COMMUTATOR EXTENSIONS OF FINITE GROUPS

Hironori Onishi

Let K and H be groups. Let us call an extension G of K by H a *commutator* extension if K is the commutator subgroup G' of G. In order that there may exist a commutator extension of K by H, H must be abelian. Henceforth, we assume that H is abelian and finite. On the other hand, if K' is the commutator subgroup of K, then K/K' is abelian. We assume that K/K' is also finite. Our problem is to find necessary and sufficient conditions for the existence of a commutator extension of K by H.

We shall first reduce the problem to the case in which K is an elementary abelian p-group. Theorem 4 then gives necessary and sufficient conditions for the existence of a split commutator extension. Following that come other results on nonsplit commutator extensions.

To begin, let us note that the commutator subgroup K' of K is normal not only in K, but also in every extension of K, because K' is a characteristic subgroup of K.

THEOREM 1. G is a commutator extension of K by H if and only if G/K' is a commutator extension of K/K' by H.

Proof. From the isomorphism $G/K \cong (G/K')/(K/K')$, it follows that G is an extension of K by H if and only if G/K' is an extension of K/K' by H. Now, if K = G', then (G/K')' = G'K'/K' = K/K'. Conversely, if (G/K')' = K/K', then K/K' = G'K'/K' = G'/K', and hence, K = G'. q.e.d.

This theorem reduces the problem to the case in which K is finite abelian. If K is trivial, then every extension of K by H is a commutator extension (because H is abelian). Therefore, we assume that K is a nontrivial finite abelian group.

Before proceeding further, we propose to summarize the theory of extensions of K by H, where K and H are finite abelian groups [3, Chapter III, Sections 6 to 8].

Let G be an extension of K by H, so that $G/K \cong H$. Let $\phi: G \to H$ be the epimorphism whose kernel is K. An element \bar{u} of G is called a *representative* of $u \in H$ if $\phi(\bar{u}) = u$. Let (z_1, \dots, z_s) be a basis of H, and let m_i be the order of z_i . An s-tuple $S = (\bar{z}_1, \dots, \bar{z}_s)$ is called a *representative set* of the basis if each \bar{z}_i is a representative of z_i . Given a pair (G, S), we define a triple (X, B, M), where

$$X = (x_1, \dots, x_s), \quad B = (b_1, \dots, b_s), \quad M = (b_{ij}) \quad (1 \le i \le s, \ 1 \le j \le s),$$

by the conditions

- (1) $a^{x_i} = \bar{z}_i^{-1} a \bar{z}_i$ for all $a \in K$,
- (2) $\bar{z}_i^{m_i} = b_i \in K$,
- (3) $\bar{z}_{i}^{-1} \bar{z}_{j}^{-1} \bar{z}_{i} \bar{z}_{j} = b_{ij} \in K$.

Received May 11, 1965.

Here x_1, \dots, x_s are automorphisms of K. We shall indicate the definition of the triple by $(G, S) \rightarrow (X, B, M)$.

The triple satisfies the following conditions:

(4)
$$a^{x_i^{m_i}} = a$$
 for all $a \in K$; that is, $x_i^{m_i} = 1$;

(5)
$$a^{x_i x_j} = a^{x_j x_i}$$
 for all $a \in K$; that is, $x_i x_j = x_j x_i$;

(6)
$$b_{ii} = 1$$
, $b_{ij}b_{ji} = 1$;

(7)
$$b_i^{x_k} = b_i b_{ik}^{1+x_i+\cdots+x_i};$$

(8)
$$b_{ij}^{x_k} = b_{ij}b_{ik}^{-1+x_j}b_{jk}^{1-x_i}$$
.

Note that X generates a homomorph \overline{H} of H in the automorphism group A(K) of K. For this reason, we sometimes write \overline{H} for X, as in the triple (\overline{H}, B, M) .

Conversely, given K and $H = (z_1) \times \cdots \times (z_s)$, let us suppose that we have a triple (X, B, M), where x_1, \dots, x_s are automorphisms of K and satisfy conditions (4) to (8). We shall call such a triple *admissible* with respect to (K, H). We can construct a pair (G, S), where G is an extension of K by H and $S = (\bar{z}_1, \dots, \bar{z}_s)$ is a representative set of the basis (z_1, \dots, z_s) , such that $(G, S) \to (X, B, M)$ (that is, the triple satisfies conditions (1), (2), and (3)). We shall denote this construction by $(X, B, M) \to (G, S)$.

If two pairs (G, S) and (G', S') give the same triple (X, B, M), where $S = (\bar{z}_1, \dots, \bar{z}_s)$ and $S' = (\bar{z}_1', \dots, \bar{z}_s')$, then

$$\bar{z}_{1}^{n_{1}} \cdots \bar{z}_{s}^{n_{s}} a \longleftrightarrow \bar{z}_{1}^{n_{1}} \cdots \bar{z}_{s}^{n_{s}} a \quad (a \in K)$$

is an isomorphism $G' \cong G$ that reduces to the identity on K, and $\bar{z}_i \longleftrightarrow \bar{z}_i$ for each i. Thus, up to such an isomorphism, (G', S') and (G, S) are the same, and in this sense we may write $(G, S) \longleftrightarrow (X, B, M)$.

We shall call two extensions G and G' of K by H *equivalent* (and write G ~ G') if there exists an isomorphism α : $G \cong G'$ such that α is the identity on K and $\phi = \phi' \alpha$, where ϕ : $G \to H$ and ϕ' : $G' \to H$ are the epimorphisms whose kernels are K. On the other hand, we shall call two admissible triples (X, B, M) and (X', B', M') equivalent (and write $(X, B, M) \sim (X', B', M')$) if X = X' and there exist c_1 , \cdots , c_s in K such that

(9)
$$b_i = b_i^t c_i^{1+x_i+\cdots+x_i}$$
,

(10)
$$b_{ij} = b'_{ij}c_i^{-1+x_j}c_j^{1-x_i}$$
.

Under these conditions, $G \sim G'$ if and only if $(X, B, M) \sim (X', B', M')$, where $(G, S) \longleftrightarrow (X, B, M)$ and $(G', S') \longleftrightarrow (X', B', M')$. The isomorphism α and the stuple (c_1, \dots, c_s) are related by

(11)
$$\alpha(\bar{z}_i) = \bar{z}_i' c_i$$
 (i = 1, ..., s).

In particular, any two triples corresponding to the same extension are equivalent. If G is an extension of K by H, then we agree, without explicitly mentioning it, that

., B, M correspond to it by some choice of S. Conversely, if we have an admissible riple (X, B, M), then G will be the corresponding extension, which is unique up to he equivalence.

Finally, we mention that an extension G of K by H splits over K if and only if, or some choice of S, all b_i are 1 and all b_{ij} are 1. Also, $G = K \times H$ if and only if, or some choice of S, all x_i are 1, all b_i are 1, and all b_{ij} are 1.

Let G be an extension of K by H. A subgroup N of K is normal in G if and only if N is invariant under the corresponding automorphisms X of K. Note that in this case the x_i are automorphisms of N, and G/N is an extension of K/N by H. Let $(G,S) \to (X,B,M), S=(\bar{z}_1,\cdots,\bar{z}_s)$. Then $S/N=(\bar{z}_1N,\cdots,\bar{z}_sN)$ is a representative set in G/N of the basis (z_1,\cdots,z_s) of H. If $(G/N,S/N) \to (X^*,B^*,M^*)$, then

(12)
$$(aN)^{\sigma^*} = a^{\sigma} N$$
, $b_i^* = b_i N$, $b_{ij}^* = b_{ij} N$,

where $a \in K$, $\sigma \in \overline{H}$, and σ^* is the corresponding automorphism of K/N. The following lemma is trivial; in fact, we have used it in the proof of Theorem 1.

LEMMA 1. If G is a commutator extension of K by H, then, for each subgroup N of K invariant under X, G/N is a commutator extension of K/N by H.

LEMMA 2. Suppose that $K=K_1\times K_2$ (direct product), and the orders n_1 and n_2 of K_1 and K_2 are relatively prime. If there exist commutator extensions of K_1 and K_2 by H, then there exists a commutator extension of K by H.

Proof. Let (X', B', M') and (X'', B'', M'') be admissible triples given by the commutator extensions of K_1 and K_2 by H. Extend the automorphisms X' to K by letting them act trivially on K_2 . Similarly, extend X'' to K trivially on K_1 . Define a triple (X, B, M) with respect to (K, H) by

$$x_i = x_i' x_i'', \quad b_i = b_i' b_i'', \quad b_{ij} = b_{ij}' b_{ij}''.$$

It is easily verified that (X, B, M) is admissible with respect to (K, H), and we have an extension G of K by H.

Now, K_2 is invariant under X, and to the extension G/K_2 of K/K_2 by H there corresponds the triple (X^*, B^*, M^*) ;

$$(aK_2)^{x_1^*} = a_1^{x_1^!}K_2, \quad b_i^* = b_i^!K_2, \quad b_{ij}^* = b_{ij}^!K_2,$$

where $a = a_1 a_2$ ($a_i \in K_i$). Since (X', B', M') corresponds to a commutator extension of K_1 by H, it follows that G/K_2 is a commutator extension of K/K_2 by H. Indicating the commutator subgroups by ', we have the relations

$$K/K_2 = (G/K_2)^1 = G^1 K_2/K_2$$
,

and hence, $K = G' K_2$. Similarly, $K = G' K_1$. Since $(n_1, n_2) = 1$, this implies that K = G'. In fact, for each $a_1 \in K_1$ there exists an $a_2 \in K_2$ such that $a_1 = (a_1 a_2)a_2^{-1}$ and $a_1 a_2 \in G'$. Then

$$a_1^{n_2} = (a_1 a_2)^{n_2} \in G'$$
.

Since n_2 is relatively prime to the order of a_1 , we see that $a_1 \in G'$. Thus we have shown that $K_1 \subset G'$. Similarly, $K_2 \subset G'$. Therefore K = G'. q.e.d.

The following theorem is a simple consequence of these two lemmas.

THEOREM 2. Let K and H be finite abelian groups. There exists a commutator extension of K by H if and only if, for each Sylow subgroup K $_{\rm p}$ of K, there exists a commutator extension of K $_{\rm p}$ by H.

This theorem reduces the problem to the case in which K is a finite abelian p-group.

THEOREM 3. Let K be a finite abelian p-group, and let H be a finite abelian group. G is a commutator extension of K by H if and only if G/K^p is a commutator extension of K/K^p by H.

Proof. K^p is a characteristic subgroup of K, and the necessity follows from Lemma 1. Conversely, suppose that G/K^p is a commutator extension of K/K^p by H. Then G is an extension of K by H. Moreover, $K/K^p = (G/K^p)' = G'K^p/K^p$, and hence, $K = G'K^p$. But then K = G' because K^p is the Frattini subgroup of K. q.e.d.

Note that K/K^p is an elementary abelian p-group of the same rank as K. Thus we have reduced the problem to the case in which K is an elementary abelian p-group.

Let K be an elementary abelian p-group of rank r. We shall write K additively, so that K is an r-dimensional vector space over the prime Galois field F = GF(p). The linear transformations of K into K are the endomorphisms of K, and they form a ring, while the nonsingular linear transformations of K onto K are the automorphisms of K and form the multiplicative group A(K).

Let \overline{H} be a homomorph of H in A(K). For each $\sigma \in \overline{H}$, let K_{σ} denote the image $K(\sigma-1)$ of K under the endomorphism $\sigma-1$. Let K^* denote the subspace $\left\langle K_{\sigma} \mid \sigma \in \overline{H} \right\rangle$ generated by all K_{σ} . If G is an extension of K by H, then M will denote the set $\left\{ b_{ij} \mid 1 \leq i \leq s, \ 1 \leq j \leq s \right\}$ as well as the matrix (b_{ij}) . Since \overline{H} is abelian, each K_{σ} is invariant under \overline{H} , and so is K^* .

LEMMA 3. G is a commutator extension of K by H if and only if K is generated by M and K*; $K = \langle M, K^* \rangle$.

Proof. It is sufficient to show that, given an extension G of K by H, $\langle M, K^* \rangle$ is the commutator subgroup of G. But this is clear because b_{ij} and $a(\sigma - 1)$ are commutators, while any two elements of G commute modulo $\langle M, K^* \rangle$. q.e.d.

The following, our main theorem, concerns the existence of a split commutator extension of K by H.

THEOREM 4. Let K be an elementary abelian p-group of rank r, and let H be a finite abelian group of order m. Let q_1, \cdots, q_h be the distinct prime divisors of m different from p, and let $\gamma_1, \cdots, \gamma_h$ be the orders of p mod q_1, \cdots, q_h , respectively. Then a necessary and sufficient condition for the existence of a split commutator extension of K by H is that

(13)
$$r = n_1 \gamma_1 + \cdots + n_h \gamma_h$$
 $(n_i nonnegative integers)$

is solvable for n_i . In particular, $h \ge 1$.

Remarks. If (m, p) = 1, then, by Schur's Theorem, every extension of K by H splits over K, and hence the solvability of (13) is necessary and sufficient for the existence of a commutator extension of K by H. Further, the theorem says, in

articular, that there is no split commutator extension of K by H if H is also a -group.

Proof. For a split extension, for some choice of representative set S, $b_{ij} = 0$ or all i and j, and hence, G is a split commutator extension if and only if $\zeta = K^* = \langle K_\sigma \mid \sigma \in \overline{H} \rangle$.

Suppose that G is a split commutator extension of K by H. Since $K = K^* \neq 0$, $\bar{1} \neq 1$. First suppose that the rank r is 1. Then A(K) is the multiplicative group of F = GF(p), and $\sigma^{p-1} = 1$ for all $\sigma \in A(K)$. Therefore, every $\sigma \in \overline{H}$ has an order lividing p-1. But then there exists a $\sigma \in \overline{H}$ of order equal to some q_i . This means that $h \geq 1$ and q_i divides p-1, and the corresponding order γ_i of p mod q_i is 1. Thus (13) is trivially solvable.

Suppose now that $r \geq 2$ and that the necessity is proved for all elementary abelian p-groups of rank less than r. Moreover, as a part of the induction hypothesis, assume that some corresponding automorphism has an order q_i for some i. Now consider the homomorph \overline{H} corresponding to K. If no $\sigma \in \overline{H}$ is of order q_i for any i, then every $\sigma \in \overline{H}$ is of order p^f for some f. Choose a $\sigma \in \overline{H}$ of order p. Since $(\sigma - 1)^p = \sigma^p - 1 = 0$, $\sigma - 1$ is singular. Therefore K_σ is a nontrivial proper invariant subgroup of K under \overline{H} . From (12) we see that G/K_σ is a split commutator extension of K/K_σ by H, and the rank of K/K_σ is less than r. But the corresponding homomorph \overline{H}^* of H contains no automorphisms of order q_i for any i, which is contrary to the induction hypothesis. Thus some $\sigma \in \overline{H}$ has an order q_i for some i.

Let $\sigma \in \overline{H}$ be of order $q = q_i$, and let $\gamma = \gamma_i$ be the order of p mod q. Consider the characteristic polynomial $|x - \sigma|$, and factor it into irreducible factors over F;

$$|x - 1| = P_1(x)^{e_1} \cdots P_t(x)^{e_t}.$$

Since σ^q - 1 = 0, each irreducible factor $P_i(x)$ is a divisor of x^q - 1. Since $\sigma \neq 1$, some $P(x) = P_i(x) \neq x$ - 1. Then the degree of P(x) is precisely γ [1, Chapter V, Section 7, Theorem 14]. Let

$$N = \{a \in K \mid aP(\sigma)^n = 0 \text{ for some } n \ge 1\}$$
.

Then N is a nontrivial subgroup of K invariant under \overline{H} , and its rank is $e\gamma$ ($e=e_i$). If K=N, then $r=e\gamma$, and we have a solution of (13). If $K\neq N$, then G/N is a split commutator extension of K/N by H, and the rank of K/N is equal to $r-e\gamma < r$. Thus, by the induction hypothesis, the equation $r-e\gamma = n_1\gamma_1 + \cdots + n_h\gamma_h$ is solvable for integers $n_i \geq 0$, and so is (13). This completes the proof of the necessity.

Conversely, suppose that (after reindexing the primes q_i) we have a solution of (13) with n_1 , \cdots , $n_t > 0$ and $n_i = 0$ for i > t. For each $i \le t$, let λ (= λ_i) be a primitive qth (= q_i th) root of unity over F. Then γ (= γ_i) is the degree of the field extension $F(\lambda)$ over F (*ibid.*, Theorem 14). Let β_1 , \cdots , β_{γ} be a basis of $F(\lambda)$ over F, and define a matrix $A = (a_{ij})$ by

$$\lambda \beta_{j} = \sum_{i=1}^{\gamma} a_{ij} \beta_{i} \quad (a_{ij} \in F).$$

Applying this argument to each q_i (i = 1, ..., t), we obtain matrices A_i of degree γ_i . For each $i \le t$, let

$$A_{i}^{!} = diag(1, \dots, 1, A_{i}, \dots, A_{i}, 1, \dots, 1),$$

where A_i appears n_i times stretching from the $(n_1\gamma_1+\cdots+n_{i-1}\gamma_{i-1}+1)$ st position to the $(n_1\gamma_1+\cdots+n_i\gamma_i)$ th position along the diagonal. Choose a basis (g_1,\cdots,g_r) of K. Then A_i' represents an automorphism σ_i of K relative to the basis (g_1,\cdots,g_r) . Since σ_i represents multiplication by λ_i and $\lambda_i^{q_i}=1$, $\sigma_i^{q_i}=1$. Let \overline{H} be the group of automorphisms generated by the σ_i , which is clearly a homomorph of H in A(K). Divide the basis (g_1,\cdots,g_r) into t blocks of lengths $n_1\gamma_1,\cdots,n_t\gamma_t$, and let K_1,\cdots,K_t be the subgroups generated by the corresponding blocks of the basis elements. Then σ_i is an automorphism of K_i . Moreover, since $\lambda_i\neq 1,\ \sigma_i-1$ is nonsingular on K_i , and hence, $K_i(\sigma_i-1)=K_i$. Since σ_i is the indentity on K_i for $j\neq i$,

$$K_{\sigma_i} = K(\sigma_i - 1) = K_i$$
 and $K^* = \langle K_{\sigma_i} | i = 1, \dots, t \rangle = K_1 \oplus \dots \oplus K_t = K$.

Taking $b_i = 0$ and $b_{ij} = 0$ for all i and j, we obtain a split commutator extension of K by H. This completes the proof of Theorem 4.

By tracing back the preceding theorems, we see that Theorem 4 gives necessary and sufficient conditions for the existence of a split commutator extension of K by H in terms of invariants of K and H, where K is a group whose commutator factor group is finite and H is a finite abelian group. Turning our attention to nonsplit commutator extensions of K by H, we assume that K is an elementary abelian p-group of rank r and that p divides the order m of H. Let p, q_1, \cdots, q_h be the prime divisors of m.

LEMMA 4. Let $\sigma \in A(K)$. If $\sigma^{\mu} = 1$ and $(\mu, p) = 1$, then

Im
$$(\sigma - 1) = \text{Ker} (1 + \sigma + \cdots + \sigma^{\mu - 1})$$
.

Proof. Since $(\sigma - 1)(1 + \sigma + \cdots + \sigma^{\mu - 1}) = \sigma^{\mu} - 1 = 0$, we have the inclusions

$$\operatorname{Im} (\sigma - 1) \subset \operatorname{Ker} (1 + \sigma + \cdots + \sigma^{\mu - 1}), \qquad \operatorname{Im} (1 + \sigma + \cdots + \sigma^{\mu - 1}) \subset \operatorname{Ker} (\sigma - 1).$$

Let $i = rank (Im (\sigma - 1)), \quad i' = rank (Im (1 + \sigma + \cdots + \sigma^{\mu - 1})),$

$$k = rank (Ker (\sigma - 1)), k' = rank (Ker (1 + \sigma + \cdots + \sigma^{\mu - 1})).$$

Then i+k=i'+k'. It is sufficient to show that $\operatorname{Ker}(\sigma-1)\subset\operatorname{Im}(1+\sigma+\cdots+\sigma^{\mu-1})$, for then k=i', and hence, i=k'. Let $a\in\operatorname{Ker}(\sigma-1)$, so that $a\sigma=a$. Since μ is relatively prime to the order of a, there exists an integer η such that $\mu\eta\equiv 1$ modulo the order of a. Let $a'=\eta a\in\operatorname{Ker}(\sigma-1)$. Since $a'\sigma=a'$,

$$a = \mu a' = a'(1 + \sigma + \cdots + \sigma^{\mu-1}).$$
 q.e.d.

LEMMA 5. Let H_p be the p-Sylow subgroup of H, so that $H = H_p \times H'$. Let $s = \operatorname{rank}(H_p)$, and let (z_{s+1}, \cdots) be a basis of H'. If G is an extension of K by H, then

$$b_{i\,j} \; \epsilon \; K^*$$
 = $\left< K_\sigma \; \middle| \; \sigma \; \epsilon \; \overline{H} \right> \; \text{if } i > s \; \text{or } j > s \; .$

Proof. Let (X, B, M) be a triple corresponding to the extension G of K by H. Let (X', B', M') be the restriction of (X, B, M) to H', that is, let

$$X' = (x_{s+1}, \dots), \quad B' = (b_{s+1}, \dots), \quad M = (b_{ij}) \quad (i > s, j > s).$$

Then (X', B', M') is clearly admissible with respect to (K, H'). Since the order of H' is relatively prime to p, the corresponding extension of K by H' splits over K, and hence, (X', B', M') ~ (X', 0, 0). Thus the original triple (X, B, M) is equivalent to a triple in which $b_i = 0$ and $b_{ij} = 0$ for all i > s and j > s. According to (10), equivalent b_{ij} are congruent modulo K^* , so that we may assume that $b_i = 0$ and $b_{ij} = 0$ for all i > s and j > s in (X, B, M). If i > s, then, by (7),

$$b_{ij}(1 + x_i + \cdots + x_i^{m_i-1}) = b_i(x_i - 1) = 0.$$

Then, by Lemma 4, $b_{ij} \in K_{x_i}$ and $b_{ji} = -b_{ij} \in K_{x_i}$ if i > s. q.e.d.

PROPOSITION 1. Let G be a commutator extension of K by H, and let $r^* = \operatorname{rank}(K^*), \ K^* = \left\langle K_\sigma \mid \sigma \in \overline{H} \right\rangle. \ Then \ {s \choose 2} \geq r - r^*, \ where \ s = \operatorname{rank}(H_p) \ and H_p \ is \ the \ p\text{-Sylow subgroup of H.}$

Proof. Consider the commutator extension G/K^* of K/K^* by H. If (X, B, M) is a triple corresponding to G, then a triple (X^*, B^*, M^*) corresponding to G/K^* is given by (12);

$$(a + K)\sigma^* = a\sigma + K$$
, $b_i^* = b_i + K^*$, $b_{ij}^* = b_{ij} + K^*$.

Since $a\sigma \equiv a \pmod{K^*}$ and $b_{ij} \in K^*$ if i > s or j > s, we see that $\overline{H}^* = 1$, and we must have the relation $K/K^* = \left\langle b_{ij}^* \middle| i \le s, j \le s \right\rangle$. But this is possible only if $\binom{s}{2} \ge \operatorname{rank}(K/K^*) = r - r^*$. q.e.d.

COROLLARY 1. If H is a cyclic p-group, then there exists no commutator extension of K by H.

Proof. Since H is a p-group, there exists no homomorph \overline{H} of H in A(K) such that $K^* = K$, for otherwise, we would have a split commutator extension of K by H. Thus $r - r^* \geq 1$ for every choice of \overline{H} . Hence $s \geq 2$ if there is a commutator extension of K by H. q.e.d.

COROLLARY 2. The commutator factor group G/G' of a nonabelian finite p-group is noncyclic.

PROPOSITION 2. A necessary and sufficient condition for the existence of a commutator extension of K by H such that $\overline{H} = 1$ is that $\binom{s}{2} \ge r$, where $s = \operatorname{rank}(H_D)$.

Proof. Since $\overline{H}=1$, $K^*=0$. Therefore, by Proposition 1, the condition $\binom{s}{2} \geq r$ is necessary. Conversely, suppose that $\binom{s}{2} \geq r$. Let (g_1, \cdots, g_r) be a basis of K, and let b_{ij} be equal to g_1, \cdots, g_r in some order $(i < j \le s)$, and let the remaining b_{ij} (i < j) be 0. Of course, we let $b_{ji} = -b_{ij}$ and $b_{ii} = 0$. Since $\overline{H}=1$ and pa = 0 for all a ϵ K and $b_{ij}=0$ if i > s or j > s, we may take $b_i=0$ to obtain an admissible triple (\overline{H}, B, M) . Since $K=\left\langle M\right\rangle$, the corresponding extension is a commutator extension. q.e.d.

LEMMA 6. For each $\sigma \in A(K)$, $1 + \sigma + \cdots + \sigma^{p^f-1} = (\sigma - 1)^{p^f-1}$.

Proof. Let $\beta = \sigma - 1$, so that $\sigma = 1 + \beta$. Then

$$\sum_{k=0}^{p^f-1} \sigma^k = \sum_{k=0}^{p^f-1} (1+\beta)^k = \sum_{k=0}^{p^f-1} \sum_{j=0}^k \binom{k}{j} \beta^j = \sum_{j=0}^{p^f-1} \beta^j \sum_{k=j}^{p^f-1} \binom{k}{j}.$$

But

$$\sum_{k=j}^{p^f-1} \binom{k}{j} = \binom{p^f}{j+1} \equiv \begin{cases} 0 \pmod{p} & \text{if } j < p^f-1, \\ 1 & \text{if } j = p^f-1. \end{cases}$$

Hence

$$\sum_{k=0}^{p^{f}-1} \sigma^{k} = \beta^{p^{f}-1} = (\sigma - 1)^{p^{f}-1}.$$
 q.e.d.

PROPOSITION 3. If $p^f > r$ for the order p^f of some basis element z_i ($i \le s$) of H_p , then the condition $s \ge 2$ is sufficient for the existence of a nonsplit commutator extension of K by H.

Proof. Let z_1 be of order $p^f > r$. Choose a nilpotent endomorphism β of rank r-1 on K, and let $x_1 = 1 + \beta$. Then $\beta^{p^f-1} = \beta^r = 0$, and hence, $x_1^{p^f} = (1+\beta)^{p^f} = 1$. Let all other x_i be 1. Let all $b_i = 0$. Choose $b_{12} = -b_{21}$ to be an element not in $K_{x_1} = K(x_1 - 1)$, and all other b_{ij} to be 0. Since

$$1 + x_1 + \dots + x_1^{p^{f}-1} = (x_1 - 1)^{p^{f}-1} = \beta^{p^{f}-1} = 0,$$

the triple (X, B, M) is clearly admissible. Since

$$\operatorname{rank}(K_{x_1}) = \operatorname{rank}(\beta) = r - 1$$
 and $b_{12} \notin K_{x_1}$,

 $K = \langle b_{12}, K_{x_1} \rangle$. Thus the corresponding extension is a nonsplit commutator extension of K by H. q.e.d.

REFERENCES

- 1. A. A. Albert, Fundamental concepts of higher algebra, The University of Chicago Press, Chicago, Illinois, 1956.
- 2. R. Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), 375-416.
- 3. H. J. Zassenhaus, *The theory of groups*, Second Edition, Chelsea Publishing Company, New York, 1958.

The City College of New York