EXTREME POINTS OF THE NUMERICAL RANGE OF
A HYPONORMAL OPERATOR

J. G. Stampfli

We denote the numerical range of an operator T by W(T) = {(Tx, x); "x" =1},

In [1], Donoghue lists the most important facts about W(T). There are six of
these, and four place no special restriction on the operator. We list the remaining
two:

a) If T is normal, then the closure of W(T) is the smallest convex set contain-
ing the spectrum of T.

b) If T is normal and W(T) is closed, the extreme points of W(T) are eigen-
values.

It has been shown independently by Putnam [2] and Stampfli [4] that a) holds when
normality is replaced by hyponormality. It is the purpose of this note to show that
the same replacement is valid in b).

An operator T is said to be hyponormal if T*T - TT* > 0, or equivalently,

| Tx[| > || T*x| for all x € H. Throughout, H will denote the underlying Hilbert
space.

LEMMA 1. Let RW(T) > 0. Then (Tx, x) = 0 implies Tx = - T*x.

Proof, If x € H, then ((T + T*)x, x) = 2R(Tx, x) > 0 or T+ T* > 0. Now,
(Tx, x) = 0 implies ((T + T*)x, x) = 0, and thus (T + T*)x = 0 since T + T* is posi-
tive.

LEMMA 2, Let R®W(T) > 0, and let 0 be an extreme point of W(T). Then
M = {x € H: (Tx, x) = 0} is a closed subspace.

Proof. All is clear but the linearity. For x, y € M, we see that

(T(x+7y), (x+y) = (Tx, x) + (Tx, y) + (Ty, x) + (Ty, y)

(Tx, y) + (T*x, y) = (Tx, y) - (Tx, y)

1l

2 I(Tx, y) = a.

Assume a # 0. Then (T(eie X +y), (eie x+y)=2S eie(Tx, y). Now, since a # 0,
for ei® = +1 the values of 2 S el (Tx, y) lie in both the upper and lower half-planes.
Thus O is not an exireme point, contrary to hypothesis.

If we define N = {x € H: Tx = - T* x}, then clearly N is a closed subspace.
From Lemma 1 we see that M € N when RW(T) > 0.

We shall need the following result on hyponormal operators. (See Lemma 3 of

[4D).
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THEOREM A. Let T be hyponovmal; then |Tx| = | T*x| if and only if
TT*x = T* TX.

LEMMA 3. Let T be hyponormal, and fov a fixed veal value 6, let
K= {x:xe H; Tx = el T*x}.

Then K is a reducing subspace of T, and T | K is normal. Thus T"x = eind Txig
Jfor x € K.

Proof. For x € K, Tx = el T*x implies " Tx" = | T* x“ and hence
TT*x = T* Tx. But then

T(Tx) = T(eif T*x) = eif T*(Tx) and T(T*x) = T*(Tx) = elf T*(T*x),

for x € K. From this we may conclude that K is invariant under both T and T*, in
other words, that it is reducing. Since T*Tx = TT*x for x € K, it follows that

T | K is normal. The last statement of the theorem is clear from the definition of
K, its invariance under T, and the normality of T | K.

COROLLARY 1. If T is hyponormal and N is defined as above, then N is a re-
ducing subspace of T, and T | N is normal,

Proof. Take 6 =m.

COROLLARY 2. If T is hyponormal and Tx = ei9 T*x for some x € H, then T
has a proper invariant subspace.

THEOREM 1. Let T be hypornormal and RW(T) > 0, where 0 is an extreme
point of W(T). If (Tx, x) = 0, then Tx = 0. Moreover, M= {xe H: (Tx, x) =0} is
a rveducing subspace of T.

Proof. We shall first give a quick proof by using the known result for normal
operators. Then we shall employ a second method that makes no recourse to
normality.

Since (Tx, x) = 0, we see that x € M c N. Now T is normal on N, and therefore,
under our hypothesis on W(T), the condition (Tx, x) = 0 implies that Tx = 0.

For a more barbaric approach, let Tx = ay, where “x" = Hy" =1 and a # 0.
Since (Tx, x) = 0, it follows that (x, y) = 0. Thus

(Ty, x) = (y, T*x) = -(Tx, y) = -a.

Set L = {x, y}, and define P to be the projection of H on L. Then the matrix
~ 0 -a|

representation of PTP on L is a o

If x € N, then ay = Tx € N, hence (Ty, y) = - (Ty, y) and ¢ is pure imaginary.
Observe that W(PTP) C W(T). However, a calculation reveals that W(PTP) is the
line segment joining the roots of the equation A2 - cx + |a| 2 = 0 (for the matrix is
normal). Now the roots are

A= (ci—iw/lc|2+4 |a|2)/2.

Since 0 is an extreme point of W(T) and thus of W(PTP), it must be an endpoint of
the line segment, that is, one of the roots. Clearly this happens only if a = 0, which
implies Tx = 0. The last statement of the theorem is just a general fact about the
eigenvalues of hyponormal operator (they reduce; see [3]).
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COROLLARY 1. If T is hyponovmal and zg is an extreme point of W(T), then
(Tx, X) = zg together with "xn =1 implies that Tx = zgx and {x € H: Tx = zg X}
is a nonemptly subspace.

COROLLARY 2. Let T be hyponormal on a separable Hilbevt space H. Then
W(T) has at most a countable number of extreme points.

Proof. To every extreme point there corresponds an eigenvalue, and from [3]
we know that distinct eigenvalues engender orthogonal eigenvectors. Since the space
H is separable, we are done.

We remark that, in general, the extreme points of the numerical range of an
arbitrary operator are not eigenvalues. One need look no further than that traditional
stamping ground for counterexamples, the two-dimensional Hilbert space. For the
operator

01
0o0lI’

the numerical range is the closed disc |z] < 1/2. Thus every boundary point is an
extreme point, though hardly an eigenvalue.
We note, however, that Donoghue has proved the following:

THEOREM. If z, is an extveme point of W(T) and the boundary of W(T) is not
diffeventiable at zy (roughly, W(T) has a corner at zg), then z is an eigenvalue.
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