COMMUTATOR EXTENSIONS OF FINITE GROUPS

Hironori Onishi

Let K and H be groups. Let us call an extension G of K by H a commutator
extension if K is the commutator subgroup G' of G. In order that there may exist
a commutator extension of K by H, H must be abelian. Henceforth, we assume that
H is abelian and finite. On the other hand, if K' is the commutator subgroup of K,
then K/K' is abelian. We assume that K/K' is also finite. Our problem is to find
necessary and sufficient conditions for the existence of a commutator extension of K
by H.

We shall first reduce the problem to the case in which K is an elementary
abelian p-group. Theorem 4 then gives necessary and sufficient conditions for the
existence of a split commutator extension. Following that come other results on
nonsplit commutator extensions.

To begin, let us note that the commutator subgroup K' of K is normal not only
in K, but also in every extension of K, because K' is a characteristic subgroup of
K.

THEOREM 1. G is a commutator extension of K by H if and only if G/K' is a
commutator extension of K/K' by H.

Proof. From the isomorphism G/K £ (G/K')/(K/K'), it follows that G is an
extension of K by H if and only if G/K' is an extension of K/K' by H. Now, if
K = G', then (G/K')' = G'K'/K' = K/K'. Conversely, if (G/K')' = K/K', then
K/K'=G'K'/K' = G'/K', and hence, K=G'. q.e.d.

This theorem reduces the problem to the case in which K is finite abelian. If K
is trivial, then every extension of K by H is a commutator extension (because H is
abelian). Therefore, we assume that K is a nontrivial finite abelian group.

Before proceeding further, we propose to summarize the theory of extensions of
K by H, where K and H are finite abelian groups [3, Chapter III, Sections 6 to 8].

Let G be an extension of K by H, so that G/K £ H. Let ¢: G — H be the epi-
morphism whose kernel is K. An element G of G is called a representative of
u € H if ¢(d) =u. Let (z;, ***, zg5) be a basis of H, and let m; be the order of z;.
An s-tuple S = (21, **-, Zg) is called a representative set of the basis if each Z; is
a representative of z;. Given a pair (G, S), we define a triple (X, B, M), where

X=(X1,"',Xs), B:(b].,"':bs), Mz(bij) (1$1SS, ]-SJSS)’
by the conditions

X:  __
(1) al= Zil

az; for all a € K,
=IT3
(2) Z; 1= bi € K

(3) z:lz:lz.Z.=b.. € K.
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Here x3, ***, Xg are automorphisms of K. We shall indicate the definition of the
triple by (G, S) — (X, B, M).

The triple satisfies the following conditions:

mi

(4) a™i ~=a for all a € K; that is, x; = 1;
(5) a 1% =™ ™ forall a € K; that is, x;x;= XX43
1 mi—l
x Fxst e +x:
(1) by =b;bj i
X -1+xj 1-x;5
(8) by =byby by .

Note that X generates a homomorph —Ii_of H in the automorphism group A(K) of K.
For this reason, we sometimes write H for X, as in the triple (H, B, M).

Conversely, given K and H = (z;) X *** X (zg), let us suppose that we have a
triple (X, B, M), where x;, ***, x4 are automorphisms of K and satisfy conditions
(4) to (8). We shall call such a triple admissible with respect to (K, H). We can
construct a pair (G, S), where G is an extension of K by H and S = (21, **-, Zg) is
a representative set of the basis (z, **-, zg), such that (G, S) — (X, B, M) (that is,
the triple satisfies conditions (1), (2), and (3)). We shall denote this construction by
(X, B, M) — (G, 8S).

If two pairs (G, S) and (G', S') give the same triple (X, B, M), where
S=(zy, ***, 25) and §' = (2], **, Zg), then

n

n n
Z'1 1'--Z;sa<———>2 1

—nS
1 Tz a (a € K)

is an isomorphism G' = G that reduces to the identity on K, and Z; <> Z; for each
i. Thus, up to such an isomorphism, (G', S') and (G, S) are the same, and in this
sense we may write (G, S) <> (X, B, M).

We shall call two extensions G and G' of K by H equivalent (and write G ~ G')
if there exists an isomorphism a: G = G' such that a is the identity on K and
¢ = ¢'a, where ¢: G — H and ¢': G' — H are the epimorphisms whose kernels are
K. On the other hand, we shall call two admissible triples (X, B, M) and
(X', B', M') equivalent (and write (X, B, M) ~ (X', B', M')) if X = X' and there
exist ¢;, **+, ¢g in K such that

m; -1
1+Xi+ eer txy
i ’
-14x: 1-x4

(10) bij =b:':.jci JCj

(9) b; = bic

i i

Under these conditions, G ~ G' if and only if (X, B, M) ~ (X', B!, M'), where
(G, S) «— (X, B, M) and (G', S') «<—> (X', B', M'). The isomorphism « and the s-
tuple (c,, *-+, c ) are related by

(11)  o(Z;)=Zjc; (i=1, -, s).

In particular, any two triples corresponding to the same extension are equivalent. If
G is an extension of K by H, then we agree, without explicitly mentioning it, that
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., B, M correspond to it by some choice of S. Conversely, if we have an admissible
riple (X, B, M), then G will be the corresponding extension, which is unique up to

he equivalence.
Finally, we mention that an extension G of K by H splits over K if and only if,

or some choice of S, all b; are 1 and all b;j are 1. Also, G =K X H if and only if,
or some choice of S, all x; are 1, all b; are 1, and all b;j are 1.

Let G be an extension of K by H. A subgroup N of K is normal in G if and
only if N is invariant under the corresponding automorphisms X of K. Note that in
-his case the x; are automorphisms of N, and G/N is an extension of K/N by H.
Let (G, 8) — (X, B, M), S =(Z;, ***, Z;). Then 8/N=(z N, -, Z2_N) is a repre-
sentative set in G/N of the basis (z;, -, z;) of H. If (G/N, S/N) — (X*, B*, M*),
then

*
(12) (@N)° =a’N, bf=b;N, blj=byN,

where a € K, 0 € ﬁ, and o* is the corresponding automorphism of K/N. The fol-
lowing lemma is trivial; in fact, we have used it in the proof of Theorem 1.

LEMMA 1. If G is a comwmutator extension of X by H, then, for each subgroup
N of K invariant under X, G/N is a comwmutator extension of K/N by H.

LEMMA 2. Suppose that K =K X K, (dirvect product), and the ordevs n; and

n, of Ky and K, ave velatively prime. If theve exist commutator extensions of K,
and K, by H, then theve exists a commutator extension of K by H.

Proof. Let (X', B', M') and (X", B", M") be admissible triples given by the
commutator extensions of K; and K, by H. Extend the automorphisms X' to K by
letting them act trivially on K, . Similarly, extend X" to K trivially on K;. De-
fine a triple (X, B, M) with respect to (K, H) by
Xj = Xl 1 ’ b; = bib{', bij = b::._]b:'lt_]

1

It is easily verified that (X, B, M) is admissible with respect to (K, H), and we have
an extension G of K by H.

Now, K, is invariant under X, and to the extension G/K, of K/K, by H there
corresponds the triple (X*, B*, M*);
xf x} * ! * y
(aKp)™ = a;'Kp,  bf = bjKp,  bfj = bj;K;,

where a = aja, (a; € Kj). Since (X', B', M') corresponds to a commutator exten-
sion of K; by H, it follows that G/K; is a commutator extension of K/K, by H.
Indicating the commutator subgroups by ', we have the relations

K/K; = (G/Kp)' = G'Kp/K3,
and hence, K= G'K, . Similarly, K= G'K;. Since (nj, nz) = 1, this implies that
K =G'. In fact, for each a; € K; there exists an a; € K, such that a; = (a3 az)ail
and ajap € G'. Then

a;” = (a;a,) “ e G'.

Since n, is relatively prime to the order of a;, we see that a; € G'. Thus we have
shown that K; C G'. Similarly, K, € G'. Therefore K=G'. q.e.d.
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The following theorem is a simple consequence of these two lemmas.

'THEOREM 2. Let K and H be finite abelian groups. There exisls a commuta-
tor extension of K by H if and only if, for each Sylow subgrvoup Ky of K, there
exists a commutator extension of Kp by H.

This theorem reduces the problem to the case in which K is a finite abelian p-
group.

THEOREM 3. Let K be a finite abelian p-group, and let H be a finile abelian
group. G is a commutator extension of K by H if and only if G/KP is a commuta-
tor extension of K/KP by H.

Proof. KP is a characteristic subgroup of K, and the necessity follows from
Lemma 1. Conversely, suppose that G/KP is a commutator extension of K/KP by
H. Then G is an extension of K by H. Moreover, K/KP = (G/KP)' = G'KP/KP,
and hence, K = G' KP, But then K = G' because KP is the Frattini subgroup of K.
q.e.d.

Note that K/KP is an elementary abelian p-group of the same rank as K. Thus
we have reduced the problem to the case in which K is an elementary abelian p-
group.

Let K be an elementary abelian p-group of rank r. We shall write K additively,
so that K is an r-dimensional vector space over the prime Galois field F = GF(p).
The linear transformations of K into K are the endomorphisms of K, and they form
a ring, while the nonsingular linear transformations of K onto K are the automor-
phisms of K and form the multiplicative group A(K).

Let H be a homomorph of H in A(K). For each o € ﬁ, let K5 denote the image
K(o* - 1) of K under the endomorphism ¢ - 1. Let K* denote the subspace

Ky | g € ﬁ> generated by all K, . If G is an extension of K by H, then M will
denote the set {b |1<i<s, 1 <] < s} as well as the matrix (b; ;). Since H is
abelian, each K 1s invariant under H, and so is K*.

LEMMA 3. G is a commulator extension of K by H if and only if K is gener-
ated by M and K*; K= (M, K*).
Proof. It is sufficient to show that, given an extension G of K by H, (M K*>

is the commutator subgroup of G. But this is clear because b;j; and a(o - 1) are
commutators, while any two elements of G commute modulo <M K*) g.e.d.

The following, our main theorem, concerns the existence of a split commutator
extension of K by H.

THEOREM 4. Let K be an elementary abelian p-grvoup of vank r, and let H be
a finite abelian group of ovder m. Let q1, ***, Qn be the distinct prime divisors of
m diffevent from p, and let v 1, ', Yh be the orders of p mod q 1, ***, qn, Yespec-
tively. Then a necessary and sufficient condition for the existence of a split com-
mutator extension of K by H is that

(13) r=nyy;+--+n,y, (n; nonnegative integers)

is solvable for n;. In particular, h > 1.

Remavks. If (m, p) =1, then, by Schur’s Theorem, every extension of K by H
splits over K, and hence the solvability of (13) is necessary and sufficient for the
existence of a commutator extension of K by H. Further, the theorem says, in
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articular, that there is no split commutator extension of K by H if H is also a
-group.

Proof. For a split extension, for some choice of representative set S, bjj;
or all i and j, and hence, G is a split commutator extension if and only 1f

{=K*=(K, | 0 € H).

Suppose that G is a split commutator extension of K by H. Since K =K* # 0,
I #1. First suppose that the rank r is 1. Then A(K) is the multiplicative group
f F = GF(p), and oP-1=1 forall ¢ € A(K). Therefore, every o € H has an order
lividing p - 1. But then there exists a ¢ € H of order equal to some q;. This
means that h > 1 and q; divides p - 1, and the corresponding order y; of p mod q;
is 1. Thus (13) is trivially solvable.

Suppose now that r > 2 and that the necessity is proved for all elementary
abelian p-groups of rank less than r. Moreover, as a part of the induction hypothe-
sis, assume that some corresponding automorphism has an order q; for some i.
Now consider the homomorph H corresponding to K. If no o0 € H is of order q;
for any i, then every o € H is of order pf for some f. Choose a ¢ € H of order p.
Since (0 - 1)P=0P-1=0, o - 1 is singular. Therefore K, is a nontrivial proper
invariant subgroup of K under H. From (12) we see that G/Ky is a split commuta-
tor extension of K/K; by H, and the rank of K/Ky is less than r. But the corre-
sponding homomorph H* of H contains no automorphisms of order q; for any i,
which is contrary to the induction hypothesis. Thus some ¢ € H has an order qj

for some i.

Let ¢ € H be of order g = qi, and let ¥ = y; be the order of p mod q. Consider
the characteristic polynomial |{x - o |, and factor it into irreducible factors over F;

=0

|x - 1] = P1(x)! - Pyx) t.

Since ¢4 - 1 = 0, each irreducible factor Pj(x) is a divisor of x9 - 1. Since o #1,
some P(x) = (x) # X - 1. Then the degree of P(x) is precisely y [1, Chapter V,
Section 7, Theorem 14]. Let

= {a € K|aP(c)® =0 for some n>1}.

Then N is a nontrivial subgroup of K invariant under ﬁ, and its rank is ey (e = ej).
If K =N, then r = ey, and we have a solution of (13). If K # N, then G/N is a split
commutator extension of K/N by H, and the rank of K/N is equalto r - ey <r.
Thus, by the induction hypothesis, the equation r - ey =njyj + - + nyyy is solvable
for integers n; > 0, and so is (13). This completes the proof of the necessity.

Conversely, suppose that (after reindexing the primes ¢;) we have a solution of
(13) with ny, -=-, ny > 0 and n; = 0 for i >t. For each i <t,let A (=2;) bea
primitive qth (= q;th) root of unity over F. Then y (=1v;) is the degree of the field
extension F(i) over F (ibid., Theorem 14). Let 87, ---, By be a basis of F(A) over
F, and define a matrix A = (aij) by

Y
7\6_] = Z; aijﬁi (aij € F).
i=1

Applying this argument to each q; (i =1, ---, t), we obtain matrices A; of degree
vi- For each i <t let
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A{ = diag(l’ oo 1, Ai! ee, Ai’ 1’ ee 1)’

where A; appears n; times stretching from the (nyy; + ***+ n;_;v;_; + 1)st posi-
tion to the (nl vyt e+ ni-yi)th position along the diagonal. Choose a basis

(g1, ***, g+) of K. Then A; represents an automorphism o¢; of K relative to the
basis (g, ***, g,). Since o0; represents multiplication by A; and A?i =1, og‘i:

Let H be the group of automorphisms generated by the ¢ ;, which is clearly a homo-
morph of H in A(K). Divide the basis (gj, ***, g,) into t blocks of lengths

nyvyi, °-*, Nty¢, and let Ky, ---, K; be the subgroups generated by the corresponding
blocks of the basis elements. Then o; is an automorphism of K;. Moreover, since
A; #1, o; - 1 is nonsingular on Kj, and hence, K;{(o; - 1) = K;. Since o; is the
indentity on K;j for j #1i, .

Ko, = K(0;-1) = K; and K* = (Ko, |1=1,t) =K, ® @K = K.

Taking b; = 0 and b;; = 0 for all i and j, we obtain a split commutator extension of
K by H. This completes the proof of Theorem 4.

By tracing back the preceding theorems, we see that Theorem 4 gives necessary
and sufficient conditions for the existence of a split commutator extension of K by
H in terms of invariants of K and H, where K is a group whose commutator factor
group is finite and H is a finite abelian group. Turning our attention to nonsplit
commutator extensions of K by H, we assume that K is an elementary abelian p-
group of rank r and that p divides the order m of H. Let p, q1, ***, q, be the
prime divisors of m.

LEMMA 4. Let o € AK). If o =1 and (1, p) =1, then
Im(o - 1) = Ker(1+0 + =+ o1,
Proof. Since (0 - 1)(1 4+ 0 4+ + o“'l) = oM - 1 =0, we have the inclusions

Im(oc -1)CcKer{(1 +0 + ---+U”"1), Im(1 +o0 + ---+o“'1) c Ker(o - 1).

Let i rank(Im(O' - 1)), i! = rank(h(l + O o eee O—U-'l)),

k = rank(Ker (0 - 1)), k' = rank(Ker(l+ o + -+ okt 1y,

Then i+k =i'+k'. It is sufficient to show that Ker (o - 1) CIm (1 + ¢ + - + o“’l),
for then k = i', and hence, i =k'. Let a € Ker (o - 1), so that ac = a. Since u is
relatively prime to the order of a, there exists an integer 7n such that un =1

modulo the order of a. Let a'=na € Ker(o - 1). Since a'c =a',

a=ua';a'(1+o+---+0“‘1). qg.e.d.

LEMMA 5. Let Hp be the p-Sylow subgroup of H, so that H = Hp X H'. Let
s = rank (Hp), and let (zs+1, +*+) be a basis of H'. If G is an extensiorn of K by H,
then

b €K*=<K0|G€ﬁ> if i>sor j>s.

ij
Proof., Let (X, B, M) be a triple corresponding to the extension G of K by H.
Let (X', B', M') be the restriction of (X, B, M) to H', that is, let
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X' = (Xs+l, "'), B! = (bS'l'.I’ '"), M = (bi_]) (i> s, ]> S).

T'hen (X', B', M') is clearly admissible with respect to (K, H'). Since the order of
d' is relatively prime to p, the corresponding extension of K by H' splits over K,
and hence, (X', B', M') ~ (X', 0, 0). Thus the original triple (X, B, M) is equivalent
to a tr1p1e in Wh1ch b; = 0 and b1 =0 for all i > s and j > s. According to (10),
equivalent b;jj are congruent modulo K* so that we may assume that b; = 0 and

bijj =0 for all i>s and j> s in (X, B, M). If i > s, then, by (7),

m. -1
bij(l +Xi+ b +Xi 1 ) = bi(xj - 1) = 0,
Then, by Lemma 4, b;; € Ky, and bs; = -b;; € K, if 1 >s. g.e.d.
1 1

PROPOSITION 1. Let G be a commulator extension of K by H, and let
r* = rank (K*), K* = <Kor | o € —H—> Then (;) >r - r* wheve s = rank (Hy) arnd
Hyp is the p-Sylow subgroup of H.

Proof, Consider the commutator extension G/K* of K/K* by H. If (X, B, M) is
a triple corresponding to G, then a triple (X*, B¥, M*) corresponding to G/K* is
given by (12);

(a+K)o* = ac +K, b¥ = b;+K*, bz‘j= bi-+K*.
Since ac =a (mod K*) and b;jj € K* if i > s or j > s, we see that H* = 1, and we
must have the relation K/K* = <b* ] i<s, i< s> But this is possible only if
(g) > rank (K/K*) = r - r*, g.e.d.
COROLLARY 1. If H is a cyclic p-group, then therve exists no commutator ex-

tension of K by H.

Proof. Since H is a p-group, there exists no homomorph H of H in A(K) such
that K* = K, for otherwise, we would have a split commutator extension of K by H.
Thus r - r* > 1 for every choice of H. Hence s > 2 if there is a commutator ex-
tension of K by H. g.e.d.

COROLLARY 2. Tke comwmutator factor group G/G' of a nonabelian finite p-
group is noncyclic.

PROPOSITION 2. A necessary and sufficient condition for the existence of a
commutalor extension of K by H such that H=1 is that ( 2) >r, where
s = rank (Hp).

Proof. Since H = 1, K* = 0. Therefore, by Proposition 1, the condition
(S) > r is necessary. Conversely, suppose that ( ) >r. Let (g1, ***, g ) bea

basis of K, and let b;; be equal to g;, **-, g,. in some order (i <] < s), and let the
remaining b i< ]) be 0. Of course, we let bJ = -y i and by; = 0. - Since H=1
and pa =0 forall a € K and b;j;=0 1f i>s or j>s, Wemaytake b; = 0 to obtain
an admissible triple (H B, M). Smce K= < M> the corresponding extensmn is a
commutator extension. q.e.d.

pf-1 £
LEMMA 6. For each ¢ € A(K), 1+0 + -+ a0 =(oc - 1)+,
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Proof., Let =0 -1, sothat 0 =1+ 8. Then

pi-1 pf-l pf-l k f
ok=E(1+B)k=22(1.{)65=2ﬁ32()
k=0 k=0 k=0 j=0 ‘! j=0
But
pt-1 j <pf
( ) ( ) 0 (mod p) if j<p* -
k= i1 if j=pf-1.
Hence
Pl £ £
ok =gp -1 = (¢ - 1)P -1, gq.e.d.
k=0

PROPOSITION 3. If pf > r for the ovder pf of some basis element z; (i <s)
of H, , then the condition s > 2 is sufficient for the existence of a nonsplit commu-
tato'r extenswn of K by H

Proof. Let z; be of order pf > r. Choose a nilpotent endomorphism S of rank

f f
r -1 on K, andlet x; =1+ 3. Then BPf‘l = BT = 0, and hence, XI; =(1+pB)F =1.
Let all other x; be 1. Let all bj= 0. Choose bjz= -bz; to be an element not in
Kx; = K(x1 - 1), and all other b;; to be 0. Since

f_ f_ f_
14+ xy+ - +x§ 1=(x1—1)p 1=ﬁp l=0,
the triple (X, B, M) is clearly admissible. Since
rank(le) = rank(8) =r -1 and by, ¢ KXl’

K= <b12, Kx1> . Thus the corresponding extension is a nonsplit commutator ex-
tension of X by H. q.e.d.
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