THE SUM OF TWO CRUMPLED CUBES

Joseph Martin

A crumpled cube is a space that is homeomorphic to the closure of the interior
of a 2-sphere in E3. There exist many examples of crumpled cubes that are not
3-cells, the best known probably being the examples described by Alexander [1] and
by Fox and Artin [7]. .

Suppose that C and D are crumpled cubes and h is a homeomorphism of Bd C
onto Bd D. Let C U, D denote the space obtained by identification of C and D
along their boundaries by the homeomorphism h.

Hosay [10] and Lininger [11] have independently shown that if C is a 3-cell, then
C U, D is S3. Bing has shown [4] that if each of C and D is the example of Alex-
ander and h is the identity, then C Uy, D is S3. It is known that if each of C and D
is the example of Fox and Artin and h is the identity, then C U, D is not S3.

The goal of this paper is to study certain conditions that are necessary in order
that C U, D be S3.

Suppose that K is a crumpled cube and p is a point of Bd K. The statement that
p is a pievcing point of K means that there exists an embedding f: K — S3 such that
f(Bd K) can be pierced by a tame arc at f(p). If K is a 3-cell or the example of
Alexander, then each point of Bd K is a piercing point of K. If K is the example of
Fox and Artin, then K has exactly one nonpiercing point. Stallings [15] has given an
example of a crumpled cube with uncountably many nonpiercing points.

The main result of this paper is the following theorem.

THEOREM. Suppose that each of C and D is a cvumpled cube, h is a homeo-
movphism of Bd C onto Bd D, and C U, D is S3. Then, if p is a nonpievcing point
of C, h(p) is a pievcing point of D.

We shall establish the theorem by using the theorem of Lininger and Hosay to
view C Up D as a decomposition of S3 into points and arcs. Lemma 6 will show
that each arc in this decomposition is cellular, Lemma 4 will show that each of the
arcs is locally tame except perhaps at one of its endpoints, and an application of
Lemma 3 will establish the theorem.

LEMMA 1. Suppose that K is a crumpled cube and p is a piercing point of K.
Then, if f: K — 83 is an embedding such that C1(S3 - £(K)) is a 3-cell, £(Bd K) can
be pievced by a tame arc at 1(p).

Proof. Let f: K — S3 be an embedding such that C1(83 - £(K)) is a 3-cell, and
let g: K — S3 be an embedding such that g(Bd K) can be pierced by a tame arc at
g(p). It follows from a theorem of Gillman [8] that some tame arc a on g(Bd K)
contains g(p).

The proof of Theorem 2 of [11] shows that there exists a homeomorphism
h: g(K) — S3 such that (i) C1(S3 - hg(K)) is a 3-cell and (ii) the restriction of h to
a is the identity. Now, since each of C1(S3 - £f(K)) and C1(S3 - hg(K)) is a 3-cell,
the homeomorphism hgf-1 can be extended to a homeomorphism of S3 onto itself
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that takes f(K) onto hg(K). Then fg-1l(a) is a tame arc on f(Bd K) that contains
f(p), and it follows from [8] that f(Bd K) can be pierced by a tame arc at f(p). This
establishes Lemma 1.

Let B denote the unit 3-cell in E3, If x € Bd B, let &, denote the straight-line
interval from the origin to x.

LEMMA 2. Let h: B— E3 be an embedding. Then h(Bd B) can be pierced by a
tame arc at h(p) if and only if h(ozp) is tame.

Proof. Let p be a point of Bd B. Suppose first that h(a,) is tame. Let B be
an arc on h(Bd B) that has h(p) as an endpoint and is locally tame except perhaps at
h(p). Let C denote the cone from the origin over h-1(B), and let D denote h(C).
Then D is a 2-cell and is locally tame except perhaps at h(p). Now the arc h(a,) is
tame, contains h(p), and lies on D. It follows from a theorem of Doyle and Hocking
[6] that D is tame. Hence B is tame, and it follows from [8] that h(Bd B) can be
pierced by a tame arc at h(p).

Now suppose that h(Bd B8) can be pierced by a tame arc at h(p). By [8], some
tame arc 8 on h(Bd B) contains h(p). Let C be the cone from the origin over
h-1(8), and let D be h(C). Then D is locally tame except perhaps at h(p), and h(p)
lies on the tame arc B. As before, D is tame, and it follows that h(ozp) is tame.
This establishes Lemma 2.

Lemmas 1 and 2 combine to yield Lemma 3.

LEMMA 3. Let h: B — 83 be an embedding. Then h(p) is a piercing point of
C1(S® - h(B)) if and only if h(ey) is tame.

Suppose that X is a subset of S3. The statement that X is cellular means that
there exists a sequence Cj, C,, -+» of 3-cells such that (i) C;4+; € Int C; and

[~ ]
(ii) X= ni=1 Ci'
If G is an upper-semicontinuous decomposition of s3 , we denote by S3/G the
resulting decomposition space, and by P the natural projection map of S3 onto
S3/G. I X is a cellular arc of a cellular 3-cell in S3, we denote by S3/X the

decomposition space obtained from the decomposition whose only nondegenerate
element is X.

The following lemma is the result of joint work by David Gillman and the author.
The author thanks the referee for simplifying the original proof.

LEMMA 4. Suppose that a is a cellular avc in S3. Then o cannot fail to be
locally tame at exactly its two endpoints.

Proof, Suppose that « is a cellular arc in S3 with endpoints a and b. Suppose
further that o is locally tame at each point of @ - {a, b} and that ¢ fails to be lo-
cally tame at each of a and b.

Let g be a point of a - {a, b}, and suppose that D is a tame disk that intersects
o in exactly the point ¢, and that this disk is pierced by a at q. Now S3/a is S3,
and it follows from [5] that there exist a subdisk D' of P(D) and a tame 2-sphere S'
such that P(q) € Int D' and D' C S'. Let S denote the 2-sphere P-1(S'). Then S is
tame, intersects o in exactly the point q, and is pierced by a at q.

Now there is a 3-cell C such that o lies on the boundary of C, SN C is a span-
ning disk of Bd C, and C is locally tame except at the points a and b. Let C; and
C, denote the closures of the components of C - S containing a and b, respectively.
Since S is tame, there exist 3-cells K; and K such that (i) K; N Kz =S, and
(ii) C; € Kj and C; CK>.
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Because each of C; and C; is wild, neither C1(K; - Cj) nor C1(K2 - C>p) is a
3-cell, Since a is cellular, C is cellular, and hence S3/C is S3. The 2-sphere
P(S) is locally tame except at one point, and it follows from [9] that the closure of
one of the complementary domains of P(S) is a 3-cell. Then one of K; - C; and
K, - C, is topologically EZ x [0, 1), and it follows that one of Cl1(K; - C;) and
C1(K; - C;,) is a 3-cell. This contradiction establishes Lemma 4.

LEMMA 5. Suppose that G is an upper-semicontinuous decomposition of S3,
each nondegenevate element of G is a compact absolute vetract, and U is a simply
connected open set in S3/G. Then P-1(U) is simply connected.

Lemma 5 is a consequence of Smale’s Vietoris mapping theorem for homotopy
[14]. Nevertheless, we include a proof, for completeness.

Proof. Let g € G. Then, since g is a compact absolute retract, there exists a

(¢}
sequence Vi, V,, .-« of open sets such that ﬂi=1 V; = g and such that, for each i,
Viy1 € V; and Vi) is homotopic to 0 in V;. Furthermore, since G is upper-
semicontinuous, we may assume that for each i, V; is the union of elements of G.

Now suppose that U is a simply connected open set in S3/G. For each element
g of G such that g C P-1(U), let Wy and Yg be open sets such that g C W,
Wy C Yy, Wy is homotopic to 0 in Yg, Y, C P-1(U), and each of W and Y is
the union of elements of G.

Let o be a 2-simplex, and let f be a map of Bd o into P-1(U). Let g be the
map of Bd o into U defined by g = Pf. Now, since U is simply connected, some
extension g* of g maps o into U, Let C be a finite subcollection of

{Wg: g c P-L(U)}
such that C covers P~!(g*(c)). The existence of C follows from the fact that for

each g, P(Wg) is an open set.

Now let T be a triangulation of ¢ whose mesh is so small that if 7 is a 2-
simplex of T, then there exists an element W of C such that P-l(g*(7)) c W. For
each 2-simplex 7 of T, let W.. be an element of C such that P-1(g*(7)) C W,.

We are now ready to extend the map f. This will be done by first extending f to
the 0-skeleton of T, then to the 1-skeleton, and finally to the 2-skeleton.

Suppose that v is a vertex of T, not in Bd o. Then let P, be a point of
P-1(g*(v)), and set f*(v) = P,.

Suppose that <v1 ') > is a 1-simplex in T that does not lie in Bd ¢. Now
P-1(g*({v, v2> )) is a compact connected set, and it follows that if 7 and 7' are
2-simplexes in T and each has < V) Vp ) as a face, then PVl and PV2 belong to
the same component of W, NW,,. Let @ be anarcin W, NW_, from PV1 to
Py,, and let h be a homeomorphism of <v1 v2> onto @ such that h(vy) = Py, -
Then if x € { v; v, >, let f*(x) be h(x).

Now suppose that 7 is a 2-simplex in T. Then f* is defined on Bd 7, and
t#(Bd 7) C W, . Since W, is homotopic to 0 in Y, f* may be extended to .
This establishes Lemma 5.

LEMMA 6. Suppose that G is an upper-semicontinuous decomposition of s3
such that each element of G is a compact absolute retract, and such that S3/G is a
3-manifold. Then each element of G is cellular.
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Proof. Let g be an element of G, and let V be an open set containing g. Let V'
be an open set such that V' CV, g C V', and V' is the union of elements of G. Then
P(V') is open, and P(g) € P(V'). Let B be an open 3-cell such that P(g) € B and
B c P(V'). Then B - {p(g)} is simply connected; it follows from Lemma 5 that
P-1(B) - g is simply connected, and from McMillan’s cellularity criterion [13] that
g is cellular.

Proof of the Theorem. Suppose that each of C a_nd D is a crumpled cube, h is a
homeomorphism of Bd C onto Bd D, and C U, D is S3. It follows from [11] that
there exists an embedding £ of S2 %I in S3 such that Ol (83 - £(s? x1)) is C U D,
and if y is a point of S2, then the arc f({y} X I) has endpoints x and h(x) on C
and D, respectlvely Now the space C Uy D may be obtained by taking the decom-
pos1t1on of S3 whose only nondegenerate elements are the sets f({y} X I). Lemma
6, together with the hypothesis that C U, D is s3 , implies that each of the arcs
f({y} X I) is cellular. It follows from Lemma 4 that one of the arcs f({y} %[0, 1/2])
and f({y} x[1/2, 1]) is tame, and from Lemma 3 that if f({y} X I) has endpoints x
and h(x), then e1ther X is a piercing point of C or h(x) is a piercing point of D.
This establishes the theorem.

We point out that the conditions stated in our theorem, while necessary for
C Uy D to be s3 , are not sufficient. Ball [3] has descrlbed a crumpled cube C each
of whose boundary points is a piercing point, and a homeomorphism h: Bd C — Bd C
such that C Uy C is not s3.

We can use Lemma 6 and a theorem of Armentrout to obtain a proof of a theorem
announced by Lininger [12].

THEOREM (Lininger). If C and D ave crumpled cubes, h: Bd C—>BdDisa
homeomorphism, and C Un D is a 3-manifold, then C U D is s3

Pyroof, As in the proof of the theorem above, we represent C U, D as a decom-
position of S3 whose only nondegenerate elements are the fibering arcs of an annu-
lus. It follows from Lemma 6 that each of the fibering arcs is cellular. Since some
open set in S3 misses the sum of the nondegenerate elements, it follows from [2]
that the decomposition space is s3
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