of the other Bj(w) we find that if
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6 = (log n)~1/4n-1/3 y-(M-3)/3(M-1)
then on the part of ', with |t - ty| < 6, exp n¢(t) differs from
exp {n(¢(ty) + B (W)t - to)*)}
by a function bounded by
C(log n)~3/% |exp n(d(ty) + By (W)t - £)?)] .

From the first inequality in (3.3), we conclude that

Iexp n¢(t)| < exp {-C(log n)l/z} (C>0,n=2,3, )

on the remainder of I',. Therefore, as n — o,

(3.10) S

T,

1/2

_ -3/4
" IBz,(W)I ) exp né(ty) {1 + O((log n) )}

exp no(t)dt = ei7/4 (

if w satisfies (3.3).
On I3,

|exp ng(t)| < |exp nd(ay)| < 2exp {-ynl/(N+1)}

if n is large. Thus

(3.11) I S exp né(t)dt| < exp {-'ynl/(NH)} (n large).
I3
The estimate (3.5) now follows from (3.9), (3.10), and (3.11) if we take
1/2
. 9 _
c, = ¢/ (M_ﬂ_f_i) (Ma, ) 1/2(M-1)

This proves the lemma.

For A_(w) we have an analogous result, if

(3.12) Ao(n)n'(N'l)/N <w< n'(N'l)/(N'H),
where
(3.13) 2o(n) = (log nP(N-1/N

LEMMA 3.2. In (3.2), let N> 2, y=ret? (r>0, 0< 6 <u/2), and let w
satisfy (3.12). Then, as n — =,
i AN - (N+1
A_(w) — T onNw ))

(3.14)
+ Cn~1/2y-(N-2)/20N-1) [exp ny(ty )] {1 + O((1og n)~3/4)}

uniformly in w, for some complex.C #0. Here
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(3.15) wity) = -pw/(N-1)

Jor some complex B such that R > 0.

The proof of this lemma is similar to the proof of the previous one. The only
difference is that the saddle point we want now is the solution

(3.16) to = (%)l/m-ne"l"{‘n‘i—l (9 er')}

of the equation Y!(t;) = 0. Equation (3.15) follows immediately from this. The rest
of the proof consists of setting M = N in the proof of Lemma 3.1.

We next consider small positive w.
LEMMA 3.3. In equation (3.1), let

(3.17) n~(M-1)/M < g < xm)n-(M-1)/M
with Mn) as defined in (3.4). Then for some C independent of n and w,
(3.18) la_(w)] < cwt/M-1) (n=1, 2 ).
Further, if
(3.19) 0 < w < n-(M-1)/M
then for some C independent of n and w,
(3.20) lajw)| < Cn" /M (=1, 2, ).
Proof. We again choose a contour through the saddle point tp given in equations
(3.7), (3.8). Let I'; consist of a segment from 0 to -i Ito |/2 and a segment from
there to t3. Let I', consist of a segment from tp in the direction

arg (t - to) = 1r/2M extendmg to |t| =a, = n-1/(N+1), Let I'; be a segment from
there to o,

Just as in the proof of Lemma 3.1, we find that if n is large and w satisfies
(3.17) or (3.19), then

(3.21) IS expn¢(t)dt| < exp {'Ynl/(NH)}

It is evident that |exp nqb(t)] <1 on T and that the length of T is less than 4|t,].
Therefore it follows from (3.7) and (3.8) that if (3.17) or (3.19) holds, then

S expng(t)dt| < cw!/(M-1) n=1,2, ).
T

On T, , if (3.17) or (3.19) holds, we find that

(3.22) Iexpnqb(t)l < ]expn¢(t0)| exp {—-bn|t - tolM} < exp {-bn[t - tOIM}

for some b (0 <b <a,,). Therefore, integrating (3.22), we get the inequality
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j exp n¢(t)dt| < cn~/M,

I

Combining the above estimates, we find that if (3.17) or (3.19) holds, then

On
S exp ng(t)dt| < C;wl/(M-1) pc,n-l/M  (n=1,32, ).

0

If (3.17) holds, then the first term on the right is the larger, giving (3.18). If (3.19)
holds, then the second term is the larger, giving (3.20). The lemma is proved.

Our estimates for A (w) for the corresponding w are contained in the next two
lemmas.

LEMMA 3.4. In equation (3.2),let N> 2, y = - re-ib (r>0, 0L6<7/2),
and let

(3.23) n~(N-1)/N < < 2 y(m)n-(N-1)/N

where ry(n) is given by (3.13). Then

(3.24) lAn(w)+£i_\TI <con Ny (N) oy 2 ).

Proof. Let t, be defined as in (3.16). We use the following contour. Let ', be
the segment from 0 to t;. Let I', be a segment from t; in the direction
arg(t - t;) = 6/N extending to |t| = @n. Let I'; be a segment from there to a,. If
(3.23) holds, then, on T}, exp ny(t) differs from exp {-inwt} by at most a constant
multiple of

n|t|Nexp {-nwC [t|]} (=12, ),
for some C > 0. Thus if (3.23) holds, then
5 exp ny(t)dt = --r—;l‘—v+0(n'Nw‘(N+1)) (n — ).
I
1

Using (3.15) and the argument in the previous lemma, we find that if (3.23) holds,
then

(3.25) ,S exp an(t)dtI < cn-l/N exp {—wa/(N'l)}\ (n=1,2, )
PZ

for some b > 0. Since the term on the right in (3.25) is bounded by C'n-N w-(N+1)
when (3.23) holds, and since

\S‘ exp ny/(t)dt] < Cexp {-%tynt/(N*1)}  (n=1, 2 --),

s

we find that inequality (3.24) holds. This proves the lemma.
LEMMA 3.5. In (3.1), let w satisfy the inequalities
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(3.26) -~ (M-1/M <y <o,
Then, for some C independent of n,
(3.27) la,w)| < Cn-'/M  (m=1,2, ).
Likewise, in (3.2) let N> 2 and ‘W' < n~(N-1)/N  Tpen
(3.28) A W) <cn /N (=1, 2, ),
and theve exist positive numbers C' and € such that if |w| < en-(N-1)/N_ tnen
(3.29) |Apw)| > C'n" /N (n=1,2 ).

Proof. Assume first that (3.26) holds. Let I} be a segment from 0 in the di-
rection argt =7/2M extending to |t| = @,. Let T be a segment from there to
o¢,. On I'y,

|exp n¢(t)| < exp {-bn ItIM} (n=1, 2, =)

for some b (0 <b < ayy). Thus, if (3.26) holds, then

S exp n¢(t)| < cnl/M (n=1,2, ).

T

The estimate (3.27) follows from this and from the fact that the integral over I'; is
small, as in (3.21).

To get estimates (3.28) and (3.29), we integrate
exp n(t) = (exp {-mtN}){1+0(m|w|t)}

over the interval [0, an]. This concludes the proof of the lemma.
We need one more set of estimates for a,(w) and A (w) (N> 2).
LEMMA 3.6. In (3.1), let w satisfy either

(3.30) w < -n-(M-1)/M
or
(3.31) w > n-(M-1)/(N+1)

Then there exists a C independent of n such that

(3.32)

< CnM|y|-(M+1)  (m=1, 2 ).

i
a (w)+ -

Further, ifin (3.2) N> 2, y=-re~ (r>0, 0< 0 <7/2), and cither
(3.33) w < -n-(N-1)/N

or
(3.34) w _>_ n'(N‘l)/(N"'l) ,
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then there exists a constant C independent of n such that

(3.35) An(w)-!-;i‘;I < Cn-NIWI -(N+1) (n=1,2, -).

Proof. I (3.30) holds, choose a contour consisting of a segment I'; from 0 to
|t| = @, in the direction argt = 7/2M and a segment I'3 from there to a,. If
(3.31) holds, choose a contour consisting of a segment I'; from 0 to -ia, and a
segment I; from there to &, along the circle (t| =a,.

In both cases, we have the estimate (3.21) for the integral over I'3, and in botk
cases exp n¢(t) differs from exp {-inwt} on I'; by a function that is less than
Cn |t|Mexp{-n|w|b]lt]|} n=1,2, ),

for some b > 0. The estimate (3.32) follows from this.

I (3.33) holds, choose a contour consisting of a segment I'j, from 0 to ]t| = oy,
along the ray argt = 6/N and a segment I'; from there to a,. If (3.34) holds,
choose a segment I'; from 0 to -ia, and let I'; be the arc of [t] = @, from o
to @, . Then the proof of (3.35) is the same as the proof of (3.32). This proves the
lemma.

We are left with the case N = 1, that is, with the case Y(t) = -iwt - yt.
LEMMA 3.7. In (3.2), let N=1 and y> 0. Then, for some C independent of n,

(3.36) An(w)+m <ce?Wr =12 ).

The proof is trivial.

4. ESTIMATES OF b_(w) AND B_(w)

We now need estimates of the quantities bn(w) and B, (w) defined in (2.6) and in
(2.7). That is, let

On
(4.1) . by(w) = S h, (t)exp {ing(t) } dt,
0
where a, = n-1/(N+1)
N
(4.2) gt) = ~wt + 27 ajtj;
M

here M and N are integers (2<M <N), ajisreal (j=M+1, -, N), ap; > 0, and
(4.3) hy(t) = [e2V(t) - 1]exp {-yntN};

in the last formula, ¥ is a positive constant and v is a continuous complex-valued
function of bounded variation on [0, 6], for some 6 > 0 satisfying the conditions

(4.4) lvt)] < N+ [var]v <c'tNtl o (0<t<0).
0,t
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We shall use the method of stationary phase to prove the following lemma.
LEMMA 4.1. In equation (4.2), let

(4.5) o M-D/(NF) )|

wheve Cy is a constant such that if (4.5) holds, then |g'(t)| > |w|/2 for
0<Lt<La,. Then, for 0 < e < 1/N, there exists a constant Cg such that

(4.6) b, w)] < Cgn 178 |w|"1 (m=1,2 ).

Further, if

(4.7) lw| < Cgn-(M-1)/(N+1)
then
(4.8) |b,(w)| < Cg |w|(N+3-M)/2(M-1) -€/2 exp{:_le_?’ |W|N/(M-1)} _

Proof. Assume first that (4.5) holds. Then integration by parts of (4.1) gives
the estimate

h (o)
[baw)] < ng'(@n)} ' [o, ] M8’

(4.9) b (c)

n\%n 1 1 1

< ng(@,) + sup |hn] var o + Sup o var h .

If (4.5) holds, we see that for large n (small o)
(4.10) var —17 < sup —-;l < 2 .

[0, 2,18 = [0,a,] 18" = ||
Also it follows from (4.3) and (4.4) that if n is large, then
(4.11) b )] < CntNtlexp {-mtN} (O<t<a,).

Thus the first two terms on the right-hand side of (4.9) are bounded by the right-
hand side of (4.6).

Now we need only estimate var h,. Let B satisfy the inequalities
1/(N+ 1) < B < 1/N. Then from (4.4) and (4.11) it follows that

var h, = wvar h, + wvar h, < Cn-n BN+ C'exp {—n-yn'NB} .
[0, o] [0,n=A] [n-5, al

Consequently, if we put € = B(N+ 1) - 1, we see that 0 <& < 1/N and

var h, < C.n7%,
[0, @]

This together with (4.10) proves that the third term on the right of (4.9) is also
bounded by the right side of (4.6).
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To get (4.8) under the assumption that (4.7) holds, we write

ty-0 o,
(4.12) b, (w) = (S - {7+ § ) h,(t) exp {ing(t)} dt.
0

“tg-0  Vtg+o

ty+o

Here ty = 0 if w < 0, and the first integral and the obvious part of the second afe to
be omitted. Let

0 < w < Con-M-1)/(N+1)

The equation g'(7) = 0 has a solution

7= )1/(M-l)+0(w2/(M-1)) (w — 0+)
Ma,, )

¥ r <a,, then tyg = 7; otherwise, ty = @,, and the third integral and part of the
second are omitted.

The first and third integrals in (4.12) are estimated just as in the proof of the
first part of the lemma. The only difference is that in place of (4.10) we have on
[0, t, - 6] and [ty + 6, @] (n large) the inequalities

—1—,| <—C <ol |w|-M-2)/(M-1)
gl = 5 |gn(r)| =

Thus if (4.7) holds, the first and third integrals in (4.12) are bounded by

var glf < sup

(4.13) cn-(1+€) 5-1 IWI'(M'Z)/(M'I) n=1,2, --.).

The second integral in (4.12) is bounded by
(4.14) 26C Ihn('r)l < 26Cn |w|(N+1)/(M'1) exp (-yn IWlN/(M}'l)) n=1, 2, )
if w satisfies (4.7) and if 6 = o(|w|l/(M-1)) as w — 0. This restriction on o is
fulfilled if we take for 6 the number that minimizes the sum of the expression in

(4.13) and the term on the right in (4.14). Specifically, let

5 = n-1-€/2 IWI-(N+M-1)/2(M-1) exp (% IW|N/(M-1)) ]
With this & (in (4.13) and (4.14)), we find that if w satisfies (4.7) then
[y ()] < Cyn-8/2 || (N43-2)/204-1) p (2| V/M-D))  (u=1, 3, ).

This proves the lemma.

We can make corresponding estimates for

an
B,(w) = Vg H,(t) exp {in G(t)} dt,

where o, = n'l/(NH) , where
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(4.15) G(t) = -wt - (ISP
(N a positive integer, Sy <0, with Sy =0 if N = 1), and where
H (t) = [e2v(t) - 1]exp {-natN} (n=1, 2, )

(%ty > 0, v a continuous, complex-valued function of bounded variation on [0, 6], for
some 6 > 0, and satisfying (4.4)).

LEMMA 4.2. IfN> 2 and Sy <0 in equation (4.15), let
(4.16) lw| > Con-(N-1)/(N+1)

wheve Cg is chosen so that |G'(t)| > |W|/2 (0 L t < a) whenever (4.16) holds.
Then, for 0 <& < 1/N, there exists a constant Cg such that

(4.17) |B(w)] < Cgn1-€lw|-l (=12 ).
AZSO, 'l;f NZ 2, %']/ < 0, and

le < C n-(N-l)/(N+1)’
then

4.18) [Byw)| < g [wf/2001) 5 /2 exp { Dy W/ D} =1, 3, ).

Finally, if N> 1 and Iy =0, then, for n=1, 2, ***,

(4.19) |B,(w)| < Cenl-€|w|-l if |w| > n-1-€+1/N+1/(N+1)
and
(4.20) |B_(w)| < Cn-l/(N#1)-1/N 45 |y| < prl-8+1/N+1/(N+1)

Proof. The proof of (4.17) and (4.18) consists of setting M = N in the proof of
Lemma 4.1. For the proof of (4.19), we use integration by parts as in the proof of
(4.6). But this time, since G'(t) = -w, we see that

|Baw)| < Cen'Bwt (m=1,2, ),
without any restriction on |w|. The restriction on |w| in (4.19) is inserted because

the estimate is of no use for smaller IWI . The inequality (4.20) is simply the state-
ment

|B (W) < o sup Hy(t).

The lemma is proved.

5. PROOFS OF ASSERTIONS (ii) TO (iv)

By combining the results in our lemmas, we can now make estimates of

I£]] = 22x |ewn| Wwhen £ satisfies the conditions of cases (ii), (iii), or (iv). We
shall begin the section with estimates from above with primary emphasis on case
(ii). The estimates from below appear in the second half of the section.
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We have seen in Lemma 2.1 that if f satisfies the conditions of any of these
theorems, then the inequality

Z) lcknl S C
|1c|> pn
holds for some u > 0.

Consider the case where ]f(O)] =1 (we may take £(0) = 1), If(t)l <1 (t=+#0), and
f satisfies conditions (Dg) and (Cy) at 0. In the other cases, |f?| is estimated in
the same way. We are assuming that (1.6) holds to the right of 0 and that an esti-
mate (1.4) with Itl in place of t holds to the left of 0. To distinguish the right from
left we put primes on everything appearing on the left of 0. For |k| < pn, we con-
sider the identity

(5.1) 2me, | = (S-a"’+ SO + San + Sﬁ )fn(t)e'iktdt.
’ n

-7 -a, 0
By inequality (2.5), the first and last integrals satisfy the inequality

(S_a; + Sﬂ ) (1) eIkt g
- Oln

< 7 exp {_ggyrnl/(N'+1)} +7 exp {_,},nl/(N+1)} )

IR,| =

(5.2)

Using (2.6) and (2.7) to express the second and third integrals, we rewrite (5.1) in
the form

2n ¢, = Al (-w') + B! (-w') +a (w)+ b, (w) +R,,

where w' =kn~! - a] and w =kn"! - a .
It is sufficiently precise to use the inequality
(5.3) |7 = 2 |ckn| <C+ 2 (AL (-w)] + |BL(-w")| + |ay(w)| + |b(w)] +R).
k k|<pn

Our estimates of a,(w) in Section 3 were made under the condition ay; > 0. If
ays <0, the estimates hold for a,(-w). Thus, in estimating

L |ayw)]
|1|<pn

there is no loss of generality if we assume that a,; > 0. The same is true of A (w),
B (w), and b _(w).

Since Ek Ian(w)l gives the major contribution, we discuss it first. Using
Lemmas 3.1, 3.3, 3.5, and 3.6 we find that for some B > 0, and with the notation

ny = n-(M-1)/M 5 = n-(M-1)/(N+1),

the inequality
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n
L Jaw)] <on {0 arl/2y-04-2/204-1) exp {npwV/ (-1} aw
|| <pn Aoy

A(n)ﬂl 2u
+C1nS wl/(M"l)dw+ 2 1/ Czn'l/M+C3nS aw
UM lk-naIISn M Ul
holds for n=1, 2, ---,

An easy computation leads to the estimate

(5.4) Z<> [an(w)l < Cn(N'M)/2N+C1 (log n)3 +C,+Czlogn (n=1,2, ).
ki<in

A similar computation, based on Lemmas 3.2, 3.4, 3.5, and 3.6 if N' > 1, and on
Lemma 3.7 if N' = 1, gives—with the notation

ny = n-(SD/N' N1/

—the estimates

n
2 agw)l<on [ nrt/2wO0-2/200 1) exp {ng /(01 aw
|1c|<pn Ag(n)13
(5.5) 2
+ 2 cln-l/N'+can AW~ Cllogn  (N'> 1),
lk‘nai ]<n1/N' i nw —
— 3
and
21 w
27 |a(-w)| < Cn S ———— < C'logn (N'=1).
| k| <pn -2 njw - iy|

Also, it follows easily from Lemmas 4.1 and 4.2 that for every ¢ (0 <& < 1/N),

_(§+y§1)
(5.6) | IA:J [byw)] < Cgn®logn+cin ‘2 N (=2, 3, ),
k|<pun
and that if 0°<eg' < 1/N*, then
- (8_'+N'+l )
(5.7) 27 |B1'1(—W')! < Cqr n"® log n+ Ciin 2 N (n=2 3, ).

k|<un
Combining inequalities (5.3) to (5.7) we find that
I < cn™-M/2N =1 9 ..y,
Thus we have proved the second inequality in (1.7) for the case under consideration

and it is clear that a similar argument proves it for the other cases mentioned in
assertion (ii).

’
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It is also clear from this argument that if (Cr) and (C; ) hold at 0, then the esti-
mate

lt7] < Clogn (=23, )
follows from inequalities (5.5) and (5.7). This proves the right half of (1.7) under the

conditions of assertion (iii).

Among the estimates from above, we need only prove that [Ifn" is bounded if
(CRr) and (Cy,) hold at O with a} =a; and N' = N. Under these conditions (and with
N > 1) we have the inequality

7] = Z el <+ I (AW + AW + [By-w)| + |By(w)]| + Ry).
k k Sﬂ-n

Since the -i/nw-term of the estimate of A, (w) is cancelled by the same term of
Aj(-w) in the estimates (3.14), (3.24), and (3.35), we find that the logarithmic term
does not appear. In fact, it follows from these same estimates, that with

Mg = '(N'l)/N and ne = n"(N'l)/(l\]H'l),

2 |A;1( -w) + A (W) |

|| <pn
n
< Cn 6 n-1/2 y=(N-2)/2(N-1) gy { -n wN/(N-1)} qyy
Ag(m)75
2
+ 2 Cln’l/N+C2n S n-Nyw-(N+1) gy <C (=12 ),
Ik-nallsnl/N g

and hence [|f?| is bounded. The inequalities

E IAIII(—W)_I_An(W)l S C (n = 1, 2, ey N =N!'= ]_)
]k|_<_p.n

follow easily from (3.36). Thus all the upper estimates in cases (ii) to (iv) are
proved.

We now turn to the lower estimates, and again we consider case (ii) first. The
most interesting case is where f satisfies conditions (Dj,) and (DR) at 0, and where
N'=N, M'=M, a}=a;, and aj; = =a),. Since HIE ||If |, it is no restriction to
assume that a); > 0.

We use the estimate

5.8) [ > 2 e | > 2 lay-w)+a,m| - 27 (Jbr(-w)| + [b,(w)| +Ry),
kel

n keI, k€L,
where k € I if and only if

L - a; and én'(M'l)/N <wX< n‘(M‘l)/N.

w ==
n
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We have seen in (5.2) and (5.6) that the last sum in (5.8) goes to 0 as n — «. It fol-
lows from Lemma 3.1 that for ke I,

(5.9) la_(w)| > Cn-1/2 y-(M-2)/2(M-1) > Cn(M-N-2)/2N
Since ay; = -a,,, it also follows from Lemma 3.1 that
al(-w) = a,(w{1+o(1)} (n— «)

uniformly for k € I,. Thus

Y atw) + a(w)] = 2|ayw)| |cos (arg a (W) +o(1)]  (n — =, k€ L),

Let R be the subset of I, such that if k € R, then w = kn-1 - a; and
|arg a, (w) - jm| < 91/20 for some integer j depending on k. Let S be the comple-
ment of R in I,. We shall show that for large n at least one half of the k in I,
are in R. This will enable us to show, using (5.9), that

187 > Z el > 95 2 lagw)]
ke, keR
(5.10)

Lzl _%n-(M-l)/NCn(M-N-Z)/ZN = C'p(N-M)/2N

Y

for some C' > 0, which is what we want to prove.

Suppose that for some fixed n, kg belongs to S. This means that

k
argan(wo)—(2j+1)%|§2£d (w0=—ng—a)'

for some integer j. If the value n is large enough, then it follows from the estimate
arg a,(w) = -nwM/(M-1)[1+0((log n)-3/4)] (k€ 1)

in Lemma 3.1 that if

(M - 1) _-1/(M-1) 4r(M - 1) __1/(M-1
(5.11) Ko + g Wo <k < kg + T W ),
then
197 . T T
_EO—S arg a,(w) - (2J+1)§_<_ “90°

Thus if k € I, and k satisfies (5.11) with k; € S, then k€ R. If k; € S and

w, < n-(M-1)/N (1 _ ¢ p-1+M/N)

for some C > 0 independent of n, then it will be automatically true that k € I,
whenever k satisfies (5.11). Also, for any fixed ky in S there are many k satisfy-
ing (5.11), since wg < n-(M-1)/N “that is, wgl/(M-1)>nl/N for n=1, 2, .- and

k € I,,. These estimates show that for large n, intervals of R and S alternate, and
that at least one half of the k in I, are also in R. This shows that (5.10) is valid,
and assertion (ii) is proved in the case under consideration.
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In the other cases in assertion (ii), the proof is easier, since we have the
inequality

le,| > Claw)] > cnM-N-2)/2N e 1 , C'>0),

and the argument we have given shows that the first inequality in (1.7) holds.

We now turn to the estimates from below in assertions (iii) and (iv). Consider
first the case where (Cg) and (Cy) hold at 0 with N>1, N'>1, and a} #a;. Let

J_ = {k: na; +nt/N <k < n(al-l-% la, -a'll)} :

n

Then it follows from the estimates in Sections 3 and 4 that for all large enough
values n,

(5.12) Il > 22 e | > Z)

ke J, €J,

4n(k -na;) = > Clogn,
for some C > 0.
In the case where (Cg) and (C;) hold at 0, with N> N'> 1 and aj =a,;, let

K, = {kn!/N <k-na <nl/N'},

It follows from Lemmas 3.2, 3.4, 3.5, 3.6, and 4.2 that if n is large, then

(5.13) ] > 2 e | > 2 L >Clogn (n=1,2 )
RERNANER R =

for some C > 0. The inequalities (5.12) and (5.13) prove the first inequality in (1.7)
in case (iii), when |f(t)| =1 at an isolated point.

The estimates from below in case (iii), when |f(t)| =1 on an interval, are proved
in the same way. Only two cases are slightly different. One is the case where

f(t) =expia;t (0<t< T < 2m),

'(Cg) holds at T, (Cy,) holds at 0, with N'=N> 1, and a, is the same for all t
(t+0, t+T).

Here it follows from Lemmas 3.4 and 4.2 that

n i .
] > el 2 2 S = [exp{ ik - nay)T} - 1] -

Ik nall - |k-na1|

>Clogn-C (=23, )

for some C!' > 0,

In the other case of interest (N=N'=1 and f(t) = exp i8t for 0 <t < T < 27), it
follows from Lemmas 3.7 and 4.2 that for some € > 0

=) > 2 egl >

lk-n l En |k-nB|<sn
>C'logn-C (n=2,3,-)

g LoxP {-i(k - nB)T} - 1]
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for some C' > 0. This completes the proof of assertion (iii).

To complete the proof of assertion (iv) we need to show that if |f(ty)| =1 for
some t;, then || > C (C > 0). This follows easily from the relations

=) = 22 ley, ekt0| > IZ)ckneiktOI = |fP()| = 1.

6. THE PROOF OF ASSERTION (i)

Kahane [5, p. 103] used Carlson’s inequality [2],
©0 4 o0 o0
(Bo) <Budes

to obtain the estimate from above.

In order to get the estimate from below, we use an argument similar to the proofs
of assertions (ii) to (iv). Let (B) hold at t = 0. It is no restriction to set £(0) = 1
and to require that a, > 0. Using (1.3), we choose a > 0 so small that for
0<tL 3
log f(t) = ia, t +ia, t2 + iv(t)
with v real, v € C3, and
6.1) [v(t)| < B, [v@)| <C1 ¥ <ayt/4, |v(t)| <Crt<a, (0<t<3a).
Let p(t) be the piecewise linear function
t/a 0<t<a),
1 (et 2a),
p(t) =
(8a - t)/c (2a <t < 3a),
-0 otherwise.
We shall base our proof on the inequality “fn]l > " pfn" / ]lp” . Let

k
w ==
n

-a;, Ylt) = -wt+a,t?+v(t).

We say that k € L if
8aa,/3 < w < 10aa,/3.

From the conditions (6.1) on v' it follows that if k € L,, then y' is increasing on
[O, 3a] and has on this interval precisely one zero ty, with

32a 400
=57 Sto <57



414 G. W. HEDSTROM

Let 6(n)=n-2/5(n=1,2, ). I k € L and n is so large that @ <ty - 6(n)
and t; + 6(n) < 20, we write

ﬂ -
2re,, = S p(t) *(t) e~tat
-
(6.2) 5(e) 5
tp-0(n tg+0(n) 30 _
= 5 pein¥ 4+ 5 einV¥ 4 pein?
0 to- 6(n) “to+6(n)

To estimate the first integral on the right of (6.2), we integrate by parts, obtain-
ing the inequality

tg=-0(n)

5 pein¥

0

1 B
< n |zpr(t0 - 6(n)ﬂ + [0, tg%g ()] nyY'”

From (6.1) it follows that y' is negative and increasing on this interval, and that
Yty - 6(n))< -Cd(n) (C > 0). Therefore

t -6(h)

(6.3) (% pem¥| <cn3/5 =1, 2, ).
0

Likewise,
3x

(6.4) S peimp < Cn"?’/5 n=1, 2, «-).
ty+0(n)

To consider the second integral on the right-hand side of (6.2), we expand y in a
Taylor series

Y(t) = Plty) + blty) (t - to)? + R(t, to) (t - to)>.

Since v € C3, we conclude that y € C3 and that R(t, t,) is bounded for t and t; in
[a, 20]. Using (6.1), we see that if k € L, then

(6.5) 0 < a,/2 < blt,) < 3a,/2.
We write
S ) i - ein”'b(to)[.g ot in(e-t)?
to- 0(n) tg- 6(n)
(6.6) 5
tot+ O(n
L 00 ( )einb(t-to)z[einR(t-t0)3 _ 1] dt:].
to- 6(n)

The first integral on the right-hand side of (6.6) can be estimated by integration
along the three lines from t; - 6 to t; - 6 - i6, thento ty+ 6 +id, and then to
to 0. This gives the estimate
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tot+0(n) |
e1nb(t-t0)2dt _

% +0(1/n) (n— ).

ty- o(n)
From this and (6.5) it follows that if k € L, and n is large, then
to+ 5(n)

Sto‘ 6(n) °

The last integral in (6.6) satisfies the inequality

inb(t-to)zdt Z C/ﬁ (C > 0).

tnt 6(n
SO ( )einb(t-to)2 [einR(t-tO) - 1]at < 26 max Ie1nR(t-t0)3 1|
to- 6(n) |t-to|< 6
< cno* = cn "5,

Hence, if k € L and n is large, then

to+ 6(n)

S ein¥

tg- o(n)

(6.7) >cCc/Yn (C>0),

If in (6.2) we use the inequalities (6.3), (6.4), and (6.7), we get the estimate
leen| > C/vn (€>0, ke Ly, n=1,2, ).

Since there are C; n numbers k in L , we get the required estimate

l£2] > c{pt™] > ¢ kE legn| > C'n
€Ln

This completes the proof of assertion (i) and the theorem.
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